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Abstract

I exploit historical natural experiments to study how establishing a new college
affects local invention. Throughout the nineteenth to the mid-twentieth century, many
new colleges were established in the U.S. I use data on the site selection decisions for a
subset of these colleges to identify “runner-up” locations that were strongly considered
to become the site of a new college but were ultimately not chosen for reasons that
are as good as random assignment. The runner-up counties are similar to the winning
college counties along observable dimensions. Using the runner-up counties as coun-
terfactuals, I find that the establishment of a new college caused 40% more patents per
year in college counties relative to the runners-up. However I also conclude that col-
leges are not a necessary condition to promote local invention: establishing other types
of institutions leads to a similar increase in local patenting. Reconciling these results,
the primary channel by which colleges cause an increase in local invention is through
migration. I cannot reject the hypothesis that, after controlling for population, colleges
have no independent effect on local patenting. Furthermore, when linking patent data
to a novel dataset of historical college yearbooks and to individual-level census data,
only a small share of patents come from alumni or faculty of sample colleges, while
most patents are by migrants to the college county.
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1 Introduction

Policymakers, researchers, and business executives are all obsessed with finding “the next

Silicon Valley” (Forbes Technology Council, 2017), but identifying specific policies and insti-

tutions to promote an innovation hub is not easy. A consensus has emerged that a successful

college or university is a necessary condition to promote local invention (Davis, 2016).1 For

example, Moretti (2012, p. 197) argues that “proximity to a research university is impor-

tant...to form a sustainable cluster of innovative companies,” although he is careful to note

that a university by itself is not sufficient to create such a cluster. O’Mara (2005, p. 6)

refers to colleges and universities as “the economic development engine” at the heart of

innovative cities. And Florida (2002, p. 291-292) concludes that “the presence of a ma-

jor research university is a basic infrastructure component” of innovation hubs, even more

important than physical infrastructure like bridges and railroads. For their part, colleges

themselves frequently tout (likely inflated) estimates of their importance for promoting local

entrepreneurship, employment, and innovation (Siegfried, Sanderson, & McHenry, 2007). An

even starker way to gauge how colleges view their role in their local economies is to note that

almost 15% of U.S. university mottoes explicitly refer to improving the local economy.2 A

sizable academic literature, starting with Jaffe’s (1989) seminal paper, gives some credence

to these claims, documenting that innovative firms tend to co-locate with colleges and that

invention by these firms is correlated with changes in college spending.

This paper makes three contributions. First, I show that, as claimed by the sources above,

creating a new college does cause an increase in local invention, as measured by patents. I do

this by exploiting a historical natural experiment that is cleaner than previous strategies that

attempt to establish causality. Second, I investigate the claims that colleges are a necessary

condition for promoting local invention. Using the same natural experiments, I find that

the creation of other types of institutions lead to increases in patenting indistinguishable

from that caused by colleges, suggesting that colleges are not necessary. Finally, I reconcile

the first two results by showing the mechanism by which colleges increase local invention.

1Throughout this paper, I use the terms “college” and “university” interchangeably.
2Author’s calculation based on university mottoes listed on https://en.wikipedia.org/wiki/List of

university mottos#United States. As examples, North Dakota State University’s motto is “For the land
and its people,” while the University of Missouri is dedicated to “The welfare of the people.”
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The primary channel through which establishing a new college increases local invention is

through migration. In fact, after controlling for changes in county population, I cannot reject

the null hypothesis that colleges have no effect on local patenting. I further link the patent

data to a novel dataset of historical college yearbooks and to the 100% decennial census and

document that only a small share of patents come from alumni and faculty of new schools;

the majority of patents come from migrants to the college counties.

Several recent studies attempt to estimate the causal effect of colleges on the local econ-

omy (e.g., Furman and MacGarvie (2007), Aghion, Boustan, Hoxby, and Vandenbussche

(2009), Kantor and Whalley (2014), Hausman (2017)), although finding clear and convinc-

ing identification has proven difficult. The reason for this difficulty is clear: colleges are

not located at random. As Hausman puts it: “To understand local industry effects of uni-

versities, one would ideally like to randomly allocate universities to locations and measure

related industry activity in those locations after the universities arrived relative to before.”

(Hausman, 2017, p. 11). To the frustration of researchers, such an experiment is infeasible

to conduct today. In this paper, I approximate this ideal experiment using historical data on

the establishment of new colleges in the U.S., spanning the years 1839-1954. By exploring

the narrative record, I am able to identify “runner-up” sites that were strongly considered

to become the site of a new college, adopting a methodology used in Greenstone, Hornbeck,

and Moretti (2010) to study the site selection decisions of large manufacturing plants.3 The

key idea behind this “runner-up” methodology is that, when selecting where to locate a new

college, dozens of possible candidate locations are considered and iteratively eliminated; by

the time only a few finalists sites are left they are likely similar along both observable and

unobservable dimensions. While this methodology works well in the context of Greenstone

et al. (2010), the identifying assumption can fail if only a small number of locations were

ever considered, especially if these finalist locations appear very different from one another.

To account for this, I refine the methodology by restricting the sample to cases in which I

can verify that the site selection decision approximates random assignment.

A concrete example of a case with as-good-as-random assignment of the college may

3Malmendier, Moretti, and Peters (2016) and Helmers and Overman (2017) apply similar methodologies
in other contexts.
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be useful. In 1882, the state of North Dakota drew lots to determine where to locate the

University of North Dakota and North Dakota State University; locations were literally

randomly assigned (Geiger, 1958, p. 13-27). Not surprisingly, literal random assignment is

rare, but many instances were close. As another example, in 1886 the citizens of Georgia

wanted a technical college, but there was no consensus about where to put it. The two main

rival sites were Atlanta and Macon. Both were known primarily as railway depots located

in the interior of the state and looked similar along a number of observable dimensions. A

site selection committee assembled to vote on the location of the college. For the first 23

ballots, neither Atlanta nor Macon obtained the requisite majority. Finally, on the 24th

ballot, Atlanta won over Macon by one vote (McMath Jr. et al., 1985, p. 24-32). It is thus

easy to believe that Georgia Tech University could have been located in Macon instead of

Atlanta. The cases of the North Dakota universities and Georgia Tech were not isolated

incidents: while the decisions were occasionally less dramatic, these kinds of college site

selection experiments occurred all across the United States during the second half of the

nineteenth century and first half of the twentieth.

Using the augmented runners-up methodology to identify counterfactual sites for the

college counties, I show that the winning and runner-up counties are similar along observable

dimensions. In contrast, most previous studies that focus on the establishment of new

colleges assume that colleges are located at random (Currie and Moretti (2003), Moretti

(2004), Andersson, Quigley, and Wilhelmsson (2004), Andersson, Quigley, and Wilhelmsson

(2009), Frenette (2009), Cowan and Zinovyeva (2013), and Toivanen and Väänänen (2016)).4

I show that such an assumption results in comparing colleges to dissimilar sites and greatly

overstates the effect of colleges on local invention.

Using the runners-up as counterfactuals for the winning college counties, I examine how

colleges affect the production of local patents. I find that establishing a new college causes

40% more patents per year in the winning county relative to the runners-up. But are colleges

necessary to accomplish this increase? In some college site selection experiments, runner-up

4Moretti (2004, p. 190-191), focusing exclusively on land grant colleges, writes that, “Land-grant colleges
were often established in rural areas, and their location was not dependent on natural resources or other
factors that could make an area wealthier. In fact, judged from today’s point of view, the geographical
location of land-grant colleges seems close to random.”
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counties received other types of institutions, such as prisons or insane asylums. I refer to

these as “consolation prizes.” There is no measurable difference in patenting between the

counties with colleges and counties with consolation prizes after establishing the new colleges,

falsifying the claim that colleges are a necessary condition for promoting local invention. I

also show that having a college that focuses on technical skills is not a necessary condition

for promoting local invention by comparing “practical” colleges with curricula that focus on

things like agriculture, engineering, and mining, to “classical” colleges that focus on subjects

such as divinity, the law, and the classics. I find no difference between these different types

of colleges either.

The first two findings, that colleges appear to increase local patenting on average but

are no better than other types of institutions, may appear contradictory at first but are

compatible if the primary channel by which colleges increase local invention is through

migration. Indeed, while consolation prize institutions like prisons and insane asylums do

not produce human capital like colleges do, throughout much of U.S. history they served

as anchor institutions and attracted population similarly to colleges. When controlling for

population in the baseline results, the coefficient on establishing a new college is reduced

by about two-thirds and is no longer statistically different from zero: I cannot rule out

that colleges play no role in promoting local invention outside of their effect on population.

Moreover, I find no evidence that agglomeration economies are stronger in college counties

than in the runner-up counties.

One benefit of using patent data is that it is possible to see which individuals are creating

new inventions.5 I therefore match the names of patentees to a novel dataset of historical

college yearbooks to determine which share of patents are created by individuals who are di-

rectly affiliated with a newly established college. Less than 20% of patents in a college county

after the college is established come from either alumnus or faculty of that college. Almost

75% of patents come from individuals who migrate to the college county, reaffirming that

the most important channel through which colleges affect patenting is through migration.

5Other benefits are that the patent data are available for the entire U.S. over a long time period and a
wide range of technology classes, allowing me to estimate the long-run effects of establishing a new college.
Of course, college data have some drawbacks as well: not all innovations are patented, and not all patents
are for meaningful innovations, making patents a less than perfect proxy for innovation. See Griliches (1990)
and Nagaoka, Motohashi, and Goto (2010), as well as the results below, for a discussion of these issues.
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This paper is organized as follows. Section 2 describes the data, including an in depth

explanation of the college site selection experiments. Section 3 presents the baseline results

for the effect of the establishment of a new college on local patenting. In Section 4, I show

that colleges are not a necessary condition for promoting local invention. Section 5 shows that

the primary channel through which colleges increase local invention is through migration,

and that furthermore most patents are invented by migrants to the college county. Section 6

puts the results into a broader context and concludes.

2 Data and Empirical Model

2.1 The College Site Selection Experiments

U.S. history provides an ideal laboratory to study the establishment of new colleges. As

Goldin and Katz (1999) and Xiong and Zhao (2017) point out, the mid-19th to mid-20th

centuries saw an explosion in the number of colleges and universities in the U.S., providing

many potential college site selection experiments. In addition, because most colleges were

built more than a century ago, it is possible to trace the long-term effects of colleges on

invention. Moreover, many of these colleges were built at the beginning of what Goldin and

Katz (2008) call the “human capital century” and Gordon (2016) refers to as “the golden

age” of America’s technological leadership.

To estimate the causal effect of establishing a college, the first step is to identify valid

counterfactuals to college sites. A large program evaluation literature uses losing applicants

as counterfactuals.6 A potential drawback of this methodology is that rejected applicants

may be very different from the winners. For example, in the context of political candi-

dates, Borgschulte and Vogler (2016) show that examining candidates in close elections,

when the decision was closer to “random,” gives very different results than investigating all

candidates. Greenstone et al. (2010), in a study estimating the agglomeration externalities

6See, for example, Aizer, Eli, Ferrie, and Lleras-Muney (2016), von Wachter, Song, and Manchester
(2011), and Bound (1989) for rejected applicants to various social insurance programs; Dale and Krueger
(2002) for rejected applicants to selective colleges; Olenski, Abola, and Jena (2015), Borgschulte (2014), and
Olshansky (2011) for losing political candidates; and Busso, Gregory, and Kline (2013) for rejected sites for
place-based policies.
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from large manufacturing plants, overcome this challenge by using “runner-up” locations as

counterfactuals for winning sites. This ensures that both the winning and runner-up sites

considered themselves valid to receive treatment, and so did the site selection committee,

which strongly considered both the winners and runners-up. I adopt a similar approach to

identify counterfactuals to college sites.7

A great deal of thought went into each college site selection decision throughout U.S.

history. Horace Bushnell, a theologian who played a central role in locating both the Uni-

versity of California and the University of Illinois, articulated the weight of these decisions:

“The site of a university is to be chosen but once. Once planted, it can never be removed;

and if any mistake is made, that mistake rests on the institution as a burden to the end of

time” (quoted in Ferrier (1930, p. 162)). Many localities wanted to secure a new college,

and any economic benefits that went along with it, for themselves. This ensured that site

selection decisions often became quite contentious. Further complicating the site selection

decision is the fact that new colleges often had particular infrastructure needs. In the case of

land grant universities, for example, the Morrill Act of 1862 explicitly prohibited states from

using their land grant fund to construct buildings. This forced states to locate land grant

colleges in towns with unused buildings large enough for a college or in localities willing to

raise the funds for construction.

To find runner-up sites, I consult institutional histories, what Washburn (1979) calls “the

driest of dry forms of historiography”, for information on the college site selection process. I

consult histories for 432 colleges, including nearly every prominent U.S. college.8 For 193 of

7Patrick (2016) raises several challenges to the identification strategy employed by Greenstone et al.
(2010). I believe my study avoids these critiques. First, because I study the site selection decisions of
colleges rather than for-profit businesses, there is little strategic reason for colleges to hide their list of
finalist locations from competitors. Second, I provide a great deal of institutional detail that shows that the
site selection decision was indeed close to random. Finally, in Section 2.3 I show that college and runner-up
sites are similar in terms of observables; Figures 8 and 3 show that the colleges and runners-up evolved
similarly as well.

8I thus examine the histories of almost 15% of the 3,039 degree-granting four-year post-secondary
schools in the U.S. as of 2013 (https://nces.ed.gov/fastfacts/display.asp?id=84). I investigate
every national university ranked by the 2018 U.S. News and World Report Best Colleges ranking
(https://www.usnews.com/best-colleges/rankings/national-universities), as well as the 25 best
liberal arts colleges in the corresponding ranking (https://www.usnews.com/best-colleges/rankings/
national-liberal-arts-colleges); every land grant college; the first public university founded in each
state; the flagship university of a each state’s public university system if this is different from either the
land grant or first public university; every state technical school and mining college; every federal military
academy; and every university belonging to a Power Five athletic conference. When data was available, I
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these colleges, I am able to find information on the candidate locations that were considered.

One drawback to this approach is that it identifies all finalists, regardless of how similar the

winning and losing sites are or how close the site selection process was to random assignment.

For instance, three different counties submitted bids to the Ohio State legislature to receive

the new Ohio State University, but there does not appear to be any serious discussion in the

legislature: the college was always intended to be located at the state capital in Columbus.

Moreover, Columbus is very different from these other localities along observable dimensions.

To mitigate this problem, I further restrict the sample to only include cases in which the site

selection decision is plausibly exogenous; I refer to these as “high quality” college selection

experiments. I consider 76 of the college cases to be high quality experiments. Four of these

high quality experiments take place prior to the start of the patent data in 1836, so I exclude

them. The remaining 72 high quality college site selection experiments form my baseline

sample.

The high quality site selection experiments can grouped in four ways. First, a vote

among candidate locations may be exceptionally close; the case of Georgia Tech described

in the Introduction is one example of this. Second, candidate locations frequently submitted

bids to boards of trustees or state legislatures to receive a new college. When two bids

are similar, this is evidence that the localities valued receiving the school roughly equally,

and the decision makers were largely indifferent between the two sites. Third, in some

instances a new college had specific infrastructure needs, such as existing vacant buildings of

a suitable size; in a few of these cases, only two or three such sites within the state possessed

the required infrastructure. Finally, some site selection experiments involve quirky random

events that are difficult to otherwise classify. The random assignment of the University of

North Dakota and North Dakota State University is an example of this. Cornell University

provides another example. Ezra Cornell and Andrew White, the fathers of Cornell, wanted

to establish the college in one of their home towns but could not decide on which. Ezra

Cornell was from Ithaca, while Andrew White was from Syracuse. But Cornell had been

also investigated historically black colleges and universities (HBCUs) and private colleges, with a focus on
the private colleges that have been historically noteworthy or are currently considered prestigious. For a
handful of states, I also investigated each normal school established in that state. Over time, normal schools
typically evolved to become “directional” state universities (for example, the Michigan State Normal College
became Eastern Michigan University). Any further sample reductions are due exclusively to data availability.
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cheated of his wages as a young man in Syracuse and refused to locate the college there.

Consequently, Cornell University is located in Ithaca.9 In Appendix C.1, I show that the

results are not sensitive to discarding any of these groups of the high quality experiments.

The Historical Appendix describes each college site selection experiment in detail, including

the low quality experiments. The results are also not sensitive to reclassifying marginal cases

as either high or low quality.

One potential concern with this identification strategy, as with any methodology in which

runners-up are used as a control group, is that even if the final site selection decision is

contentious, the winning and runner-up counties may look nothing like one another. In Sec-

tion 2.3, I verify that the winners and runners-up are similar along observable dimensions.

But there may still be unobservable dimensions along which they differ. For instance, con-

sider a case in which a site selection committee weighs a number of characteristics that are

unobservable to the econometrician. The winning location could be strong in one charac-

teristic but weak in others, while the runners-up could be strong in other characteristics. If

the characteristic that is prevalent in the winning county is also correlated with patenting,

then this would bias the results. This is unlikely for two reasons, however. First, runner-up

sites were typically those that met all the conditions the site selection committees viewed

as essential to receive a college, such as access to transportation, access to potable water,

or aesthetic beauty; any remaining differences are likely to be negligible. Second, as long as

the final site selection decision truly is close to random, as I verify in the high quality exper-

iments, then which characteristic is prevalent in the winning versus losing counties should

also be randomly distributed across the college site selection experiments.

Augmenting the runner-up methodology by using narrative history to exclude cases in

which selection is not as good as random assignment is, as far as I know, novel in the

literature.10 In a paper studying agricultural experiment stations, Kantor and Whalley

9I have been unable to find any evidence that Syracuse tended to have citizens of a lower moral character
than did Ithaca. Syracuse and Ithaca were furthermore similar along observable dimensions before the
establishment of Cornell University. Syracuse would, of course, get its own university several years later.

10Liu (2015), Bonander, Jakobsson, Podestà, and Svensson (2016), and J. Lee (2018) use synthetic control
methodologies to study the economic impact of establishing or expanding colleges. A synthetic control
methodology is less appropriate in a historical context because data for several desired predictors are not
available for most locations in most pre-treatment years. For instance, J. Lee (2018) argues that real estate
prices are an important predictor to understand the demand for land in winning and losing locations. In

9



(2018) compare a subset of land grant colleges to all contending locations as a robustness

check. They do not, however, restrict attention to those cases in which the winning site is

as good as randomly assigned; for instance, Ohio State forms one of the colleges in their

sample. In the analysis below, I show that failing to exclude these low quality experiments

overstates the effect of establishing a college.

2.2 Patent and County Data

The data on patents covers 1836-2010.11 This patent data come from four sources, with

different sources available for different years. For the years 1836-1870, I use patent data

collected in the Subject-Matter Index of Patents for Inventions Issued by the United States

Patent Office from 1790 to 1873 (Leggett, 1874), compiled by Dr. Jim Shaw of Hutchinson,

KS.12 I use the Annual Reports of the Commissioner of Patents for the years 1870 to 1942.

See Sarada, Andrews, and Ziebarth (2017) for details on cleaning, parsing, and preparing

this dataset. The years 1942 to 1975 come from the HistPat dataset compiled by Petralia,

Balland, and Rigby (2016a); see Petralia, Balland, and Rigby (2016b) for details on the

construction of this data. Finally, for the years 1975 to 2010, contemporary digitized patent

data sources can be used. I utilize the data created for Li et al. (2014) which contains cleaned

inventor names. Because all future analysis will include year effects, there is no concern with

the fact that different years make use of different patent data sources. Each of these datasets

contains, for every granted U.S. patent, the names and residence of all inventors.13 For the

addition, in most cases unobservable factors, such as the enthusiasm of the local population for education or
specific infrastructure, were crucial both in becoming a finalist site and in the later production of innovations.
These factors are taken into account in the current methodology but are neglected in any methodology that
matches on observables.

11Patent data from before 1836 is not useful for analysis, as 1836 marked a major change in the U.S. patent
system, essentially changing from a registration system to an examination system. In addition, a major fire
at the U.S. Patent Office in 1836 destroyed most of the patents from the early United States.

12See Miller (2016a) and Miller (2016b) for more information on how this dataset is compiled.
13The fact that each patent dataset used in this paper reports the names of individual inventors is important

for matching patentees to other datasets, namely college yearbook data or the U.S. population censuses.
Other commonly used patent datasets, such as the NBER patent data and its supplements (Hall, Jaffe, &
Trajtenberg, 2001), only include patents that are assigned to firms or other institutional entities and do not
include the names of inventors. Moreover, the name listed on each patent is legally requird to be the name
of the “first and true inventor” of a particular invention rather than, for instance, the owner of the firm
in which the inventor is employed. Failure to accurately list the inventors on a patent can result in loss
of patent rights, providing confidence that recorded inventor names are accurate up to transcription and
character recognition errors; see Khan (2005) for more details.
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results in this paper, I aggregate all patents to the county level, matching towns to counties

using the U.S. censuses as described in Appendix B. In Appendix C.1, I show results using

other sources of patent data and various techniques to match town names to counties; in

all cases the results are qualitatively similar to the baseline results presented below. See

Andrews (2017) for a more in-depth discussion of the differences and similarities between

the various patent datasets.

I merge by patent number and/or inventor name to other datasets that include additional

patent information. The U.S. Patent and Trademark Office’s Historical Patent Data Files

(Marco, Carley, Jackson, & Myers, 2015) contain information on patent classes for historical

patents. Enrico Berkes graciously provided data on patent citations and patent claims; see

Berkes (2018) for details.

County-level data comes from the National Historic Geographic Information System

(NHGIS) (Manson, Schroeder, Riper, & Ruggles, 2017). The NHGIS data allows me to

compare counties along a number of useful dimensions including population; composition of

the county population along racial, gender, immigration, and age dimensions; urbanization;

and wages and production in both agricultural and manufacturing sectors. I also use data

on the total number of accredited colleges at the college level. These are found in Reports of

the Commissioner of Education, several years of which have been transcribed: 1870, 1875,

1880, 1885, 1890, 1895, 1900, 1905, 1910, and 1914 by Heyu Xiong and Yiling Zhao; and

1897, 1924, and 1934 by Claudia Goldin. Because county names and boundaries change over

time, I aggregate counties to their largest historical boundaries, adopting a method similar

to Atack, Jaremski, and Rousseau (2014).

2.3 The College and Runner-Up Counties

Table 1 lists each of the 72 high quality college site selection experiments in the final sample as

well as the year in which the experiment took place and the college type. To give a sense of the

type of colleges involved in the study, I classify colleges into one of seven mutually exclusive

groups: land grant colleges, technical colleges, normal schools, historically black colleges and
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universities (HBCUs), military academies, other public colleges, and other private colleges.14

A plurality of the college experiments involve land grant colleges. 10% of the experiments

involve technical colleges, 17% involve normal schools, 4% involve HBCUs, and 4% involve

military academies. 17% of the colleges are classified as “other” public colleges, while 7%

are classified as “other” private colleges.

Table 2 further summarizes the college experiment data. In addition to presenting the

share of patents belonging to each experiment type, I show that each college site had on

average 2.83 runner-up sites. The runner-up sites are on average about 140 km (≈87 miles)

away from the college towns, with the median runner-up 93 km (≈58 miles) away, using

geodetic distances. This is far enough that the college and runner-up sites are typically

in different labor markets, but close enough to be affected similarly by region-wide shocks.

While colleges were established throughout the entire period from 1839 to 1954, the mean

and median college is established in the mid-1880s, with the median college beginning to

admit students four years after determining where the school is to be located. Desegregation

and co-education, not surprisingly, tended to happen much later for most colleges in the

sample, although these dates are not available for all colleges. Figure 1 is a map of the

college and runner-up counties throughout the U.S., providing visual verification that the

college and runner-up counties vary in their distance from one another. The map also shows

that the entire continental U.S. is represented in the sample and that colleges were not simply

built near existing major population centers.

Figure 2 compares the college and runner-up counties and shows that the runners-up

are a better match for the college counties than are the “non-experimental” counties, which

are all other counties in a college’s state that are not either college or runner-up counties.

The black diamonds display the difference in the mean between the college and runner-

14Technical colleges include schools focused on engineering, mining, and industrial arts. Normal schools
are colleges focused on teacher training; many of these have evolved to become directional state universities.
Other public and private universities include all public and private, respectively, schools that do not fit into
any of the other classifications. For instance, the University of Texas is classified as an “other public” college
in the sample; Texas also has two other state-wide (that is, not “directional states” targeted to a particular
region within Texas) public universities, a land grant college (Texas A&M) and a technical college (Texas
Tech), both of which are also in my sample. In some cases, a college may fall into multiple categories. For
example, many HBCUs are also state land grant colleges. For clarity, in Table 1, I place each college into
its “best” category. All results are insensitive to reclassifying colleges.
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up counties in the last U.S. census year before the college was established on a number of

economic, demographic, and educational variables. The black lines show 95% confidence

intervals of a simple t-test of the difference in means. I use census years because most of the

demographic and economic variables are collected with the decennial census. The means of

the college and runner-up counties are statistically indistinguishable and remarkably similar

in magnitude. The green circles show the difference in the mean between the college and

the non-experimental counties, which are the counties in each state that are not classified

as either college or runner-up counties. The green lines show 95% confidence intervals for

the t-test. The college and non-experimental counties also tend to be similar along some

dimensions, making Moretti’s (2004) claim that colleges were located “close to random” un-

derstandable. But relative to the non-experimental counties, the college counties do have

a statistically larger population, are more urbanized, have a larger share of interstate mi-

grants, greater manufacturing output, and are more likely to already have an existing college.

Appendix A.1 displays mean values in addition to the difference in means for these and a

number of additional variables to further verify that the runners-up appear similar to the

college counties.

2.4 Empirical Model

I estimate a straightforward differences-in-differences equation with grouped observations.

That is, in county i associated with college j at time t, the number of patents is given by

PatentMeasureijt =δ1Collegeij ∗ PostCollegejt + δ2PostCollegejt

+ αi + λj + αi ∗ λj + γt + εijt, (1)

where Collegeij is an indicator variable equal to one if county i associated with college

experiment j receives the college, PostCollegejt is an indicator variable equal to one in

years t after college j has been established, αi is a county fixed effect, λj is an experiment

fixed effect, γt is a year effect, and εict is a county-college-year varying error term.15 With

15While I include fixed effects for experiments, λj , counties, αi, and counties-by-experiment, αi×λj , most
counties appear in only one experiment. In these cases λj and αi × λj are redundant and are omitted.
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only a single experiment, the term PostCollegejt would be redundant because the post-

college dummy is perfectly co-linear with the year effects. There are multiple experiments

in the dataset, however, with each college being established in different years, and so each

group j will be in the post-college period in different years. The year effects therefore control

for nationwide time-variant changes in patenting, while PostCollegejt controls for changes

that occur within all experiment j counties after establishing college j.

3 The Effect of Establishing a College on Local Patent-

ing

Figure 3 plots smoothed log(NumPatijt + 1) for college, runner-up, and non-experimental

counties separately.16 The year in which a new college is established is normalized to be year

0 for all experiments. Two results are immediately clear. First, new colleges do not appear to

be randomly located; there is a large difference between the college and runner-up counties

on one hand and the non-experimental counties on the other, both in the level and growth

rate of patenting. It appears that, in choosing potential sites for a new college, the desire to

locate the college where new ideas grew rapidly outweighed any accessibility concerns that

might lead a site selection committee to place the college in backwater areas without much

invention. Second, the college and runner-up counties patented similarly in pre-college years,

suggesting that the experimental design is valid. Third, after the establishment of a new

college, the college and runner-up counties diverge, with college counties patenting more.

This divergence is especially pronounced after several decades.

Table 3 formalizes the intuition in Figures 3. The columns show different regression

specifications. For all tables in the paper, coefficients are presented as a proportional change

16Figure 3 is constructed by regressing log(NumPatijt+1) on year effects γt and then plotting the residuals
using local mean smoothing with an Epanechnikov kernel function. Removing time effects is useful because,
as Griliches (1990) shows, there has been a secular increase in patenting overtime as well as country-wide
cyclical fluctuations in patenting that coincide with business cycles and changes in the administration of the
Patent Office; failure to control for these factors makes interpreting the graph more difficult. The figure
contains a balanced set of college experiments, including only counties with at least 20 years of pre-college
and 80 years of post-college data available. The graph is nearly identical when using an unbalanced panel
instead.
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in patenting.17 The coefficient of interest is displayed in Row 1 and shows the percentage

of estimated additional patents generated in the college county relative to the runner-up

county after establishing the new college. For all columns, standard errors are clustered at

the county level.18

Column 1 shows the results of estimating Equation (1) where the dependent variable is

log(Num.Patijt+1). College counties have about 40% more patents per year than runner-up

counties. As the table shows, the average county had about 4.8 patents in 1880, around the

time the median new college is established. This translates to roughly two additional patents

in 1880. By 2010, the average county had about 37.5 patents per year, so the college causes

just over 16 additional patents per year in 2010. This result is statistically significant at the

1% level.

In Column 2, I use the inverse hyperbolic sin of patenting, log(Num.Patijt+(Num.Pat.2+

1)0.5), as the dependent variable. The benefit of the inverse hyperbolic sin is that it can take

on zero values, yet still has the same simple interpretation as in Column 1. Here, establishing

a new college causes about 48% more patents per year in the college counties relative to the

runners-up, similar in magnitude to the results in Column 1.

Column 3 shows results using an alternative calculation of logged patents as proposed by

Blundell, Griffith, and Reenen (1995). Rather than adding a positive constant before taking

the log of patents, this alternative method uses log(patents) as the dependent variable.

Whenever patents = 0, a dummy variable is set to one and log(0) is replaced with 0. In this

specification, establishing a new college leads to a roughly 26% more patents per year, or

about an extra 1.25 patent per year.

17More precisely, because the variables of interest are indicators that are either equal to zero or one,
when the dependent variable is log(Num.Patents + 1) the estimated coefficient must be adjusted to give

the percentage increase in patenting using the equation %Change in Patents = eδ̂1 − 1, where δ1 is the
coefficient of interest from Equation (1). This adjusted coefficient is presented in the table. When other
transformations of the coefficient are necessary, standard errors are corrected using the delta method.

18I also cluster at the state, experiment, and county×experiment levels. I additionally cluster at multiple
levels as proposed in A. C. Cameron, Gelbach, and Miller (2011): I cluster at the county and year; state
and year; experiment and year; and county, state, experiment, and year levels. Clustering at the county
level produces the largest standard errors, but the standard errors are virtually identical at every level and
none of the inferences change. Clustering at the county level is preferred because in a small number of cases,
the same county may appear as a control for multiple experiments; clustering at the county rather than
experiment or county×experiment level ensures that multiple cross sectional appearances of the same county
are not treated as independent of one another. For a discussion of the most appropriate level at which to
cluster standard errors, see C. A. Cameron and Miller (2015).
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Column 4 uses the fact that the number of patents takes on integer values and presents

estimates of a negative binomial regression. To convert this coefficient to a proportional

change, I simply divide the estimated change in the level of patenting δ̂1 by the number of

patents in 1880; the years 1880 is chosen as the baseline year because it is close to the year in

which the median new college is established as shown in Table 2. Using a later baseline year,

when patenting is secularly higher, leads to a smaller estimate of the percentage change.

Because of the strong influence of outliers when raw counts of patents are used, I Winsorize

the top 5% of counties by yearly patenting. In this specification, establishing a new college

leads to an 86% increase in patenting, about twice as large as the baseline estimate in Column

1.

In Figure 4 I interact the effect of a college by ranges of years. More precisely, I estimate

log(NumPatijt + 1) =
∑
τ∈T

[δ1τCollegeij ∗ TimeBinjτ + δ2τTimeBinjτ ]

+ αi + λj + αi ∗ λj + γt + εijt,

where τ ∈ T represent “bins of years” (i.e., 0-10 years after the college is established, 10-20

years after the college is established, etc.) and TimeBinjτ is an indicator variable that

is equal to one if t ∈ τ and 0 otherwise. Each plotted coefficient represents δ1τ in the

respective range of years τ since the college establishment. Results are nearly identical

using different groupings of years. Confirming the intuition shown in the raw data, there

is no significant difference between the college and runner-up counties in any of the years

before the establishment of each college and the estimated coefficients are very close to

zero in magnitude. After the first decade, the difference between the college and runner-

up counties is statistically significant and stays roughly constant in magnitude for the next

thirty years or so (although some decades are not individually statistically significant). This

is the first, albeit highly suggestive, evidence that the results are not driven by the human

capital created within the schools: most colleges begin with a very small student and faculty

population, and moreover it takes many more years for a substantial number of students to

matriculate and begin potentially inventive careers. But Figure 4 shows that college counties

have a measurable increase in patenting relative to the runners-up relatively quickly, and
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that the magnitude does not increase as the number of graduates increases with time. This

is consistent with a story in which the colleges have little direct effect on patenting, but

colleges act as an anchor to attract population, a hypothesis I explore in more detail below.

After 50 years, the difference between college and runner-up counties begins to increase. For

the average college, built during the 1880s, this timing corresponds to the massive increase

in federal funding of university research in the post-World War II era.19

In Table 4, I repeat the analysis in Columns 1-3 of Table 3 but include data from all

colleges and counties for which runner-up sites can be identified. This includes the “low-

quality” experiments as well as other runner-up counties in the high quality experiments that

were nevertheless not as good as randomly assigned and so are excluded from the baseline

sample. Instead of estimating Equation (1), I now estimate a triple-difference equation of

the form

PatentMeasureijt =δ1Collegeij ∗HighQualityij ∗ PostCollegejt

+ δ2Collegeij ∗ PostCollegejt + δ3HighQualityij ∗ PostCollegejt

+ δ4PostCollegejt + αi + λj + αi ∗ λj + γt + εijt. (2)

The indices mean the same as in the previous equations. Now HighQualityij is equal to one

if county i is included in the original baseline sample for high quality college experiment j,

and zero otherwise. In Column 1, I estimate equation (2) using log(NumPatijt + 1) as the

dependent variable. In Column 2, I use as the dependent variable the inverse hyperbolic sin

of patenting, while in Column 3 the dependent variable is the alternative log(NumPatijt)

measure that includes a dummy equal to one if a county has zero patents in a particular

year. In the new regression specifications, the coefficient of the triple-interaction term δ1

measures how much larger the difference-in-differences estimator between high quality college

and runner-up counties is compared to the difference-in-differences estimator between all

college counties (high and low quality) and all runner-up counties (not just the high quality

runners-up). This coefficient is negative and statistically significant, indicating that there is

19The baseline results are robust to excluding all post-1940 years, so the results are not driven by the
post-war change in federal policy towards university research.
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positive selection into the low quality college experiments; that is, the difference between the

college and runner-up counties is smaller for high quality experiments than for counties not

included in the baseline results. This result shows why restricting attention to high quality

experiments is important: otherwise, the effect of colleges on patenting would be overstated.

δ2 estimates the increase in patenting in all college counties relative to all runner-up counties

after establishing a new college; this is analogous to the interaction term in Equation (1) if

the low quality experiments and non-experimental control counties were included in those

regressions. The estimate of δ2 is positive and significant, so the qualitative conclusions of

the baseline specification in Table 3 are still be true even when the low quality experiments

are included, although the coefficients are two to three times larger when attention is not

restricted to the high quality experiments. The increase in patenting in high quality college

counties over high quality runner-up counties after establishment of a new college (that is,

the same quantity as estimated by δ1 in Equation (1)) is given by δ1 + δ2.20 Combining these

coefficients reveals that high quality college counties increase patenting by amounts slightly

larger than, but qualitatively similar to, the findings in Columns 1-3 of Table 3. All the

combined coefficients are still statistically significant. δ3 estimates the change in patenting

in high quality college and runner-up counties after the establishment of a college relative to

low quality college and runner-up counties. Finally, δ4 has the same interpretation as before

and simply measures the increase in patenting after establishment of a new college.

3.1 Robustness Checks

Appendix C.1 presents numerous robustness checks. In particular, I show that the baseline

results are robust to a battery of additional specifications, including different combinations

of fixed effects, alternative measures of the dependent variable, and additional count-data

models. I further show that the results are robust to using different subsets of the college site

20Let y = log(NumPatents + 1). Then, abusing notation and ignoring the fixed effects and error terms,
the coefficient of interest is

(yColl.,HighQual.,Post − yColl.,HighQual.,Pre)−(yRunUp,HighQual.,Post − yRunUp,HighQual.,Pre)
=[δ1 + δ2 + δ3 + δ4]− [0]− [δ3 + δ4] + [0]

=δ1 + δ2.
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selection experiments, so the results are not driven by the specific choice of colleges used,

and to using different historical patent datasets. Finally, I present results from placebo tests

that use other years as the “experiment date” and find no effect on patenting, suggesting

that the results are indeed driven by the creation of the new college.

3.2 Patent Classes

One concern is that the baseline results capture a shift in the types of innovations that occur

in college counties towards those that can be patented, rather than an actual increase in

innovation. In Appendix C.2, I check this in two ways: first by controlling for the distribution

of patents in each class, and second by estimating the model at the patent class-by-county-by-

year level and including class and class-by-year fixed effects. While the estimated difference-

in-differences coefficient is slightly smaller in these two models, suggesting some substitution

towards patentable technologies may be taking place, establishing a new college still causes

a statistically significant increase in patenting even after controlling for patent class.

Moreover, instead of college counties simply specializing in one or two patentable tech-

nologies after the college is established, I find that the diversity of patent classes increases

in the college counties relative to the runners-up after the establishment of a new college.

This increase in diversity is true for all different types of colleges. For instance, the share of

agricultural patents declines in colleges with land grant colleges relative to their runners-up,

as does the share of mining patents in counties with mining colleges. This is further evidence

that the observed effects are not driven by the direct effect of human capital taught in these

colleges: if human capital were the primary factor, then colleges that specialize in particular

fields should see a relative increase in those types of patents, whereas I find the opposite

result.

3.3 Patent Quality

As Trajtenberg (1990) makes clear, using patent counts without correcting for patent quality

can produce highly misleading results. Following Hall, Jaffe, and Trajtenberg (2005), the

literature typically uses citation-weighting to measure patent quality. In Appendix C.3, I
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show that the change in lifetime citations per patent is statistically indistinguishable from

zero in the college counties relative to the runners-up after establishing the new college; the

coefficient is a precisely estimated zero after controlling for changes in patent classes.

Patent citations are a less-than-ideal measure of patent quality for historical patents

because citations were only required after 1947. Thus, for patents granted during the 19th

century, most patents have zero lifetime citations and there is relatively little variation across

patents. To overcome this challenge, I also use the length of a patent’s first claim as an

alternative measure of patent quality, as proposed by Kuhn and Thompson (2017). Patents

with longer first claims are narrower patents, while shorter claims represent broader patent

breadth. Again, there is no difference in first claim length between the college and runner-up

counties after the establishment of a new college. Thus, creating a new college causes more

patents, but has no measurable effect on patent quality. For the remaining results I therefore

use logged patent counts as the dependent variable unless otherwise noted.

3.4 Geographic Spillovers

The estimates in Table 3 will be biased upwards if patenting individuals from runner-up

counties migrate to college counties following the establishment of a new college, violating

the stable unit treatment value assumption. If such migration is occurring on a large scale,

and if individuals are more likely to move to nearby areas, then the difference between college

counties and nearby runners-up should be larger than the difference between college counties

and far away runners-up. In Appendix C.4, I show that this is not the case. In fact, I find

that the difference between college counties and nearby runner-up counties is virtually non-

existent after establishing the college, whereas the difference between college counties and

geographically distant runner-up counties is large. This suggests the presence of geographic

spillovers from college counties to nearby areas, consistent with a large literature on the

geography of knowledge flows (e.g., Jaffe, Trajtenberg, and Henderson (1993), Thompson

(2006), Belenzon and Schankerman (2013), Crescenzi, Nathan, and Rodgŕıguez-Pose (2016))

and implying that, if anything, the baseline estimates are underestimates of the causal effect

of colleges on local invention.
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4 Are Colleges Necessary to Promote Local Invention?

In this section, I propose tests that can falsify the claim that colleges are a necessary condition

for the promotion of local invention. Specifically, I show that the creation of non-college

institutions can lead to increases in local patenting indistinguishable from the increases

caused by colleges. I also provide evidence against the even stronger claim that technically-

focused universities are a necessary condition by showing that the effect of establishing a

college on patenting does not appear to depend on the type of school established.

4.1 “Consolation Prizes”

In some of the college site selection experiments in my sample, runner-up counties were not

truly “losers”: while they may not have obtained a college, they did obtain some other type of

institution. I refer to these as “consolation prizes.” Consolation prizes are especially common

in western states that were largely unsettled and achieved statehood after the passage of the

Morrill Act in 1862. In these states, typically several state institutions were allocated at the

same time, including the state capital, the state prison, the state hospital, or the state insane

asylum. While numerous localities may have been lobbying to get a state institution, which

locality ended up with which institution was as good as random. In one famous example, the

Tucson delegation set out for Prescott for the Arizona territorial legislature in 1885 intent

on getting the state mental hospital. But flooding on the Salt River delayed the delegation.

By the time they reached Prescott, the mental hospital had already been spoken for; Tucson

was stuck with state university.21

Table 5 shows results that compare college counties to the consolation prize runners-up.

The coefficient is a statistically insignificant 19%, less than half as large as the baseline esti-

mate of 40%. In other words, college counties do not have many more patents per year than

counties that received prisons, hospitals, or insane asylums. Panel (a) in Figure 5 presents

these results graphically, analogously to Figure 3, and shows that the college and consolation

prize counties evolve remarkably similarly over many decades. Panel (b) suggests why this

21For more details on the site selection decision of the University of Arizona, see Martin (1960, p. 21-25),
Wagoner (1970, p. 194-222), and Cline (1983, p. 2-4).

21



may be the case: population in the consolation prize counties grows nearly identically to

population in the college counties. In Column 2, I control for logged population and again

compare the college and consolation prize counties. In this case, the difference between the

college and consolation prize counties is still statistically insignificant and even closer to

zero in magnitude. Consistent with these findings, Column 3 shows that when consolation

prize counties are excluded from the sample, a new college increases patenting by about

48%, slightly larger than the 40% baseline estimate. None of these results are qualitatively

changed by excluding any particular type of consolation prize county; the results are not

driven simply by types of consolation prizes that might attract high human capital individ-

uals such as state capitals or hospitals. To make sense of these results, it is important to

remember the context in which these experiments took place. Instead of repelling highly

mobile workers, as prisons or asylums might today, the consolation prizes gave small towns

an identity and acted as anchors to attract more people to the area.

4.2 College Types

I next test whether colleges that focus on technical skills are necessary for promoting local

invention. Since different types of colleges had very different curricula, if human capital

or faculty research are the primary channels by which colleges promote invention, then

some types of colleges should cause much larger increases in local invention than others.

I classify colleges by type as described in Section 2.3. From these college types, I further

classify each college as either a “practical” or a “classical” college. Practical colleges are land

grant colleges or technical schools. Classical colleges are normal schools and other private

and public colleges. Land grant colleges were required by law to provide instruction on

“agricultural and mechanical arts”, and technical colleges explicitly focused on skills such

as engineering, mining, or industry. At the same time, normal schools trained public school

teachers, and so typically devoted less, if any, attention to technical skills. Other public and

private colleges tended to have a less practical focus, providing instruction in classes like

the classics or Latin.22 The results are presented in Column 4 of Table 5. It does appear

22For some types of colleges, there is much more ambiguity regarding whether or not the college should be
classified as practical or classical. In Appendix D.1 I use alternative classifications of practical and classical
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that practical colleges increase patenting by more than classical colleges, but the difference

between the two coefficients is modest and not statistically different from zero. The practical

colleges caused 39% more patents per year (statistically significant at the 5% level), while

the classical colleges caused 35% more patents per year (statistically significant at the 10%

level).

In Column 5, I exclude all years after 1940 from the data. This is because following the

explosion in demand for higher education after World War II, the curricula across colleges

largely began to converge; see Alon (2017) for details on this convergence. In the pre-1940

years, the difference in estimated coefficients between practical and classical colleges is again

very small, although both coefficients are smaller than in Column 4: practical colleges saw

about 15% more patents per year relative to their runner-up counties, while classical colleges

saw 7% more; neither coefficient is individually statistically significant.

One possible reason why patenting appears larger in the practical colleges is because they

may be larger schools than the average classical college, attracting more students, faculty,

and general economic activity to the county. To check this, in Column 6 I re-estimate

the effect of practical and classical colleges but include a control for the logged number of

students, using data on student populations from the Commissioner of Education reports

described in Section 2.2. After controlling for the number of students, the coefficients are

no longer statistically significant but are not much changed in magnitude from Column 4,

although the gap between the practical and classical colleges is smaller. In Column 7, I again

exclude all post-1940 data while controlling for logged student population. Again neither

coefficient is statistically significant, but in this case the classical colleges actually have a

larger point estimate than the practical colleges.

In sum, in no cases is the increase in patenting in practical college counties substantially

larger than the increase in patenting in classical colleges. The two coefficients are never

statistically different from one another, and depending on the sample of years used and

whether or not student population is controlled for, the coefficient for classical colleges may

even be larger than that for practical colleges. In short, there is no evidence that the types

of colleges that focus on technical skills produce a much larger increase in local invention.

colleges and show that the results are similar.
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Appendix D.1 explores differences between types of colleges in more detail.

5 How Do Colleges Affect Patenting?

In this section, I reconcile the results in Sections 3 and 4 by exploring the channels by

which colleges increase local patenting. Since all of the above results are consistent with

colleges affecting local patenting through their effect on the local population, I begin by

re-estimating the baseline regressions while including controls for county population. I next

directly observe how many patents come from migrants and how many come from a college’s

alumni and faculty by matching the patent data to census and college yearbook data.

5.1 Controlling for County Population

A growing literature is recognizing the importance of migration in explaining changing ge-

ographic patterns of invention over time. Aghion et al. (2009) show both theoretically and

empirically using political shocks that highly educated people are likely to migrate to live

close to other highly educated people. Moretti and Wilson (2014) show that while state

subsidies can be effective at increasing the number of local star scientists, the observed ef-

fects are largely driven by relocation. Several other papers find that inventors are highly

mobile and respond to changes in local conditions (for example, Kerr and Lincoln (2010),

Akcigit, Baslandze, and Stantcheva (2016), Akcigit, Grigsby, and Nicholas (2017b), Moretti

and Wilson (2017)). A separate strand of the literature studies intra-academia knowledge

production and concludes that, while it is difficult to detect productivity spillovers from one

researcher to another located in the same department, the presence of a star scientist helps

to attract other productive scientists (Azoulay, Graff-Zivin, and Wang (2010), Waldinger

(2012), Borjas and Doran (2012), Dubois, Rochet, and Schlenker (2014)).

To examine whether or not migration is the primary driver of the observed results in

this study, I re-estimate Equation (1) while controlling for a changing population. Because

population variables are collected from the decennial U.S. population censuses, in this section

I restrict the data to observations that occur only in the census years: 1840, 1850, 1860, etc.

Thus the “time” variable no longer represents the number of years since a college site selection
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experiment, but rather the number of decades. In Column 1 of Table 6, I reproduce the

baseline result on patenting using only patenting in census years. The estimated coefficient

is almost identical to the baseline coefficient estimated in Column 1 of Table 3. Column

2 estimates the effect of a new college on logged county population. I find that college

counties are about 38% larger than the runner-up counties after establishing a college; this

effect is statistically significant at the 10% level. As the percentage increase in population

from Column 2 is close to the percentage increase in patenting in Column 1, it is intuitively

not surprising that population explains most of the observed change in patenting.

In Columns 3 and 4, I re-estimate Equation (1) but include controls for county pop-

ulation, using two alternative functional forms. In Column 3, I include log(TotalPop) as

a control. Not surprisingly, county population is highly predictive of county patenting (a

one percent increase in population leads to a .4% increase in patenting). When including

log(TotalPop), the coefficient on the interaction term of interest is only 41% of the baseline

estimate, decreasing from 40% more patents per year in the baseline to a statistically in-

significant 18% more patents per year. In Column 4, I include TotalPop and (TotalPop)2 as

controls instead of log(TotalPop), scaling both variables by 10,000. An addition of 100,000

people increases patenting by about 1.5%; the quadratic term is negative but extremely small

in magnitude. As in Column 3, after controlling for TotalPop and (TotalPop)2, the inter-

action term is smaller than in Column 1 and statistically insignificant: colleges have about

14% more patents per year than the runners-up, or about one-third of the original estimate.

In sum, controlling for population explains 60% to two-thirds of the observed increase in

patenting, and I cannot reject the null that colleges have no effect on patenting in college

counties relative to the runners-up.

If the presence of knowledge spillovers make agglomeration economies especially large

near colleges, then a marginal increase in population should have a larger effect on patenting
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in college counties than in runner-up counties. Formally, I estimate

log(NumPatijt + 1) =
∑
k∈K

[
δ1kCollegeij ∗ PostCollegejt ∗ Popkit

+ δ2kPostCollegejt ∗ Popkit + δ3kPop
kit
]

+ δ3Collegeij ∗ PostCollegejt + δ4PostCollegejt

+ αi + λj + αi ∗ λj + γt + εijt, (3)

where K = {log(Pop.)} or {Pop., Pop2}.

Results are presented in Columns 5 and 6 of Table 6. For readability, I omit the δ2k

estimates. There is no evidence that agglomeration economies are larger in college counties.

In Column 5, I use log(Pop.) as the measure of population. A 10% in population actually

reduces the difference-in-differences estimate by a statistically insignificant 0.5%. In Column

6, I use Pop. and Pop2 as measures of population and obtain similar results.

5.2 Who Do the Patents Come From?

In this section, I use the names of patentees to directly check what share of patents in

college counties are invented by individuals with a direct affiliation with the college, either

as alumni or faculty, and which are migrants to the college county. Finding that a large

share of patents are from migrants, while only a small share are from alumni or faculty, is

additional evidence that the primary channel through which colleges affect innovation is by

encouraging migration.23 I next describe the datasets used to determine which patents come

from which groups, and then describe how the datasets are matched to one another and the

obtaining results.

23The opposite finding, that a large share of patents come from alumni and faculty of the focal college,
while suggestive, would still not be strong evidence that human capital or academic research channels are
economically meaningful; what is a needed is a counterfactual estimate of how many patents the alumni and
faculty would obtain in the absence of the college, which is much more difficult to estimate. Nevertheless,
the results in this section can falsify the claim that human capital and faculty research are major channels
through which a college promotes local invention.
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5.2.1 College Yearbooks

The prior literature has struggled to convincingly identify the channels through which col-

leges promote local patenting. Dating to Jaffe (1989), the literature typically observes how

patenting by firms co-located with a university co-vary with some university activity, and

if any change in firm patenting is observed, this is counted as a “knowledge spillover” from

the university to these firms. The issue, as noted by Zucker, Darby, and Armstrong (1998)

and Leten, Landoni, and Looy (2014), is that changes in nearby patenting may not be

true spillovers if the individuals within the firm have a direct affiliation with the college,

for instance as either alumni or as consulting faculty members. Data issues usually pre-

vent researchers from discovering which individuals have a direct affiliation with a college

or university, however.24 To overcome this problem, I construct a novel dataset of histori-

cal college yearbooks, which contain names of students (who go on to become alumni) and

faculty members, which can then be linked to the patent data.

The yearbook data are described in much more detail in Appendix E. The college year-

books are available from ancestry.com and contain full scans of historical college yearbooks,

which include full student names, which can be used to match students from yearbooks to

other data sources such as the patent record or the US decennial censuses. The college

yearbooks also contain a wealth of other interesting information, including students’ majors,

sports and clubs, and fraternities and sororities. The yearbooks usually include names of

faculty members as well. I collect yearbooks from 20 different colleges, roughly 28% of the

colleges in my sample, covering 249 yearbooks from 1879 to 1940 and including records for

70,106 undergraduate seniors and 28,743 faculty members.25

To compile a list of candidate alumni to match to the decennial census records, for each

college and each year, I combine the names of all that college’s seniors from the previous 60

years worth of yearbooks. Essentially, this assumes that alumni who graduate at age 20 may

24Several recent papers document that college-educated individuals are more likely to invent (Jung and
Ejermo (2014), Bell, Chetty, Jaravel, Petkova, and Van Reenen (2017), Aghion, Akcigit, Hyytinen, and
Toivanen (2017), Akcigit, Grigsby, and Nicholas (2017a)), but they cannot link a college graduate to a
particular college. What is needed to estimate local spillovers from, say, the University of North Dakota, is
a way to determine if an inventor in Grand Forks, ND is an alumnus of the University of North Dakota.

25Note that these are not unique faculty members; in most cases the same faculty member is listed in
multiple yearbook years. In rare cases, yearbooks do not record names of college seniors but do list names
of juniors. In these cases, I record the names of juniors instead.
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obtain patents until they are 80 years old. Such an assumption appears innocuous, as studies

conclude that very few inventors are older than 80.26 To compile a list of candidate faculty

members, I use the names of the faculty members listed in the current year’s yearbook for

each college.

5.2.2 Matching to the U.S. Census Data

To determine which patentees are alumni or faculty and which are migrants to a college

county, I merge both the patent and yearbook data to the U.S. 100% decennial population

census records, transcribed by ancestry.com and the Minnesota Population Center and

hosted by the NBER. I proceed in five steps.

First, I prepare the census data for each census from 1850 to 1940. The 1890 census

manuscripts were destroyed by fire, so I am left with nine censuses. I restrict attention

to males.27 For each county in census, I then fuzzy match by first and last name to the

same county in the previous census, using a matching procedure similar to Ferrie (1996) but

including common names.28 Doing this for all censuses allows me to identify the earliest year

in which a particular name appears in a particular county; individuals who first appear in a

college or runner-up county after the college is established are potential migrants.

Second, I match by first name, last name, state, and county from the patent record

to the census record. This creates a list of all patents in each county for which personal

information about the patentees can be known. See Sarada et al. (2017) for more details on

the patent-census matching procedure. To minimize concerns about individuals moving from

their census-recorded locations, I only match in the full years before and after the census is

enumerated, as well as the years for which the census is enumerated. Typically, censuses are

enumerated in the year before, and occasionally during the year that, they are released. So,

for example, for the 1900 census, I match patentees from 1898, 1899, 1900, and 1901.

26For examinations of the age distribution of U.S. inventors prior to 1940, see Sarada et al. (2017) and
Akcigit et al. (2017a). Papers that document that ages of more recent inventors include Jones (2009), Jung
and Ejermo (2014), and Acemoglu, Akcigit, and Celik (2014).

27I restrict attention to males for two reasons. First, women are likely to change their names between the
time they show up in the yearbook data and when they patent later in life. Second, the majority of women
were not a part of the labor force during the sample period, and so occupational scores are not informative
for them.

28See Appendix E for more details on the matching procedure.
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Third, I match the lists of potential alumni and current faculty to the census, again

matching on first name, last name, county, and state. I again match yearbooks only from

the full years before and after the census is enumerated and the years during which it is

enumerated.

Fourth, I use the matched census-patent-yearbook data to determine which patentees are

alumni, faculty, and migrants. A patentee is recorded as an alumnus if there is a positive

match between the individual’s name from the alumni list and a name in the same county

in the census and that individual is also linked to a patent. An individual is recorded as a

faculty member if the individual is not recorded as an alumnus and there is a positive match

between his name from the faculty list and a patent-matched name in the same county in

the census. An individual is recorded as a migrant if the individual is neither an alumnus

nor a faculty member and he does not match to a name in the same county in a prior census

before the college was established. All other patent-matched names are assumed to be non-

migrants, that is, individuals who lived in the county prior to the establishment of the new

college and who are neither alumni nor faculty.

Fifth and finally, an adjustment must be made because yearbook data are not available

for all years. This means that the list of potential alumni is too small. To correct for this,

I interpolate the number of students attending the college in the years in between collected

yearbooks. I then increase the size of the potential alumni list by that number of students for

each successive year. Using the matched alumni patentees, I calculate an alumnus patenting

rate. I then multiply the size of the new potential alumni list by the calculated alumni

patenting rate to get the corrected number of patents by alumni, decreasing patent counts

by migrants by the corresponding increase.

This procedure therefore gives the share of patents in a college county coming from

alumni, faculty, migrants, and non-migrants, after correcting for missing yearbook data.

Note that these categories are constructed so as to be exhaustive and mutually exclusive. As

Bailey, Cole, Henderson, and Massey (2018) show, such a simple fuzzy matching procedure

can produce a large number of false positive matches. Thus, these results likely to overstate

the share of patents belonging to alumni and faculty and, because an individual is recorded

as a migrant only if his name fails to match to the census prior to the college establishment,
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to understate the share of migrants and overstate the share of non-migrants.

5.2.3 Results

After matching to the census, I find that 14.6% of patents in college county belong to

alumni of that college. 4.9% of the patents belong to faculty members of the college. Non-

migrants, that is, individuals who were living in the college county at the time the college

was established and were not directly affiliated with the college, account for 7.3% of patents.

Finally, migrants to the college county account for 73.2% of patents. Consistent with changes

in population explaining the bulk of the increase in patenting, migrants are by far the largest

group of patentees.

As mentioned above, these results likely overstate the increase in total patenting caused

by alumni and faculty and understate patents by migrants. These results are additionally

an overstatement of the direct effect of colleges if particularly intelligent, creative, or driven

individuals are both more likely to attend college and more likely to invent independently of

education, as seems plausible. In contrast, Bianchi and Giorcelli (2017) argue that attending

college causes talented individuals to go into careers like public administration that patent at

low rates. Understanding the causal effect of college attendance on patenting for individuals

at different points in the skill distribution is therefore an important topic for future work.

6 Discussion and Conclusion

In this paper, I document that establishing a new college causes 40% more patents per

year in counties that receive a new college. At the same time, colleges are not a necessary

condition to promote local invention, as other institutions increase local patenting by similar

amounts. It should not be surprising that it is difficult to determine which policies are

necessary to create “the next Silicon Valley,”, as the historiography of Silicon Valley itself

does not reach a consensus on the role of Stanford University and the University of California

in developing the region. While some authors argue that these universities, and Stanford

in particular, played a crucial role (Lowen, 1997), others give the credit to spending by the

federal government (Richards (1990), Lécuyer (2007)). Gordon Moore credits luck with the
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fact that a few key anchor firms located in the what would become Silicon Valley (Moore &

Davis, 2001).29 It is likely that each of these stories played an important role by helping to

create anchor institutions: I show that a larger population can explain most of the observed

increase in patenting, but which type of institution acts as an anchor to attract population

does not make much of a difference.

Three important caveats to this study are important to keep in mind. First, while I find

no evidence that colleges had any effect on local invention after controlling population, it

is possible that the nature of invention has changed since the colleges in my sample were

established. It may be more important for researchers today “to be physically close to frontier

academic research in order to remain on the cutting edge” (Moretti, 2012, p. 182) than in

decades past. Certainly the share of patentees with a college degree has increased over time,

as has the share of patents assigned to universities (Mowery and Sampat (2001), Mowery

and Ziedonis (2002), Sampat (2006), P. Lee (2013)). And the results in Figures 3 and 4

show that the difference between college and runner-up counties increased in recent decades,

following massive increases in federal funding of higher education. But even today, college

graduates are highly mobile (Bound, Groen, Gézdi, and Turner (2004), Sumell, Stephan, and

Adams (2008), Zolas et al. (2015)) so colleges may still find it difficult to retain their alumni

to become innovation hubs. Moreover, Figure 5 shows that there has been no increase in the

difference between college and consolation prize counties over time, so other areas have also

been growing in importance. Perhaps one change is that colleges have become increasingly

aware of their roles as anchor institutions. For instance, O’Mara (2005, p. 4) argues that,

during the Cold War era, university expansion “was actually a process of city building” and

that university administrators embraced the role of “urban planner and political actor” (p.

2). Further research is needed to understand precisely how the relationship between higher

education and invention has changed over time.

Second, while I find that colleges played no role in promoting local invention beyond their

effects on population, this does not mean that colleges had no global effect on invention.

Because alumni are so mobile, it is possible, even likely, that alumni left the counties of

29These descriptions are, of course, a simplification. Lowen (1997), Lécuyer (2007), and to some extent
Moore and Davis (2001) all give nuanced accounts of various factors that helped to shape Silicon Valley as
it exists today.
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their alma maters to pioneer breakthrough innovations in other locations. Anecdotes of

entrepreneurs leaving places like Urbana-Champaign, IL and Madison, WI to find success in

Silicon Valley show that this occurs, although it is unclear whether it is more or less frequent

now than in earlier decades. In future work, I plan to track college alumni across time and

space using the decennial census data to determine where alumni move after they graduate

and where, and if, they invent.

Finally, it is important to note that promoting innovation is clearly not the only, nor even

perhaps the primary, purpose of colleges and universities. Nevertheless, to the extent that

policymakers wish to create inventive hubs, the results in this paper suggest that attracting

migrants, rather than building colleges per se, is the policy to pursue.
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Graphs

Figure 1: Map of College and Runner-Up Sites

College Runner-Up

Notes: Map of the location of high quality college and runner-up sites in the sample. Colleges are represented
by blue diamonds. The runner-up sites are represented by red circles.

42



Figure 2: Balance Checks
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Notes: Results of t-tests comparing the means of the college counties, runner-up counties, and non-
experimental counties. The black diamonds display the difference in the mean between the college and
runner-up counties in the last U.S. census year before the college was established on a number of economic,
demographic, and educational variables. The black lines show 95% confidence intervals of a simple t-test
of the difference in means. The green circles display the difference in the mean between the college and
non-experiment counties in the last U.S. census year before the college was established. The green lines show
95% confidence intervals.
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Figure 3: Patenting in College, Runner-Up, and Non-Experimental Counties
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Notes: Mean patenting in college and runner-up counties after controlling for year effects. The x-axis shows
the number of years since the college experiment. The year of the college experiment is normalized to year 0.
Everything left of year 0 shows pre-college means; everything to the right shows post-college means. The y-
axis shows smoothed log(Patents+1). The smoothed patenting is constructed by regressing log(Patents+1)
on year effects and then plotting the residuals using local mean smoothing with an Epanechnikov kernel
function. The college counties are represented by the blue solid line. The runner-up counties are represented
by the red long-dashed line. The non-experimental counties are represented by the green short-dashed line.
Data are for high quality experiments only.
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Figure 4: Dynamics of Treatment Effect
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Notes: Estimated coefficient of the level shift in patenting in college counties relative to runner-up counties
after establishment of a new college with a separate interaction term estimated for each time bin, along with
95% confidence bands. Time bins are are dummy variables that are equal to one for college counties in every
ten year period before and after the establishment of the new college.
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Figure 5: Patenting and Population in College and Consolation Prize Counties
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Notes: Logged patents and total population in the college and consolation prize counties. The x-axis
shows the number of years since the college experiment. The year of the establishment of the new college
is normalized to 0. Everything left of 0 shows pre-college results; everything to the right shows post-
college results. In Panel (a), the y-axis shows log(Num. Patents + 1). In Panel (b), the y-axis shows
log(TotalPopulation). The college counties are represented by the blue solid line. The consolation prize
counties are represented by the purple dashed line. Data are for high quality experiments only.
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Tables

Table 1: List of College Site Selection Experiments

College Exp. Abbrev. County State Experiment Year College Type

1 University of Missouri UMo1 Boone Missouri 1839 Other Public
2 University of Mississippi UMs Lafayette Mississippi 1841 Other Public
3 Eastern Michigan University EMiU Washtenaw Michigan 1849 Normal School
4 Pennsylvania State University PaSU1 Centre Pennsylvania 1855 Land Grant
5 The College of New Jersey TCNJ Mercer New Jersey 1855 Normal School
6 University of California Berkeley UCaB Alameda California 1857 Land Grant
7 Iowa State University IaSU Story Iowa 1859 Land Grant
8 University of South Dakota USD Clay South Dakota 1862 Other Public
9 University of Kansas UKs Douglas Kansas 1863 Other Public
10 Kansas State University KsSU Riley Kansas 1863 Land Grant
11 Lincoln College (IL) LincC Logan Illinois 1864 Other Private
12 Cornell University CornU Tompkins New York 1865 Land Grant
13 University of Maine UMe Penobscot Maine 1866 Land Grant
14 University of Wisconsin UWi2 Dane Wisconsin 1866 Land Grant
15 West Virginia University WVU Monongalia West Virginia 1867 Land Grant
16 University of Illinois UIUC Champaign Illinois 1867 Land Grant
17 Oregon State University OrSU Benton Oregon 1868 Land Grant
18 Purdue University PurdU Tippecanoe Indiana 1869 Land Grant
19 University of Tennessee UTn2 Knox Tennessee 1869 Land Grant
20 Southern Illinois University SIlU Jackson Illinois 1869 Normal School
21 Louisiana State University LaSU East Baton Rouge Louisiana 1870 Land Grant
22 Mercer University MercU Bibb Georgia 1870 Other Private
23 Missouri University of Science and Technology MoUST Phelps Missouri 1870 Technical School
24 Texas A and M University TxAMU Brazos Texas 1871 Land Grant
25 University of Arkansas UAr Washington Arkansas 1871 Land Grant
26 University of Oregon UOr Lane Oregon 1872 Other Public
27 Auburn University AubU Lee Alabama 1872 Land Grant
28 Virginia Polytechnic Institute VaT Montgomery Virginia 1872 Land Grant
29 University of Colorado UCo Boulder Colorado 1874 Other Public
30 University of Texas Medical Branch UTxMB Galveston Texas 1881 Technical School
31 University of Texas Austin UTxA Travis Texas 1881 Other Public
32 North Dakota State University NDSU Cass North Dakota 1883 Land Grant
33 University of North Dakota UND Grand Forks North Dakota 1883 Other Public
34 University of Nevada UNv Washoe Nevada 1885 Land Grant
35 University of Arizona UAz Pima Arizona 1885 Other Public
36 Arizona State University AzSU Maricopa Arizona 1885 Land Grant
37 University of Wyoming UWy Albany Wyoming 1886 Land Grant
38 North Carolina State University NCSU Wake North Carolina 1886 Land Grant
39 Georgia Institute of Technology GaT Fulton Georgia 1886 Technical School
40 Kentucky State University KySU Franklin Kentucky 1886 HBCU
41 Utah State University UtSU Cache Utah 1888 Land Grant
42 Clemson University ClemU Pickens South Carolina 1889 Land Grant
43 University of Idaho UId Latah Idaho 1889 Land Grant
44 New Mexico State University NMSU Dona Ana New Mexico 1889 Land Grant
45 New Mexico Tech NMT Socorro New Mexico 1889 Technical School
46 University of New Mexico UNM Bernalillo New Mexico 1889 Other Public
47 University of New Hampshire UNH Strafford New Hampshire 1891 Land Grant
48 Washington State University WaSU Whitman Washington 1891 Land Grant
49 Alabama Agricultural and Mechanical University AlAMU Madison Alabama 1891 HBCU
50 North Carolina A and T University NCAT Guilford North Carolina 1892 HBCU
51 Northern Illinois University NIlU DeKalb Illinois 1895 Normal School
52 Western Illinois University WIlU McDonough Illinois 1899 Normal School
53 Western Michigan University WMiU Kalamazoo Michigan 1903 Normal School
54 University of Nebraska at Kearney UNeKe Buffalo Nebraska 1903 Normal School
55 University of Florida UFl2 Alachua Florida 1905 Land Grant
56 Georgia Southern College GaSoU Bulloch Georgia 1906 Other Public
57 University of California Davis UCaDav Yolo California 1906 Land Grant
58 East Carolina University ENCU Pitt North Carolina 1907 Technical School
59 Western State Colorado University WSCoU Gunnison Colorado 1909 Normal School
60 Middle Tennessee State University MTnSU Rutherford Tennessee 1909 Normal School
61 Texas Christian University TxCU Tarrant Texas 1910 Other Private
62 Bowling Green State University BGSU Wood Ohio 1910 Normal School
63 Arkansas Tech University ArTU Pope Arkansas 1910 Technical School
64 Kent State University KentSU Portage Ohio 1910 Normal School
65 Southern Mississippi University SMsU Forrest Mississippi 1910 Normal School
66 Southern Arkansas University SArU Columbia Arkansas 1910 Other Public
67 Southern Methodist University SMU Dallas Texas 1911 Other Private
68 High Point University HPU Guilford North Carolina 1921 Other Private
69 Texas Tech TxT Lubbock Texas 1923 Technical School
70 Maine Maritime Academy MeMA Hancock Maine 1941 Military Academy
71 US Merchant Marine Academy USMMA Nassau New York 1941 Military Academy
72 US Air Force Academy USAFA El Paso Colorado 1954 Military Academy

Notes: List of all high quality college site selection experiment in the dataset in chronological order of the
experiment date. Also included is the abbreviation of each experiment used in following results, the county
and state of each college, the experiment year, and the college type of each experiment. The dates listed
on this table are the date at which uncertainty over the college site location was resolved; these need not
coincide with the official date of establishment for each college. In some cases, colleges have changed location,
so the county listed need not be the current location or original location of the college. For colleges that
changed location or were under consideration to change location, multiple experiments may be listed for the
same college. For details on each site selection experiment, see the Historical Appendix.
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Table 2: Summary Statistics of College Site Selection Experiments

N Mean S.D. Min Median Max

# Finalist Counties 72 2.83 1.45 1.00 3.00 7.00
Distance to Finalists 154 138.06 168.66 11.92 92.85 1,443.16
Experiment Year 72 1885.74 22.95 1839.00 1885.50 1954.00
Year of First Class 66 1887.53 26.15 1795.00 1889.50 1955.00
Year Desegregated 35 1941.80 28.97 1871.00 1953.00 1965.00
Year Co-Ed 45 1896.40 35.33 1804.00 1889.00 1976.00
Land Grant Colleges 72 0.42 0.50 0.00 0.00 1.00
Technical Schools 72 0.10 0.30 0.00 0.00 1.00
Normal Schools 72 0.17 0.38 0.00 0.00 1.00
HBCUs 72 0.04 0.20 0.00 0.00 1.00
Military Academies 72 0.04 0.20 0.00 0.00 1.00
Other Public Colleges 72 0.17 0.38 0.00 0.00 1.00
Other Private Colleges 72 0.07 0.26 0.00 0.00 1.00

Notes: Summary statistics for the high quality college site selection experiments. Column 1 lists the count
of experiments or counties. Column 2 lists mean values, Column 3 the standard deviation, Column 4 the
minimum value, Column 5 the median value, and Column 6 the maximum value. Row 1 lists the number of
runner-up counties for each experiment. Row 2 lists the distance between college and runner-up sites. Row 3
lists the experiment year. Row 4 lists the year in which students began attending the college. Row 5 lists the
year when the college became racially desegregated. Row 6 lists the year the college became coeducational.
Rows 7-13 list the fraction of colleges that are of each college type.
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Table 3: Baseline Regression Results

log(Pat. +1) log(Pat. + (Pat.2+1)0.5) Alt. log(Pat.) Neg. Binomial

Coll.County * PostColl. 0.401*** 0.484*** 0.264*** 0.857**
(0.143) (0.177) (0.100) (0.382)

PostColl. -0.032 -0.026 -0.084* 7.247***
(0.062) (0.074) (0.047) (1.596)

Zero Pat. Dummy -0.748***
(0.013)

County Fixed Effects Yes Yes Yes Yes
Exp. Fixed Effects Yes Yes Yes Yes

Year Effects Yes Yes Yes Yes
Cnty-Year Obs. 39,580 39,580 39,580 39,580

# Counties 179 179 179 179
# Experiments 72 72 72 72

Mean in 1880 4.845 4.845 4.845 4.845
Adj. R-Sqr. 0.508 0.508 0.699 0.208

Log-Likelihood -50,003.763 -56,897.077 -40,269.923 -63,080.296

Notes: Baseline regression results. Column 1 estimates the level shift in patenting in college counties relative
to runner-up counties after establishment of a new college when the dependent variable is log(Num.Patents+
1). The dependent variable in column 2 is log(Num.Patents), with values replaced with 0 if Num.Patents =
0 and a dummy variable for zero patents included. The dependent variable in column 3 is the number of
patents. Column 4 presents results for a negative binomial regression. These results for columns 1-4 use
high quality experiments only. Each coefficient is transformed into a percentage change in the dependent
variable /100. When the model estimates changes in levels, the percentage change is calculated based on the
baseline value of the independent variable in 1880. Results are for high quality experiments only. Standard
errors are clustered by county and shown in parentheses. Stars indicate statistical significance: * p < 0.10;
** p < 0.05; *** p < 0.01
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Table 4: Results with High and Low Quality College Site Selection Experiments

log(Pat. +1) log(Pat. + (Pat.2+1)0.5) Alt. log(Pat.)

Coll.County * HighQual. * PostColl. -0.326*** -0.341** -0.329***
(0.124) (0.136) (0.108)

Coll.County * PostColl. 1.086*** 1.263*** 0.931***
(0.313) (0.373) (0.264)

HighQual * PostColl. 0.170*** 0.215*** 0.095**
(0.064) (0.079) (0.046)

PostColl. 0.021*** 0.027*** -0.019***
(0.007) (0.008) (0.005)

Zero Pat. Dummy -0.663***
(0.005)

County Fixed Effects Yes Yes Yes
Exp. Fixed Effects Yes Yes Yes

Year Effects Yes Yes Yes
Cnty-Year Obs. 2,359,471 2,359,471 2,359,471

# Counties 1,958 1,958 1,958
# Experiments 179 179 179

Mean in 1880 4.845 4.845 4.845
Adj. R-Sqr. 0.570 0.568 0.718

Notes: Regression results using all of the college site selection experiments, including the low quality ex-
periments and runner-up counties. Column 1 estimates the level shift in patenting in college counties
relative to all runner-up counties after establishment of a new college when the dependent variable is
log(Num.Patents + 1). The dependent variable in column 2 is log(Num.Patents), with values replaced
with 0 if Num.Patents = 0 and a dummy variable for zero patents included. The dependent variable in
column 3 is the number of patents. Each coefficient is transformed into a percentage change in the dependent
variable /100. When the model estimates changes in levels, the percentage change is calculated based on
the baseline value of the independent variable in 1880.Standard errors are clustered by county and shown in
parentheses.Stars indicate statistical significance: * p < 0.10; ** p < 0.05; *** p < 0.01
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Table 5: Consolation Prize and College Type Results

Cons. Prize Cons. Prize No Cons. Prize Practical vs. Pre-1940 Practical Practical vs. Pre-1940 Practical
Control for Pop. Classical Colleges vs. Classical Colleges Classical Colleges vs. Classical Colleges

Coll.County * PostColl. 0.188 0.088 0.480***
(0.214) (0.163) (0.176)

PostColl. 0.013 -0.150 -0.030
(0.135) (0.109) (0.072)

log(Total Pop.) 0.253**
(0.109)

Practical College Interaction 0.388** 0.147 0.369 0.348
(0.187) (0.091) (0.720) (0.744)

Classical College Interaction 0.348* 0.066 0.349 0.524
(0.193) (0.087) (0.555) (0.849)

log(Num. Students + 1) 0.009 0.005
(0.083) (0.083)

County Fixed Effects Yes Yes Yes Yes Yes Yes Yes
Exp. Fixed Effects Yes Yes Yes Yes Yes Yes Yes

Year Effects Yes Yes Yes Yes Yes Yes Yes
Cnty-Year Obs. 8,955 7,755 31,500 39,580 23,722 3,152 1,892

# Counties 34 34 150 179 179 19 19
# Experiments 16 16 60 72 72 19 19

Mean in 1880 4.845 4.845 4.845 4.845 4.845 4.845 4.845
Adj. R-Sqr. 0.490 0.500 0.517 0.508 0.450 0.574 0.401

Notes: Regression results under various assumptions about consolation prize counties and different types
of colleges. Column 1 compares college counties to only runner-up counties that receive a consolation
prize. Column 2 compares college counties to only runner-up counties that receive a consolation prize
while controlling for log(Population). Column 3 excludes all counties that receives a consolation prize and
compares college counties to runner-up counties that do not receive a consolation prize. Column 4 includes all
counties but shows results for practical colleges and classical colleges. Column 5 is identical to Column 4 but
excludes all years after 1940. Column 6 is identical to Column 4 but includes a control for log(Students+ 1)
in each county. Column 7 is identical to Column 5 but includes a control for log(Students+1) in each county.
The dependent variable in all columns is log(Patents+ 1). Each coefficient is transformed into a percentage
change in the dependent variable /100. When the model estimates changes in levels, the percentage change
is calculated based on the baseline value of the independent variable in 1880. Results are for high quality
experiments only. Standard errors are clustered by county and shown in parentheses. Stars indicate statistical
significance: * p < 0.10; ** p < 0.05; *** p < 0.01
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Table 6: The Effect of Population on Patenting

log(Pat. + 1) log(Total Pop.) log(Pat. + 1) log(Pat. + 1) log(Pat. + 1) log(Pat. + 1)

Coll.County*PostColl. 0.430*** 0.379* 0.178 0.141 0.216 0.269
(0.161) (0.211) (0.160) (0.148) (2.893) (0.348)

PostColl. -0.029 0.265** -0.005 0.071 -0.979*** -0.068
(0.078) (0.115) (0.102) (0.104) (0.027) (0.124)

log(Total Pop.) 0.396*** 0.364***
(0.104) (0.101)

Total Pop. 0.152*** 0.101**
(0.044) (0.051)

(Total Pop.)2 -0.000* -0.000*
(0.000) (0.000)

Coll.County * PostColl. * log(Total Pop.) -0.005
(0.240)

Coll.County * PostColl. * Total Pop. -0.150
(0.140)

Coll.County * PostColl. * Total Pop. Squared 0.000**
(0.000)

County Fixed Effects Yes Yes Yes Yes Yes Yes
Exp. Fixed Effects Yes Yes Yes Yes Yes Yes

Year Effects Yes Yes Yes Yes Yes Yes
Cnty-Year Obs. 4,078 3,809 1,092 1,092 1,092 1,092

# Counties 179 179 176 176 176 176
# Experiments 72 72 72 72 72 72

Mean in 1880 4.845 20,154.983 4.845 4.845 4.845 4.845
Adj. R-Sqr. 0.453 0.715 0.199 0.211 0.216 0.218

Notes: Results for the effect of population on patenting. Column 1 estimates the level shift in patenting
in college counties relative to runner-up counties after establishment of a new college when the dependent
variable is log(Num.Patents+1). Column 2 estimates the level shift in population in college counties relative
to the runner-up counties after establishment of a new college when the dependent variable is log(TotalPop.).
The dependent variable for both Columns 3-6 is log(Patents + 1). Column 3 re-estimates Column 1 but
includes a control for log(TotalPop.). Column 4 re-estimates Column 1 but includes controls for TotalPop.
and (TotalPop.)2. Column 5 estimates the effect of the level shift in patenting in college counties relative to
runner-up counties after establishment of a new college when controlling for log(TotalPop.) and interacting
log(TotalPop.) with a dummy for college counties, a dummy for post-college years, and the interaction term.
Column 6 estimates the effect of the level shift in patenting in college counties relative to runner-up counties
after establishment of a new college when controlling for TotalPop. and (TotalPop.)2 and interacting both
controls with a dummy for college counties, a dummy for post-college years, and the interaction term. Each
coefficient is transformed into a percentage change in the dependent variable /100. When the model estimates
changes in levels, the percentage change is calculated based on the baseline value of the independent variable
in 1880. Results are for high quality experiments only. Standard errors are clustered by county and shown
in parentheses. Stars indicate statistical significance: * p < 0.10; ** p < 0.05; *** p < 0.01
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Table 7: Patents by Alumni and Faculty

Num. People Share of Pop. Num. Patents Patents per 10,000 Cap. Share of County Patents Share of Extra Patents

Entire County 40,319.943 1.000 2.465 0.052 1.000 1.000
(45,735.840) (0.000) (6.740) (0.042)

Undergraduate Alumni 3,882.335 0.118 0.000 0.000 0.000 0.000
(5,465.699) (0.182) (0.000) (0.000) (0.000) (0.000)

Faculty 65.982 0.002 0.000 0.000 0.000 0.000
(96.292) (0.004) (0.000) (0.000) (0.000) (0.000)

Notes: Population and patenting results for college alumni and faculty. The first row lists statistics for the
entire county. The second row lists statistics for college undergraduate alumni. The third row lists statistics
for college faculty. The first column lists the average number of people in each group per county. The second
column lists the share of the county’s total population belonging to each group. The third column lists the
number of patents attributable to each group. The fourth column lists the patenting rate for individuals in
each group (Num.Patentsj ∗1000/Num.Membersj for members of group j). The fifth column lists the share
of the county’s total patents attributable to each group. The sixth column lists the share of the additional
patents caused by the creation of the new college that can be attributable to each group. Standard deviations
are displayed in parentheses. Results are for college counties for which yearbook data is available.
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A More Information on the College Site Selection Ex-

periments

Table 8 lists the runner-up counties for each college county in the high quality college sam-

ple. Additional information about the college and runner-up counties is provided in the

subsections below.

A.1 Additional Balance Checks

In Table A.1 in Section 2.3, I compare college counties to runner-up counties along a number

of dimensions by conducting a t-test for each dimension and find that no individual dimen-

sion predicts treatment status. Here, I verify that these dimensions do not jointly predict

treatment status either. Unfortunately, for several of the dimensions considered, missing

data is a major concern. This is because the data come from different censuses and particu-

lar data were not necessarily collected every decade; moreover, even when data is available

for a particular census, it is occasionally missing for particular counties. Comparing only

experiments in which data for all dimensions are available for all college and runner-up coun-

ties results in an extremely small sample size. I instead present results of joint tests with

data that are available for most counties in the census year prior to the establishment of the

new college.

Results of the joint tests are presented in Table 9. Column 1 estimates a linear probability

model in which the dependent variable is a dummy variable taking the value of 1 when the

county obtains the college and 0 otherwise. The F -test for the joint significance of all included

regressors is 0.473, which is insignificant at conventional levels. Column 2 estimates a logit

model with the same regressors. A likelihood ratio χ2-test also concludes that the regressors

do not jointly predict treatment status. Column 3 and 4 repeat Columns 1 and 2 but include

additional regressors and hence have much smaller sample sizes; the coefficients are again

not jointly significant. Results are similar with other combinations of regressors, although

the sample size falls even further.

Table 10 conducts t-tests for several other categories along which college and runner-up
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Table 8: Runner-Up Counties

Experiment County State Runner-Up Counties

1 AlAMU Madison Alabama Montgomery
2 ArTU Pope Arkansas Sebastian; Conway; Franklin
3 AubU Lee Alabama Tuscaloosa; Lauderdale
4 AzSU Maricopa Arizona Pinal; Pima
5 BGSU Wood Ohio Sandusky; Van Wert; Henry
6 ClemU Pickens South Carolina Richland
7 CornU Tompkins New York Seneca; Schuyler; Onondaga
8 EMiU Washtenaw Michigan Jackson
9 ENCU Pitt North Carolina Beaufort; Lenoir; Edgecombe
10 GaSoU Bulloch Georgia Tattnall; Emanuel
11 GaT Fulton Georgia Bibb; Baldwin; Clarke; Greene
12 HPU Guilford North Carolina Alamance
13 IaSU Story Iowa Polk; Marshall; Hardin; Jefferson; Tama
14 KentSU Portage Ohio Medina; Trumbull
15 KsSU Riley Kansas Shawnee; Douglas; Lyon
16 KySU Franklin Kentucky Fayette; Boyle; Warren; Christian; Daviess
17 LaSU East Baton Rouge Louisiana Bienville; East Feliciana
18 LincC Logan Illinois Macon; Edgar; Warrick
19 MTnSU Rutherford Tennessee Montgomery
20 MeMA Hancock Maine Sagadahoc
21 MercU Bibb Georgia Spalding
22 MoUST Phelps Missouri Iron
23 NCAT Guilford North Carolina Alamance; New Hanover; Durham; Forsyth
24 NCSU Wake North Carolina Lenoir; Mecklenburg
25 NDSU Cass North Dakota Grand Forks; Burleigh; Stutsman
26 NIlU DeKalb Illinois Winnebago
27 NMSU Dona Ana New Mexico Socorro; San Miguel; Bernalillo
28 NMT Socorro New Mexico San Miguel; Bernalillo; Dona Ana
29 OrSU Benton Oregon Marion
30 PaSU1 Centre Pennsylvania Blair
31 PurdU Tippecanoe Indiana Marion; Monroe; Hancock
32 SArU Columbia Arkansas Ouachita; Polk; Hempstead
33 SIlU Jackson Illinois Jefferson; Perry; Washington; Marion; Clinton
34 SMU Dallas Texas Tarrant
35 SMsU Forrest Mississippi Hinds; Jones
36 TCNJ Mercer New Jersey Middlesex; Burlington; Essex
37 TxAMU Brazos Texas Austin; Grimes
38 TxCU Tarrant Texas Dallas
39 TxT Lubbock Texas Scurry; Nolan
40 UAr Washington Arkansas Independence
41 UAz Pima Arizona Maricopa; Pinal
42 UCaB Alameda California Contra Costa; Napa
43 UCaDav Yolo California Solano; Contra Costa
44 UCo Boulder Colorado Fremont
45 UFl2 Alachua Florida Columbia
46 UIUC Champaign Illinois McLean; Logan; Morgan
47 UId Latah Idaho Bonneville
48 UKs Douglas Kansas Shawnee; Lyon; Riley
49 UMe Penobscot Maine Sagadahoc
50 UMo1 Boone Missouri Saline; Howard; Cole; Callaway; Cooper
51 UMs Lafayette Mississippi Winston; Monroe; Harrison; Attala; Rankin; Montgomery
52 UND Grand Forks North Dakota Cass; Stutsman; Burleigh
53 UNH Strafford New Hampshire Belknap
54 UNM Bernalillo New Mexico Dona Ana; San Miguel; Socorro
55 UNeKe Buffalo Nebraska Custer; Valley
56 UNv Washoe Nevada Carson City
57 UOr Lane Oregon Linn; Washington; Polk
58 USAFA El Paso Colorado Walworth; Madison
59 USD Clay South Dakota Bon Homme; Yankton
60 USMMA Nassau New York Bristol
61 UTn2 Knox Tennessee Rutherford
62 UTxA Travis Texas Smith
63 UTxMB Galveston Texas Harris
64 UWi2 Dane Wisconsin Fond du Lac
65 UWy Albany Wyoming Uinta; Laramie
66 UtSU Cache Utah Weber
67 VaT Montgomery Virginia Albemarle; Rockbridge
68 WIlU McDonough Illinois Schuyler; Hancock; Mercer; Warren; Adams
69 WMiU Kalamazoo Michigan Allegan; Barry
70 WSCoU Gunnison Colorado Garfield; Mesa
71 WVU Monongalia West Virginia Greenbrier; Kanawha
72 WaSU Whitman Washington Yakima

Notes: List of runner-up counties for each high quality college county. Column 1 lists the college experiment.
Columns 2 and 3 list the county and state, respectively, of the college county. Column 4 lists each runner-up
county name.
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counties can be measured. I show that the college and runner-up counties are much more

similar than the college and non-experimental counties in the same state. The first column

lists the mean and standard deviation of college counties. The second column lists the mean

and standard deviation of the runner-up counties. The third column lists the difference in

the mean between the college and runner-up counties, as well as the standard error of the

difference. The fourth column lists the mean and standard deviation of the non-experimental

counties. The fifth column list the difference in the mean between the college and the non-

experimental counties, as well as the standard error of the difference.

Figure 6 shows that not only are the levels of a number of economic and demographic

variables similar in college and runner-up counties prior to establishing a new college, but

the evolve similarly as well. In Panel (a), I plot residual logged county population after

controlling for year effects for several decades both before and the establishment of a the

new college in the college, runner-up, and non-experimental counties. Panel (b) plots the

residual fraction of the county population that lives in an urban area. Panel (c) plots the

residual fraction of the county population that is black. Finally, Panel (d) plots residual

logged manufacturing output. Plots for the other variables presented in Table 10 are similar.

Confidence intervals are omitted in the figure for readability.

A.2 Low Quality Site Selection Experiments

While not used in the baseline results, data is collected on a number of “low quality” college

site selection experiments as well. These are cases in which finalist sites can be identified,

but the site selection decision does not approximate random assignment. Figure 7 shows

the location of all college and runner-up counties, including both the high and low quality

experiments. Table 11 is analogous to Table 2 but presents results only for the low quality

experiments.

B Constructing Patent Data

For the baseline results, I match patents to their county. This is non-trivial because each

patent lists the town and state of each inventor, but not the county. To match towns to
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Table 9: Tests for Joint Significance of Covariates Predicting Whether a County Receives a College

Linear Probability Logit Linear Probability Logit

log(Pat. + 1) -0.095* -0.531 -0.030 -0.019
(0.055) (0.281) (0.357) (1.365)

log(Total Pop.) 0.105*** 0.625 0.331 4.903
(0.040) (0.240) (0.653) (4.818)

log(Mean Age) -0.099 -0.507 2.641 13.652
(0.083) (0.385) (7.824) (34.531)

Frac. Interstate Migrants 0.033 0.260 0.396 0.651
(0.119) (0.556) (1.101) (4.674)

Frac. Male 0.477 2.453 2.491 43.731
(0.648) (2.982) (7.514) (50.810)

Frac. White 0.103 0.513 0.161 2.504
(0.189) (0.886) (1.230) (5.871)

Frac. Urban 1.236 10.368
(1.584) (9.066)

log(Value Manuf. Output) 0.101 0.215
(0.272) (1.254)

log(Value Farm Product) -0.054 -1.484
(0.389) (2.102)

Frac. Attending School -1.004 -9.736
(3.164) (13.567)

log(Colleges + 1) -0.524 -5.753

(0.446) (4.665)

# Counties 184 184 24 24
# Experiments 62 62 59 59

Adj. R-Sqr. 0.007 -0.473
F-Stat 1.225 0.328

F-Test p-Value 0.296 0.963
LR Chi-Sqr. Stat 8.614 7.357
LR-Test p-Value 0.196 0.769

Notes: Joint tests for the significance of several covariates in predicting whether a county is a college county
or a runner-up. Data are from the last census year before each college site selection experiment. The included
covariates are those that are available for most counties in nearly every census. Column 1 presents results
from a linear probability model. Column 2 presents results from a logit model. Stars indicate statistical
significance: * p < 0.10; ** p < 0.05; *** p < 0.01
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Table 10: Additional Balance Checks

Treatment Controls Treat. - Cont. Non-Experiment Treat. - Non-Exp.

log(Pat. + 1) 0.415 0.431 -0.016 0.303 0.112
(0.739) (0.747) (0.107) (0.702) (0.084)

log(Total Pop.) 9.853 9.480 0.372* 9.063 0.790***
(0.962) (1.449) (0.195) (1.740) (0.213)

Frac. Urban 0.185 0.137 0.048 0.078 0.107***
(0.232) (0.189) (0.031) (0.169) (0.021)

log(Mean Age) 3.345 3.349 -0.004 3.426 -0.081*
(0.605) (0.506) (0.085) (0.366) (0.048)

Frac. Interstate Migrants 0.613 0.595 0.018 0.519 0.093**
(0.346) (0.350) (0.055) (0.312) (0.041)

log(Value Manuf. Output) 12.725 12.079 0.646 10.892 1.833***
(1.953) (2.823) (0.417) (3.907) (0.518)

log(Value Farm Product) 13.172 13.040 0.132 12.742 0.430
(1.395) (1.365) (0.234) (2.749) (0.390)

log(Colleges + 1) 0.179 0.184 -0.005 0.045 0.134***
(0.337) (0.366) (0.064) (0.186) (0.028)

Num. Pat. 1.255 1.360 -0.105 2.093 -0.838
(3.073) (3.657) (0.501) (35.961) (4.268)

Total Pop. 31,492.075 24,016.261 7,475.814 22,224.850 9,267.225
(52,265.424) (37,152.274) (6,307.697) (107,091.361) (13,103.956)

Frac. Rural 0.800 0.846 -0.045 0.922 -0.121***
(0.242) (0.199) (0.034) (0.170) (0.022)

Mean Age 30.047 29.547 0.501 30.971 -0.923
(7.793) (7.576) (1.203) (6.285) (0.819)

Frac. Foreign Immigrant 0.093 0.104 -0.011 0.122 -0.029
(0.085) (0.095) (0.019) (0.147) (0.026)

Frac. Male 0.524 0.519 0.005 0.526 -0.002
(0.115) (0.121) (0.018) (0.105) (0.013)

Frac. White 0.819 0.805 0.014 0.824 -0.005
(0.239) (0.264) (0.040) (0.235) (0.031)

Segregation 0.320 0.290 0.030 0.348 -0.028
(0.244) (0.249) (0.053) (0.221) (0.039)

Pop. per Sq. Mile 77.646 42.033 35.613 61.159 16.487
(225.232) (81.185) (29.696) (888.896) (148.225)

Pop. Attending School 8,546.739 5,368.396 3,178.343 5,298.191 3,248.548
(18,494.064) (11,427.919) (3,568.528) (28,552.059) (5,967.935)

Frac. Attending School 0.141 0.117 0.024 0.150 -0.009
(0.082) (0.090) (0.022) (0.081) (0.017)

Frac. Illiterate 0.140 0.125 0.015 0.152 -0.012
(0.141) (0.136) (0.039) (0.158) (0.037)

Manuf. Establishments 121.944 107.784 14.161 92.351 29.593
(135.001) (158.352) (43.466) (456.389) (107.690)

log(Manuf. Employment) 4.962 4.738 0.224 3.767 1.194***
(2.379) (2.425) (0.452) (2.548) (0.391)

Manuf. Employment 1,108.279 1,395.107 -286.828 1,091.956 16.323
(2,487.831) (7,022.769) (1,106.598) (10,045.132) (1,532.778)

Value Manuf. Output 2,577,168.298 3,379,563.752 -802,395.454 4,165,527.136 -1,588,358.838
(8,913,310.353) (21,603,565.227) (2,985,143.029) (53,796,135.208) (7,127,825.416)

log(Manuf. Wages) 9.721 9.369 0.352 7.665 2.056***
(4.421) (4.493) (0.838) (4.949) (0.759)

Manuf. Wages 628,071.628 960,679.464 -332,607.836 923,019.620 -294,947.992
(1,751,901.201) (6,175,432.565) (962,603.198) (10,737,956.268) (1,638,096.216)

Value Farm Product 1,037,502.740 1,102,507.482 -65,004.742 1,526,697.672 -489,194.932
(1,352,746.052) (2,400,586.689) (363,543.022) (3,796,003.824) (537,419.860)

log(Farm Wages) 11.641 11.351 0.290 10.547 1.094**
(0.949) (1.187) (0.336) (1.777) (0.432)

Farm Wages 173,194.412 155,687.400 17,507.012 99,315.375 73,879.037*
(173,285.347) (194,111.125) (56,759.849) (156,920.089) (38,354.234)

log(Value Farms) 14.522 14.284 0.238 13.968 0.555
(1.426) (1.969) (0.291) (2.691) (0.357)

Value Farms 4,860,152.474 4,209,547.909 650,604.565 4,666,175.502 193,976.972
(7,192,430.022) (5,349,566.125) (963,523.948) (8,191,354.422) (1,090,975.043)

Num. Faculty 3.915 3.758 0.157 1.813 2.102
(12.693) (11.722) (2.149) (14.321) (2.098)

Num. Students 51.064 55.316 -4.252 23.067 27.997
(159.714) (173.282) (30.128) (161.350) (23.663)

Frac. of Chemical Patents 0.002 0.007 -0.006 0.014 -0.013
(0.010) (0.034) (0.005) (0.096) (0.015)

Frac. of Comm Patents 0.000 0.000 -0.000 0.002 -0.002
(0.000) (0.004) (0.001) (0.037) (0.006)

Frac. of Medical Patents 0.000 0.013 -0.013 0.003 -0.003
(0.000) (0.111) (0.017) (0.045) (0.007)

Frac. of Electric Patents 0.009 0.000 0.008* 0.004 0.005
(0.042) (0.001) (0.005) (0.037) (0.006)

Frac. of Mechanical Patents 0.033 0.049 -0.016 0.038 -0.005
(0.156) (0.167) (0.030) (0.158) (0.024)

Frac. of Other Patents 0.038 0.059 -0.021 0.061 -0.024
(0.139) (0.271) (0.044) (0.215) (0.033)

Frac. of Tech Patents 0.043 0.056 -0.013 0.056 -0.013
(0.164) (0.180) (0.033) (0.199) (0.030)

Frac. of Ag Patents 0.015 0.001 0.014 0.008 0.007
(0.079) (0.006) (0.009) (0.077) (0.012)

Notes: T-tests comparing the means of the college counties, runner-up counties, and non-experimental
counties. Data are from the last census year before each college site selection experiment. The first column
lists the mean and standard deviation of college counties. The second column lists the mean and standard
deviation of the runner-up counties. The third column lists the difference in the mean between the college
and runner-up counties, as well as the standard error of the difference. The fourth column lists the mean
and standard deviation of the non-experimental counties. The fifth column list the difference in the mean
between the college and the non-experimental counties, as well as the standard error of the difference. The
college and runner-up counties are from high quality experiments only. Stars in columns 3 and 5 indicate
statistical significance: * p < 0.10; ** p < 0.05; *** p < 0.01
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Figure 6: Time Series for Demographic and Economic Variables
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Notes: Time series for various demographic and economic variables in each census year. The year of the
college experiment is normalized to year 0. Everything left of year 0 shows pre-college means; everything
to the right shows post-college means. The college counties are represented by the blue solid line. The
runner-up counties are represented by the red dashed line. The non-experimental counties are represented
by the green short-dashed line. In each panel, the y-axis is a residual demographic or economic variable after
controlling for year effects. Data are for high quality experiments only.
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Figure 7: Map of Both High and Low Quality College and Runner-Up Sites

College Runner-Up

Notes: Map of the location of the low quality college and runner-up sites. Colleges are represented by blue
diamonds. The runner-up sites are represented by red circles.
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Table 11: Summary Statistics of Low Quality College Site Selection Experiments

N Mean S.D. Min Median Max

# Finalist Counties 98 2.95 1.90 1.00 2.00 10.00
Distance to Finalists 219 155.28 210.66 4.24 99.96 2,243.45
Experiment Year 108 1884.85 29.81 1836.00 1882.00 1963.00
Year of First Class 95 1887.66 32.87 1830.00 1886.00 1967.00
Year Desegregated 49 1921.90 40.71 1853.00 1945.00 1968.00
Year Co-Ed 57 1893.74 39.05 1846.00 1885.00 1997.00
Land Grant Colleges 108 0.22 0.42 0.00 0.00 1.00
Technical Schools 108 0.06 0.23 0.00 0.00 1.00
Normal Schools 108 0.09 0.29 0.00 0.00 1.00
HBCUs 108 0.06 0.23 0.00 0.00 1.00
Military Academies 108 0.07 0.26 0.00 0.00 1.00
Other Public Colleges 108 0.12 0.33 0.00 0.00 1.00
Other Private Colleges 108 0.36 0.48 0.00 0.00 1.00

Notes: Summary statistics for the low quality college site selection experiments. Column 1 lists the count
of experiments or counties. Column 2 lists mean values, Column 3 the standard deviation, Column 4 the
minimum value, Column 5 the median value, and Column 6 the maximum value. Row 1 lists the number of
runner-up counties for each experiment. Row 2 lists the distance between college and runner-up sites. Row 3
lists the experiment year. Row 4 lists the year in which students began attending the college. Row 5 lists the
year when the college became racially desegregated. Row 6 lists the year the college became coeducational.
Rows 7-13 list the fraction of colleges that are of each college type.
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their counties, I first standardize all town and county names by converting all characters to

have consistent capitalization, removing all punctuation and non-alphabetic characters, and

harmonizing common abbreviations, for instance changing “SAINT” to “ST” and “FORT”

to “FT”. I then obtain a list of all towns in each U.S. county in each decennial census year,

compiled from the 100% censuses. I look for exact matches between town names in the

patents and town names in the preceding decennial census. This means that, for instance,

town names in 1883 patents are matched to town names in the 1880 decennial census. For

1890, the 100% decennial census was destroyed by fire, so I match town names to the 1990

census. The results are insensitive to matching to the closest census rather than the previous

census. For all patents granted in 1950 or later, there is no declassified 100% decennial census

from the previous decade to match to. In these cases, I first attempt to match to town

names in the 1940 decennial census. For the remaining towns that are unmatched, I use zip

code data from https://www.unitedstateszipcodes.org/zip-code-database/ to match

to any town name that is affiliated with a current U.S. zip code; the zip code database also

contains the counties in which each town resides.

In some cases, a town’s boundaries lie in several counties. Alternatively, there may be

states with multiple towns of the same name. In these cases when a town is associated with

multiple counties, I assume each patent has an equal probability of belonging to each county

and divide the number of patents by the number of towns to find a mean number of patents.

I also construct an upper bound, assuming that every patent belongs to a particular county,

and a lower bound that assumes that no patents belong to a particular county. All results

throughout the paper use the mean patent count, but results are nearly identical when using

the upper and lower bounds.

Errors may also occur if spelling, transcription, or OCR errors occur in town names or

if the patent data use slight variations of actual town names; there is no formal process to

make town names uniform across patents. In the baseline results presented throughout the

paper, I require standardized town names in the patent data to exactly match standardized

town names in the town-county correspondence. I also match towns to counties using “fuzzy”

matching techniques. These are bi-gram string comparators that return a “distance” between

the town-state strings in each dataset. Using various different weights for the town and state

62

https://www.unitedstateszipcodes.org/zip-code-database/


strings in the distance function returned qualitatively similar results. See Andrews (2017)

for more information on the differences between the exact and fuzzy matching between towns

and counties. I present baseline results using the fuzzy matching in Appendix C.1; results

are similar, reflecting the fact that standardizing town and county names eliminates most

differences.

C Additional Baseline Results

Figure 8 plots logged patenting in the college, runner-up, and non-experimental counties

using only the raw data; that is, I plot patenting without controlling for year effects or

smoothing the data.

To show the heterogeneity of the estimated treatment effect across college site selection

experiments, I estimate the baseline regression in Equation (1) with a separate interaction

term for each experiment. Formally, I estimate

log(NumPatijt + 1) =
∑
j∈J

[δ1jCollegeij ∗ PostCollegejt + δ2jPostCollegejt]

+ αi + λj + γt + εijt, (4)

where J is the number of college site selection experiments. Each coefficient is plotted

in a histogram in Figure 9. Estimated interaction terms for each individual experiment

are available upon request. In about 60% of the experiments, the estimated coefficient is

positive. Even when the coefficient is negative, it tends to be close to zero in magnitude.

In a majority of the college site selection experiments, the estimated coefficients are in line

with the coefficients estimated in Table 3.

C.1 Robustness Checks

In this section, I estimate several additional regression specifications to demonstrate that

the baseline results described in Section 3 are robust. Results are presented in Table 12.
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Figure 8: Patenting in College, Runner-Up, and Non-Experimental Counties, Raw Data

0
.5

1
1.

5
2

Lo
g(

N
um

. P
at

en
ts

 +
 1

)

-20 -10 0 10 20 30 40 50 60 70 80 90 100
Time

College Runner-Up
Non-Experiment

Notes: Unconditional mean patenting in college and runner-up counties. The x-axis shows the number of
years since the college experiment. The year of the college experiment is normalized to year 0. Everything
left of year 0 shows pre-college means; everything to the right shows post-college means. The y-axis shows
log(Patents + 1). The college counties are represented by the blue solid line. The runner-up counties are
represented by the red dashed line. The non-experimental counties are represented by the green short-dashed
line. Data are for high quality experiments only.
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Figure 9: Distribution of Treatment Effects Across College Experiments
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Notes: Distribution of estimated treatment effects across each college site selection experiment. The coef-
ficient of the level shift in patenting in college counties relative to runner-up counties after establishments
of a new college is estimated with a separate interaction term for each college experiment. The histogram
plots the share of estimated interactions falling into each bin of width .05.
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In Column 1, I estimate the following modification of the baseline regression:

PatentMeasureijt =δ1Collegeij ∗ PostCollegejt+

+ αi + λj + αi ∗ λj + γt + λj ∗ γt + εijt. (5)

Here, the PostCollegejt is not needed as it is colinear with the experiment-by-year fixed

effect, λj ∗ γt. δ1 is similar to the baseline estimate in Column 1 of Table 3. Column

2 examines the extensive margin: do counties have a higher probability of obtaining at

least one patent per year after receiving a new college. In this linear probability model, I

find that establishing a new college makes a county 22% more likely to have at least one

patent in a given year. Column 3 uses an alternative construction of logged patenting,

log(Num.Patents+ 0.0001). These results are much larger than the baseline estimate. This

is not surprising in light of the results in Column 2, since this specification penalizes having

zero patents more heavily than the baseline specification that uses log(Num.Patents + 1)

as the dependent variable. Column 4 displays the results using the number of patents as

the dependent variable in a simple linear specification. The estimated percentage increase

is large (93% more patents per year in the college counties relative to the runners-up, using

1880 as the baseline year) but in line with the results using a negative binomial model in

Table 3. Column 5 presents results from a simple fixed effects Poisson regression, again using

Winsorized data. These results are similar in magnitude to Column 4 and to the negative

binomial results presented in Table 3.

To further show that the results are not driven by the subjective classification of some

experiments as either high or low quality, I also re-estimate the baseline regression excluding

each high quality experiment, one at a time, and re-estimating the baseline regression. I

also reclassify each low quality experiment as high quality, one at a time, and re-estimate

the baseline regression. In all cases, the estimated coefficient is very similar to the baseline

result and statistical significance is unchanged. These results are available upon request.

A related concern is that different types of college experiments may be systematically

different from one another. I argue in Section 2.1 that the college site selection experiments

are as good as random assignment. While each experiment is unique, they tend to fall into
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Table 12: Additional Regression Specifications

log(Patents + 1) Any Patents log(Pat. + 0.0001) Num. Patents Poisson

Coll.County * PostColl. 0.314*** 0.216** 1.828* 0.927*** 0.857**
(0.103) (0.086) (1.063) (0.351) (0.382)

PostColl. 0.097 0.355 -0.411 7.247***
(0.066) (0.361) (0.265) (1.596)

County Fixed Effects Yes Yes Yes Yes Yes
Exp. Fixed Effects Yes Yes Yes Yes Yes

Year Effects Yes Yes Yes Yes Yes
Cnty-Year Obs. 39,580 39,620 39,580 39,580 39,580

# Counties 179 179 179 179 179
# Experiments 72 72 72 72 72

Mean in 1880 4.845 0.382 -5.519 4.845 4.845
Adj. R-Sqr. 0.649 0.377 0.439 0.311

Log-Likelihood -35,727.662 -18,781.531 -110,961.886 -166,492.392 -123,755.032

Notes: Regression results using alternative specifications. Column 1 includes experiment-by-year fixed effects
whent he dependent variable is log(Num.Patents+1). Column 2 estimates a linear probability model where
the dependent variable is an indicator equal to one if a county has at least one patent in a given year and
zero otherwise. The dependent variable in Column 3 is log(Num.Patents+0.0001). The dependent variable
in column 4 is the number of patents. Column 6 estimates a Poisson regression. Columns 5 and 6 use non-
Windsorized counts of patenting. Each coefficient is transformed into a percentage change in the dependent
variable /100. When the model estimates changes in levels, the percentage change is calculated based on the
baseline value of the independent variable in 1880. Results are for high quality experiments only. Standard
errors are clustered by county and shown in parentheses. Stars indicate statistical significance: * p < 0.10;
** p < 0.05; *** p < 0.01
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groups in which the colleges were assigned with different general methods. It would be

suspicious if one method of “random” assignment gave systematically different results from

other such methods. In this subsection, I test this concern by grouping experiments by the

method in which the college was assigned and then checking that the estimated coefficients

are similar across different groups.

I use four broad groups: auctions, politics, infrastructure, and other. “Auctions” refer to

all cases in which a board of trustees, state legislature, or other site selection body solicited

bids from localities; identification comes from comparing very similar bids across different

locations. “Politics” refers to cases where political maneuvering, involving things like quid

pro quos, strategic timing of votes, or even outright bribery, secured the college for one

location over another; identification rests on the assumption that these political schemes are

uncorrelated with any other local factors that would affect the college location decisions.30

“Infrastructure” refers to cases in which the college had specific infrastructure needs that

could only be satisfied by a limited number of candidate locations. As an example, the

Morrill Land Grant Colleges Act forbade the use of land grant funds to construct buildings,

so many land grant colleges had to be located where there was an existing and available

building large enough to be used for a college. In other cases, colleges had to be located

near the center of a state, near viable drinking water or on navigable waterways, or close to

railway lines. All of the runner-up counties in the were deemed to meet these infrastructure

requirements by the site selection committee. Finally, “other” refers to all experiments that

do not fit into one of the above descriptions. This can include pure random assignment (as

in the case of the University of North Dakota), cases where weather played a pivotal role (as

in the University of Arizona), or other bizarre circumstances (such as Cornell University).

In several cases, an experiment could plausibly fit into several groups. For instance, in many

cases bids were solicited only from localities that met certain infrastructure needs. I attempt

to put each experiment into the most appropriate group; the results are not sensitive to

reclassifying marginal experiments.

Table 13 shows the results. In Columns 1-4, I successively remove each of the above

30For this reason, I do not consider an experiment to be of high quality if the work of a governor or
legislative leader was instrumental in deciding where to locate the college and represented the winning
county as this may reflect longstanding political influence rather than a quasi-random event.
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experiment types and show that the results are still qualitatively the same. In Column 5,

I interact each experiment type with the dummy for college counties and the post-college

dummy. All coefficients are qualitatively similar except for the interaction term for infras-

tructure, which is negative but close to zero and not statistically significant.

Table 13: Results by Type of College Site Selection Experiment

No Auctions No Politics No Infrastructure No Other log(Pat. + 1)

Coll.County * PostColl. 0.449** 0.351* 0.423*** 0.393***
(0.194) (0.183) (0.152) (0.148)

PostColl. -0.089 -0.001 -0.042 -0.008
(0.091) (0.085) (0.064) (0.062)

Auctions 0.359*
(0.210)

Politics 0.494**
(0.233)

Infrastructure -0.020
(0.280)

Other 0.555
(0.573)

County Fixed Effects Yes Yes Yes Yes Yes
Exp. Fixed Effects Yes Yes Yes Yes Yes

Year Effects Yes Yes Yes Yes Yes
Cnty-Year Obs. 19,833 24,227 38,005 36,675 39,580

# Counties 94 116 171 168 179
# Experiments 38 42 69 67 72

Mean in 1880 4.845 4.845 4.845 4.845 4.845
Adj. R-Sqr. 0.497 0.530 0.508 0.496 0.509

Notes: Regression results by experiment type. The dependent variable is log(Patents + 1). Columns 1-4
re-estimate the baseline results but excluding each experiment type in turn. In column 5, the coefficient is
the increase in patenting caused by the college interacted by experiment type. Row 3 presents results for
experiments decided by auction, row 4 for experiments decided by politics, row 5 for experiments decided
by the presence of existing infrastructure, and row 6 for other site selection experiments. Each coefficient is
transformed into a percentage change in the dependent variable /100. When the model estimates changes
in levels, the percentage change is calculated based on the baseline value of the independent variable in
1880. Results are for high quality experiments only. Standard errors are clustered by county and shown in
parentheses. Stars indicate statistical significance: * p < 0.10; ** p < 0.05; *** p < 0.01

As noted in Section 2.2, the Annual Report and Jim Shaw patent data list each inventor’s

town and state of residence. The analysis above is conducted at the county level, so it is

necessary to assign each patent to a county. In the analysis above, a town-state pair is placed

into a county when the exact town-state pair is found in the U.S. census, which lists both the
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towns and counties of all residents. There are alternative ways to match town-state pairs to

counties, however, as described in Appendix B. Column 1 of Table 14 recreates these results.

I also experiment with the baseline estimate when a fuzzy matching algorithm is used to

match town-state pairs in the patent data to town-state pairs in the census data. These

results are presented in Column 2. The coefficients are similar to those in Column 1.

The same analysis could also be performed using alternative patent data altogether.

The baseline results in the paper use the Annual Reports compiled by the U.S. Patent

Office. In Column 3, I also repeat the baseline estimates using HistPat data (Petralia et al.,

2016b) instead of the Annual Reports or Jim Shaw data for any years in which they overlap.

Results are similar to those using the Annual Report and Jim Shaw data. These results

provide confidence that the results presented above are not an artifact of the particular

patent dataset used or the choices made to geo-locate patents.

Table 14: Results with Alternative Patent Data

Exact-Matched Fuzzy-Matched HistPat

Coll.County * PostColl. 0.401*** 0.351** 0.302**
(0.143) (0.151) (0.141)

PostColl. -0.032 0.002 0.058
(0.062) (0.068) (0.076)

County Fixed Effects Yes Yes Yes
Exp. Fixed Effects Yes Yes Yes

Year Effects Yes Yes Yes
Cnty-Year Obs. 39,580 39,327 39,271

# Counties 179 179 179
# Experiments 72 72 72

Mean in 1880 4.845 4.845 4.845
Adj. R-Sqr. 0.508 0.577 0.606

Notes: Regression results using different patent data. Columns 1 uses town-state pairs from patents that
are exactly matched to town-state pairs in the U.S. Census to obtain a patent’s county. Columns 1 uses
town-state pairs from patents that are fuzzily matched to town-state pairs in the U.S. Census to obtain a
patent’s county. Column 3 uses the HistPat data. The dependent variable for all columns is log(Patents+1).
Each coefficient is transformed into a percentage change in the dependent variable /100. When the model
estimates changes in levels, the percentage change is calculated based on the baseline value of the independent
variable in 1880. Results are for high quality experiments only. Standard errors are clustered by county and
shown in parentheses. Stars indicate statistical significance: * p < 0.10; ** p < 0.05; *** p < 0.01
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I next conduct a placebo test to determine whether patenting changes differentially in

college and runner-up counties in the years leading up to the college site selection experiment.

I drop all data for the years after and including the year in which the college was established;

all the remaining data is for the pre-trend. I then artificially designate the halfway point

between the first year of observations and the last pre-experiment year as the “experiment

year” and re-run the baseline regressions. Results are presented in Table 15. If the college

counties are up-and-coming places, then they should be growing faster then the runner-up

counties in the years before the original college site selection experiment and the estimated

coefficient (College×“PostCollege”) should be significantly positive. Instead, none of the

coefficients are statistically different from zero and, while slightly positive, the coefficients

of interest are much smaller in magnitude than their counterparts in Table 3. I take this as

further evidence that the college site selection experiment is valid. Results are very similar

if I instead designate random pre-college years as the placebo “treatment” year.

C.2 Patent Classes

Establishing a new college may alter the composition of patented technologies in addition to

changing the total number of patents. To get a sense of patent technology type, in Table 16

I use the patent classes assigned to historical patents by Marco et al. (2015) to examine how

patenting across all classes changes after establishing a new college.31 In Column 1, I include

controls for the share of patents in each county that belong to each of the NBER patent

classes (patents with missing classes is the omitted category). The difference-in-differences

estimate is similar in magnitude to the baseline estimate and is significant at the 10% level.

In Column 2, I repeat the baseline estimate at the patent class-by-county-by-year level.

That is, I estimate:

PatentMeasureijct =δ1Collegeij ∗ PostCollegejt + δ2PostCollegejt

+ αi + λj + αi ∗ λj + ψc + γt + ψc ∗ γt + εijct, (6)

31The NBER one-digit patent classes are: chemical, communications, medical, electric, mechanical, other,
no class, and missing class. All results in this section are similar when using two-digit NBER patent classes,
USPTO patent classes, or IPC classifications.

71



Table 15: Placebo Test

log(Pat. + 1)

Coll.County * PostColl. 0.062
(0.060)

PostColl. -0.041
(0.037)

County Fixed Effects Yes
Exp. Fixed Effects Yes

Year Effects Yes
Cnty-Year Obs. 10,570

# Counties 228
# Experiments 72

Mean in 1880 4.845
Adj. R-Sqr. 0.186

Notes: Placebo tests. The baseline regression results are reproduced with all post-experiment data dropped.
The experiment year is set to halfway between the initial year of patent data and the year prior to the original
college site selection experiment. Each coefficient is transformed into a percentage change in the dependent
variable /100. When the model estimates changes in levels, the percentage change is calculated based on the
baseline value of the independent variable in 1880. Results are for high quality experiments only. Standard
errors are clustered by county and shown in parentheses. Stars indicate statistical significance: * p < 0.10;
** p < 0.05; *** p < 0.01
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for patent classes c. This specification thus includes patent class and patent class-by-year

fixed effects, flexibly picking up the fact that certain types of technology may be more or

less prevalent at different points in time. While the coefficient of δ1 is a bit smaller than the

baseline estimate, it is qualitatively similar and significant at the 10% level. Thus, changes

in the composition of patents cannot explain all of the baseline results.

Nevertheless, the results in Columns 1 and 2 suggest that there is some shifting in the

types of inventions patented in college counties after a new college is established. Are college

counties becoming increasingly specialized in a few narrow technology areas that happen to

be especially patent-prone? This does not appear to be the case. Instead, patenting becomes

more diverse in the college counties after the establishment of a new college. To see this, I

construct an index of patent concentration, essentially a Herfindahl-Hirschman Index that

sums over each patent class the squares of the fraction of a county’s patents belonging to

that class:

Pat.Concentit =
∑
c∈Cit

( Num.Patc∑
k∈Cit

Num.Patk

)2

(7)

where Cit is the set of all patent classes in county i at time t. I construct this index using

two-digit NBER patent classes, although results are similar with other patent class measures.

Results are presented in Column 3 of Table 16. A new college causes concentration to falls

by about 13% relative to the 1880 baseline concentration measure, statistically significant at

the 5% level. In Column 4, I control for the overall number of patents granted in each county;

counties with small numbers of patents will mechanically have higher concentrations. The

results are quantitatively similar even when adding this additional control. These results

suggest that the diversity of ideas patented increases after the creation of a new college;

the extra patents produced are not just in the same fields as previous patents in the college

counties. Such a result is inconsistent with most of the increase in patenting in college

counties being driven by the skills taught or research conducted in colleges.

While overall patent diversity increases, it may still be the case that some types of colleges

specialize in the types of inventions for which they also provide specialized human capital. For

instance, land grant colleges might expect to see an increasing share of agricultural patents, or

73



technical colleges might produce a growing fraction of patents in fields such as mining. I verify

that the opposite is in fact true. Column 5 of Table 16 shows that the fraction of agricultural

patents actually falls in land grant college counties relative to non-land grant college counties

after establishing the college. I define a patent to be an agricultural patent if it belongs to

a three-digit USPTO patent class that is likely affiliated with agriculture.32 In column 6,

I repeat this exercise but using mining patents and comparing technical schools to non-

technical schools.33 The fraction of mining patents falls, albeit not statistically significantly,

in both technical and non-technical college counties after establishing a new college, although

the drop is slightly smaller in magnitude in the technical college counties.

C.3 Patent Quality

As Trajtenberg (1990) makes clear, looking at raw patent counts without correcting for

patent quality can produce misleading results. Ex ante, it is not clear whether patents in

college counties should be expected to increase or decrease in average quality after estab-

lishing the college. On one hand, patents coming from more educated inventors might be

expected to be of higher quality. On the other hand, more educated individuals, especially

those trained in subjects like law, may have better access to the legal system and therefore

patent more marginal inventions, leading to lower average quality. A third possibility is

that the change in patenting is driven by shifts in the size of the population but not in

the distribution of inventive abilities, in which case the distribution of patent qualities may

32The one- and two-digit NBER patent classes are much coarser than the USPTO patent classes, so
excluding patents related to a specific industry like agriculture are difficult using NBER classes. The USPTO
classes also have their issues, namely they are often criticized for being too narrow, not easily mapped to
particular industries, and nonsensically organized (Hall et al., 2001). I consider a patent to be an agricultural
patent if it belongs to the following USPTO classes: 47 “Plant husbandry”; 54 “Harness for working animal”;
56 “Harvesters”; 71 “Chemistry: fertilizers”; 119 “Animal husbandry”; 278 “Land vehicles: animal draft
appliances”; 449 “Bee culture”; 460 “Crop threshing or separating”; or 504 “Plant protecting and regulating
compositions”. I also experiment with alternative definitions of agricultural patents and get nearly identical
results.

33Most of the technical schools in the sample that were founded west of the Mississippi were explicitly
mining colleges. This is not the case with technical schools in the east, such as Georgia Tech. In addition to
mining, these colleges also taught subjects such as engineering. The curricula in eastern technical schools are
still more likely to teach subjects similar to mining than are other colleges, however. I consider a patent to
be a mining patent if it belongs to the following classes: 175 “Boring or penetrating the earth”; 299 “Mining
or in situ disintegration of hard material”; 405 “Hydraulic and earth engineering”; or 507 “Earth boring,
well treating, and oil field chemistry”. I again explore different definitions of mining patents and get nearly
identical results.

74



Table 16: Patent Classes

Control for Patent Classes By Patent Classes Class Concentration Class Concentration Frac. Ag. Pat. Frac. Mining Pat.

Coll.County * PostColl. 0.356* 0.258* -0.129** -0.124**
(0.185) (0.138) (0.057) (0.056)

PostColl. -0.130 -0.103 0.016 0.014
(0.087) (0.086) (0.042) (0.042)

Num. Pat. -0.000**
(0.000)

Land Grant Interaction -0.534
(0.599)

Non-Land Grant Interaction 0.316
(0.528)

Technical School Interaction -0.065
(0.354)

Non-Technical School Interaction -0.228
(0.202)

County Fixed Effects Yes Yes Yes Yes Yes Yes
Exp. Fixed Effects Yes Yes Yes Yes Yes Yes

Year Effects Yes Yes Yes Yes Yes Yes
Cnty-Year Obs. 17,449 109,125 20,166 20,166 21,879 21,879

# Counties 178 178 178 178 178 178
# Experiments 72 72 72 72 72 72

Mean in 1880 4.845 0.513 0.554 0.554 0.009 0.013
Adj. R-Sqr. 0.630 0.554 0.423 0.423 0.024 0.013

Notes: Regression results for patent scope. Column 1 estimates the change in the average number of words
in a patent’s first claim in the college counties relative to the runner-up counties after the establishment of
a college. Column 2 estimates the change in the average logged number of words in a patent’s first claim.
Column 3 estimates the change in the fraction of a county’s patents that are at or below the 10th percentile
of patents with respect to the length of first claim in each year. Column 4 estimates the change in the
fraction of a county’s patents that are at or above the 90th percentile of patents with respect to the length of
first claim in each year. Each coefficient is transformed into a percentage change in the dependent variable
/100. When the model estimates changes in levels, the percentage change is calculated based on the baseline
value of the independent variable in 1880. Results are for high quality experiments only. Standard errors are
clustered by county and shown in parentheses. Stars indicate statistical significance: * p < 0.10; ** p < 0.05;
*** p < 0.01
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not change at all. Following Hall et al. (2001) and Hall et al. (2005), I check whether the

number of patent citations and citations per patent change in college counties relative to

the runners-up after the establishment of a new college. I thank Enrico Berkes for providing

lifetime citation counts for the universe of patents (see Berkes (2018)).

In Column 1 of Table 17, I show that the absolute number of patent citations in college

counties increases by 52% relative to the runner-up counties after establishing a new college.

This is close in magnitude to the percentage change in the total number of patents granted

in college counties. The next three columns confirm that, indeed, there is no measurable

change in citations per patent after establishing a new college. Column 2 shows that citations

per patent (Citationsit
Patentsit

, where Citationsit measures lifetime citations for all patents granted

in county i in year t) declines in college counties relative to the runners-up after establishing

a new college; while the decline is large in percentage terms relative to the 1880 average, it

is not statistically significant, and many patents in this time had a very small number of

citations so a small decline in citations per patent is a large percentage decline. In Column 2,

I omit any counties with zero patents for which the number of patents in the denomination

of Citationsit
Patentsit

is zero; in Column 3 I include these counties and code citations per patent to be

zero in these cases. The coefficient is again negative but much closer to zero in magnitude

and not statistically significant. In Column 3, I also control for the distribution of patent

classes in each county as in Column 1 of Table 16. The coefficient is now very close to zero

in magnitude and not statistically significant. Summing up, there is no measurable change

in citations per patent.

Unfortunately, patent citations are only consistently available beginning in 1947, making

them a less-than-ideal measure when using historical patent data. I therefore use an alter-

native measure to gauge patent quality. As suggested in Kuhn and Thompson (2017), the

length of a patent’s first claim is a remarkably informative measure of a patent’s scope, and

hence its quality. A patent’s claims formally define the legal scope of an invention. The first

listed claim is the most broad. A very short first claim therefore indicates a patent that is

very broad in scope, while a long claim indicates a patent that is narrow in scope. Kuhn and

Thompson (2017) and Kuhn, Younge, and Marco (2017) argue that patent claim length is in

fact more informative of patent quality than citation-based measures. Additionally, unlike
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patent citations, claims are recorded in the body of a patent for all patents granted in the

U.S. from 1836 onward. I use the patent body text and claim counts from Enrico Berkes. I

again thank Enrico Berkes for graciously providing this data.

Results are presented in . In Column 5 of Table 17, I re-estimate the baseline regression

specification using the average number of words in the first claim for all patents granted

within each county in each year as the dependent variable. Column 2 uses the logged number

of words in the first claim as the dependent variable. While the estimated coefficients is

positive in one case and negative in the other, neither is statistically significant and both

are small in magnitude; in both cases the average length of a patent’s first claim changes by

less than a word in the college counties relative to the runners-up.

One possible reason for the lack of a large average effect, as noted above, is that more

high quality patents in college counties could also be offset by more marginal patents. To

simply check for this, I estimate whether the share of patents falling in the tails of the

distribution of first claim lengths changes in the college counties relative to the runners-up

following the establishment of a new college. Column 3 estimates the change in the share of

patents at or below the tenth percentile of the first claim length distribution, representing

the very broadest patents granted in a particular year. Column 4 estimates the change in

the share of patents at or above the 90th percentile, the narrowest patents. Again, neither

coefficient is statistically significant or large in magnitude. These results suggest that, while

counties that receive a college gain more patents overall, there is no measurable change in

patent quality.

C.4 Geographic Spillovers

As mentioned in Section 3.4, if colleges only increase patenting by enticing inventive people

to migrate, and if people are more likely to migrate from nearby areas, then the difference

in patenting between college counties and nearby areas will increase after the establishment

of a new college relative to the difference between college counties are far away areas. I test

for this directly in this section.

In Table 18, I present results by the distance from the college county to runner-up coun-

ties. Column 1 compares college counties to runner-up counties that are “adjacent” from
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Table 17: Patent Quality

log(Citations + 1) Citations Citations Citations Length of log(Length of 1st Claim) Frac. 1st Claim Frac. 1st Claim
per Patent per Patent per Patent 1st Claim <10th Pcntl >90th Pcntl

Coll.County * PostColl. 0.523** -0.601 -0.171 -0.015 -0.059 -0.029 -0.023 0.032
(0.249) (0.540) (0.142) (0.053) (0.059) (0.025) (0.014) (0.137)

PostColl. -0.208** 0.275 -0.226 0.037 0.075* 0.026 0.008 0.121
(0.101) (0.544) (0.178) (0.074) (0.042) (0.022) (0.011) (0.102)

Num. Patents -0.873*** 0.319***
(0.132) (0.104)

County Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes
Exp. Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes

Year Effects Yes Yes Yes Yes Yes Yes Yes Yes
Cnty-Year Obs. 39,580 17,449 39,580 39,580 14,845 14,845 14,845 14,845

# Counties 179 178 179 179 178 178 178 178
# Experiments 72 72 72 72 72 72 72 72

Mean in 1880 77.172 9.153 9.153 9.153 44.411 44.411 0.729 0.089
Adj. R-Sqr. 0.536 0.173 0.106 0.540 0.381 0.445 -0.005 -0.004

Notes: Regression results for patent quality. Column 1 estimates the change in the average number of words
in a patent’s first claim in the college counties relative to the runner-up counties after the establishment of
a college. Column 2 estimates the change in the average logged number of words in a patent’s first claim.
Column 3 estimates the change in the fraction of a county’s patents that are at or below the 10th percentile
of patents with respect to the length of first claim in each year. Column 4 estimates the change in the
fraction of a county’s patents that are at or above the 90th percentile of patents with respect to the length of
first claim in each year. Each coefficient is transformed into a percentage change in the dependent variable
/100. When the model estimates changes in levels, the percentage change is calculated based on the baseline
value of the independent variable in 1880. Results are for high quality experiments only. Standard errors are
clustered by county and shown in parentheses. Stars indicate statistical significance: * p < 0.10; ** p < 0.05;
*** p < 0.01

the college county in the sense that they share a common border. The college counties have

23% more patents per year than these adjacent runner-up counties, which is smaller than

the baseline estimate in Table 3 and is not statistically different from zero. In Column 2, I

compare college counties to counties that are in the same state but do not share a common

border. In this column, the estimated increase in patenting from the establishment of a new

college is more than twice the magnitude of the estimated increase in Column 1 and is statis-

tically significant, with college counties having 54% more patents per year than the far away

runner-up counties. These results show that the college counties increase patenting much

more than distant runners-up, but are statistically indistinguishable from their closer neigh-

bors. This suggests that, instead of a new college having negative spillovers on neighboring

areas by pulling all of the local talent away, colleges have positive geographic spillovers,

benefiting neighboring areas as well as the county that actually receives the college.

In Columns 3 and 4, I extend this result to compare the college counties to all non-college

counties; I no longer restrict attention to the runner-up counties. Column 3 compares the

78



college counties to all adjacent counties and finds that college counties have 51% more patents

per year after the establishment of the college. Column 4 compares the college counties to all

non-adjacent counties that do not share a border; in this case, the college counties have 70%

more patents per year. Thus, even when attention is not restricted to the counterfactual

sites, which may not be randomly distributed across a state, it appears that the college

counties grow somewhat similarly to their neighbors, but increase patenting by much more

than far away locations.

Additionally, the college and runner-up sites vary in their location within counties: some

are located very close to county borders, for instance, while some are close to the geometric

midpoint of their respective counties. To address these concerns, I also use information on

the precise latitude and longitude of college towns and runner-up towns and then compare

cases in which the college and runner-up towns are closer and further from specific distance

thresholds. Results using the geodesic distance between college and runner-up counties and

various cutoffs between “nearby” and “far-away” runners-up produce results nearly identical

to those using adjacent counties. These results are available upon request.

Table 18: Patenting by Geographic Distance

Adjacent Runners-Up No Adjacent Runners-Up Adjacent Counties No Adjacent Counties

Coll.County * PostColl. 0.240 0.506*** 0.529*** 0.725***
(0.152) (0.166) (0.151) (0.161)

PostColl. -0.065 -0.103 -0.040 0.051***
(0.102) (0.073) (0.052) (0.008)

County Fixed Effects Yes Yes Yes Yes
Exp. Fixed Effects Yes Yes Yes Yes

Year Effects Yes Yes Yes Yes
Cnty-Year Obs. 22,376 29,804 79,847 962,386

# Counties 117 138 370 1,722
# Experiments 72 72 72 72

Mean in 1880 4.845 4.845 4.845 4.845
Adj. R-Sqr. 0.490 0.513 0.518 0.540

Notes: Regression results for patenting rate and results by distance to runner-up counties. Column 1
compares college counties to runner-up counties that share a border. Column 2 compares college counties to
runner-up counties that do not share a common border. Column 3 compares college counties to all counties
that share a border. Column 4 compares college counties to all counties that do not share a common border.
The dependent variable for all columns is log(Patents+1). Each coefficient is transformed into a percentage
change in the dependent variable /100. When the model estimates changes in levels, the percentage change
is calculated based on the baseline value of the independent variable in 1880. Results are for high quality
experiments only. Standard errors are clustered by county and shown in parentheses. Stars indicate statistical
significance: * p < 0.10; ** p < 0.05; *** p < 0.01
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D Additional Results on the Necessity of Colleges

D.1 Additional Results by Type of College

In this section, I further break down the results of different types of colleges on patenting. In

Column 1 of Table 19, I show how patenting differs between practical and classical colleges,

using an alternative classification of practical and classical than described in Section ??.

Here, a college is considered a practical college if it is a land grant college, technical school,

or military academy. Classical colleges are normal schools, other private and public colleges,

and HBCUs. The difference between practical and classical colleges is qualitatively the same

when the alternative definitions are used as in the baseline results presented in Table 19, with

practical colleges having 41% more patents per year compared to 38% for classical colleges.

I also compare differences between each of the seven types of colleges: land grants,

technical schools, military academies, normal schools, HBCUs, other public colleges, and

other private colleges. Unfortunately, as Table 2 shows, there is only a small number of

several types of experiments and so insufficient power to identify differences. Even simply

comparing coefficients, however, paints a picture that does not conform to the naive intuition

that colleges that focus on more practical skills should cause larger increases in patenting.

For example, normal schools and land grant colleges produce nearly the same increase in

patenting, while the former is focused on training primary and secondary school teachers and

the latter has an explicit focus on very practical fields such as agriculture and machinery.

These results are available upon request.

I next compare all public schools to all private schools. This involves reclassifying colleges,

as some of the types described above may include both public and private colleges. For

instance, the HBCUs may be either public or private. Cornell University, while officially New

York’s land grant university, is actually a private institution. I interact dummy variables for

public or private status with the estimated college effect and display the results in Column

2. I find that public colleges have a large positive effect on patenting, while the effect for

private colleges is less than half the magnitude and not statistically different from zero.

In Column 3, I check how the estimated treatment effect varies by college quality. Un-

fortunately, reliable data on college quality does not exist for most of each college’s his-
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tory. Instead, I proxy lifetime college quality with the 2018 national universities rankings in

the U.S. New and World Reports (https://www.usnews.com/best-colleges/rankings/

national-universities). This is problematic because current college rankings may be due

in part to college’s past patenting performance, but the measure may still be informative

if rankings are highly persistent over time. I split colleges into four groups: those ranked

1-75, those ranked 76-150, those ranked 151-225, and those that do not have a 2018 U.S.

News ranking. The estimated coefficient declines monotonically moving from the highest to

lowest quality schools in the U.S. News rankings. These results suggest that higher quality

colleges lead to more local patenting. It may be the case that better colleges are larger, and

it is the size of the institution that drives patenting rather than measures of quality. To

try and account for this, in Column 4 I control for log(Students + 1) using data from the

Commissioner of Education reports. While the schools ranked 1-75 again have the largest

increase in patenting, it is not statistically significant. Moreover, the schools ranked 75-

150 see a sizable drop in patenting that is significant at the 10% level. It is thus difficult

to conclude that higher quality schools monotonically lead to more patents. In Column 5,

I control for log(TotalCountyPop.) instead. The coefficient again declines monotonically

moving from highest to lowest quality schools, but the differences between the coefficients

are much smaller in magnitude and no group of colleges produces an increase in patenting

that is statistically different from zero.

E Yearbook Data

To determine whether a particular patentee is an alumni or faculty member of a particu-

lar college, I digitize historical college yearbooks to obtain names of individuals affiliated

with each college. Scanned images of a large number of college yearbooks are available on

www.ancestry.com. After obtaining the yearbook images, I transcribe them to obtain rele-

vant information. Table 20 lists the colleges for which yearbook data has been transcribed,

including the number of yearbooks available for each college, the first and last transcribed

year, and the number of transcribed records for undergraduate alumni, graduate alumni, and

faculty. Due to budget limitations, and due to the fact that future work will link students
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Table 19: Additional Results by College Type

Alt. Practical vs. Classical Public vs. Private College Rank College Rank College Rank

Practical College Interaction 0.411**
(0.205)

Classical College Interaction 0.375*
(0.211)

All Public Colleges 0.409***
(0.150)

All Private Colleges 0.164
(0.315)

Rank 1-75 0.866* 0.454 0.386
(0.500) (0.442) (0.236)

Rank 76-150 0.474* -0.215* 0.299
(0.254) (0.124) (0.283)

Rank 151-225 0.354** 0.042 0.135
(0.178) (0.130) (0.197)

Unranked 0.188 -0.012 0.095
(0.262) (0.130) (0.190)

log(Students + 1) 0.041***
(0.012)

log(Total Pop.) 0.450***
(0.074)

County Fixed Effects Yes Yes Yes Yes Yes
Exp. Fixed Effects Yes Yes Yes Yes Yes

Year Effects Yes Yes Yes Yes Yes
Cnty-Year Obs. 39,580 39,580 39,580 2,964 36,378

# Counties 179 179 179 179 179
# Experiments 72 72 72 72 72

Mean in 1880 4.845 4.845 4.845 4.845 4.845
Adj. R-Sqr. 0.508 0.509 0.512 0.405 0.540

Notes: Regression results by college type. The dependent variable is log(Patents + 1). In Column 1,
the effect of establishing a new college is estimated separately for practical and classical colleges, us-
ing the alternate definition described in the text. The dependent variable in Column 2 is the frac-
tion of agricultural patents, using the alternate definition of agricultural patents described in the text,
Alt.Num.AgriculturalPatentsijt/Num.Patentsijt. In Column 3, the coefficient is the percentage increase
in patenting caused by the college interacted by college type. All other coefficients in the regression are
suppressed for readability. Row 1 presents results for the land grant college experiments, row 2 for technical
colleges, row 3 for normal schools, row 4 for HBCUs, row 5 for military academies, row 6 for other public
colleges, and row 7 for other private colleges. In Column 4, the coefficient is the percentage increase in
patenting caused by the college interacted with whether a college is public or private. In Column 5, the
coefficient is the percentage increase in patenting caused by the college interacted with each college’s rank
according to the 2018 U.S. News and World Report rankings. Each coefficient is transformed into a per-
centage change in the dependent variable /100. When the model estimates changes in levels, the percentage
change is calculated based on the baseline value of the independent variable in 1880. Results are for high
quality experiments only. Standard errors are clustered by county and shown in parentheses. Stars indicate
statistical significance: * p < 0.10; ** p < 0.05; *** p < 0.01
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in the yearbooks to individuals in the U.S. census and the 1940 census is the most recent

that is available, no yearbooks have been transcribed for years more recent than 1940. Other

colleges will be added to the data as the data is transcribed.

Because I handle the data for college alumni and faculty slightly differently, I describe

them separately below.

Table 20: Yearbook Data Summary Statistics

College Num. Yearbooks First Yearbook Last Yearbook Num. Undergrads Num. Grad. Studs. Num. Faculty

1 Auburn University 8 1916 1940 2573 7 202
2 Clemson University 5 1915 1940 1187 0 83
3 Cornell University 40 1879 1935 23339 2977 15473
4 Georgia Institute of Technology 14 1917 1940 3361 0 968
5 Iowa State University 3 1936 1939 1668 0 59
6 Louisiana State University 7 1927 1940 3528 713 83
7 Missouri University of Science and Technology 10 1911 1940 577 0 505
8 North Carolina A and T University 1 1939 1939 97 0 42
9 North Dakota State University 16 1908 1940 2956 0 310
10 Texas Tech 2 1937 1940 710 8 133
11 University of Arizona 9 1913 1940 1583 36 438
12 University of Colorado 19 1893 1939 3775 0 1562
13 University of Maine 28 1906 1940 4718 866 4343
14 University of Missouri 33 1898 1940 9792 574 1547
15 University of Nevada 6 1901 1934 408 0 165
16 University of New Hampshire 10 1909 1940 2164 0 1630
17 University of North Dakota 5 1906 1940 920 0 68
18 Utah State University 4 1911 1932 489 0 27
19 Virginia Polytechnic Institute 17 1898 1939 2125 50 788
20 Washington State University 12 1903 1940 4136 0 317

Notes: List of colleges for which yearbooks are transcribed. For each college, also listed is the total number
of yearbooks transcribed, the earliest and the most recent transcribed yearbook, and the total number of
transcribed records for undergraduate students, graduate students, and faculty.

E.0.1 Alumni

Figure 10 shows an example of a college yearbook page. This particular image shows college

seniors from the University of New Hampshire’s yearbook for 1910, but it is representative

of the type of information available in a typical college yearbook. Unfortunately, the type

of information available and formatting of each yearbook vary enormously from college to

college or even by year within the same college. This makes analysis using particular types

of information difficult, as it may not be available for most years. But almost all yearbooks

include the names of college seniors along with their majors. Many also include seniors’

hometowns, sports teams or clubs, fraternities or sororities, or professional organizations,

and often this information is available for juniors or underclassmen as well.

Because I am interested in constructing a list of alumni from a particular college, I keep
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information only for college seniors. The assumption is that the vast majority of these

individuals go on to become alumni in the following year; juniors will become seniors in the

following yearbook, so ignoring them during their pre-graduation years saves on time and

expense during the transcription process and prevents accidentally inflating the number of

graduates from a particular year. I also record the number of graduate students, if available,

for each year. Unfortunately, many yearbooks do not list their graduate students, so the data

is somewhat limited. It is also typically impossible to know what year graduate students are

expected to graduate; for instance an individual just beginning their PhD might remain a

graduate student for another five years before becoming an alumni. Most graduate students

belong to shorter programs, however, so I include all listed graduate students in each year

when available.

I next compile a list of all past seniors and graduate students. I assume that patentees

must be less than 80 years old. While information on the age distribution of historical

inventors is sparse (see Sarada et al. (2017) and Akcigit et al. (2017a) for recent exceptions),

modern data shows that very few inventors are that old (Jung and Ejermo (2014), Acemoglu

et al. (2014)) and, if anything, the age of invention has been increasing in recent decades

(Jones (2009), Jones (2010)). I further assume, for simplicity, that each college graduate is

no less than 20 years old at time of graduation. For each year, I compile a list of alumni

names in year t by combining each the seniors and graduate students from each yearbook

from t− 60 to t (since the assumptions mean that each alumni can patent for up to 60 years

after graduating). Such a list consists of all alumni for whom a name is known for each

college and each year. I drop all duplicate names from this list, which further alleviates

problems from accidentally recording a student in a year before he or she graduates.34

I also construct a time series of the number of expected alumni in each year. To do this, I

interpolate the number of seniors and graduate students in each year for which a yearbook is

not available, using a cubic-spline interpolation.35 For years before the first college yearbook

34As the alumni will be matched to the patent record by name, discarding duplicate names does not affect
the number of patents attributed to alumni.

35I interpolate the number of graduate students for each year after the first year in which graduate students
are observed. The assumption is that colleges very rarely discontinue their entire graduate programs; instead,
no observed graduate students is likely simply due to a yearbook not recording the graduate students in a
particular year.
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or after the last college yearbook, I extrapolate the number of seniors and graduate students

linearly; non-linear extrapolations lead to nonsensical predictions for several of the colleges. I

set the number of seniors and graduate students to zero for all years before the establishment

of the college. For years in which the extrapolation or interpolation predicts fewer seniors and

graduate students than the smallest number observed in a yearbook, I replace that value with

the smallest observed number. The time series of expected seniors and graduate students

thus likely overstates the number of alumni in each year. In a few cases, the interpolation or

extrapolation leads to implausibly large numbers of seniors or graduate students in a given

year (namely, larger than the corresponding county population); to fix this, I drop the top

1% of observations by expected number of seniors and graduate students. I then sum up all

the expected alumni for each of the previous 60 years as described above. This gives a list of

the expected number of total alumni for every year, denoted by ¯Num.Alumnijt for college

j in year t.

To determine whether a particular patent belongs to an alumnus, I match each individual

in the alumni list by first, middle, and last name to the patent data in the college’s county

for the corresponding year. To clarify, this matching does not find all patents belonging to

a particular alumnus, but rather only patents by the alumnus that occur in the county from

which he or she obtained her degree. To search for name matches between the yearbooks and

the census, I use a fuzzy matching algorithm as in Sarada et al. (2017). More specifically, I

use Stata’s reclink command, which is a modified bigram string comparator that returns a

“distance” (match score) between two strings. Only matches with a sufficiently high match

score are retained. Because at this point I am interested in the “most lenient” match of

graduates to patents, I keep all plausible matches, regardless of the possibility that graduates

living in a college county may share a name with a non-graduate living in the same county.

Moreover, this procedure will attribute a patent to a college graduate if the graduate moves

to another county but a different individual with the same name obtains a patent in the

college county.

To calculate the alumni patenting rate, for each year I divide the number of patents
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matched to alumni to the total number of alumni with identifiable names,

AlumniPatentRatej =
1

T − t0j

T∑
t0j

Num.Matchedjt
Num.Alumnijt

, (8)

for college j and years t0j is the first year for which a yearbook for college j is available

and T = 2000 (the last yearbook year, 1940, plus 60 years). I compute this patenting

rate separately for alumni seniors and graduate students. Finally, I calculate the expected

number of patents coming from alumni by multiplying the computed patenting rate by the

expected number of alumni each year, Num.AlumniPatentsj =
∑T

t0j
AlumniPatentRatej ∗

¯Num.Alumnijt.

E.0.2 Faculty

Figure 11 shows an example of a college yearbook page with faculty information, also from

the University of New Hampshire’s 1910 yearbook. In this particular yearbook, each faculty

member’s name is listed along with his highest degree obtained, position and title at the

university, and a biography that describes each member’s academic subject and any previous

academic positions held.

Unfortunately, the number of faculty members included and the information provided

on each varies much more than does the alumni information. While every yearbook has a

page dedicated to the university president, nearly all list administrative officers such as the

registrar, and a majority of the yearbooks list the deans of the different schools within the

college, many do not include a full list of the faculty.

I begin by transcribing all faculty information provided for each college and each year,

just as in the case of the alumni. I discard any years with five fewer faculty members listed,

as these are likely cases when only the university president or a handful of administrative

officers are included. Since it is unlikely for faculty to cease serving at their college except

through death or transfer to another college, I match faculty names to the patent record

only for the year in which the faculty name appears in the yearbook. Matching uses the

same information as in the alumni case above. Even in cases in which faculty last names

are listed, frequently only the first and middle initials are included, making matching very
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Figure 10: Example College Yearbook Page, Student Data

Notes: An example page from one of the transcribed college yearbooks showing information on college
seniors. This image is from the 1910 University of New Hampshire yearbook.
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difficult. I discard these individuals, as including them would artificially lower the faculty

patenting rate. Once the faculty are matched to the patent record, I calculate the patenting

rate FacultyPatentRatej and Num.FacultyPatentsj for each college j in the same way as

I calculate those values for the alumni, described above.
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Figure 11: Example College Yearbook Page, Faculty Data

Notes: An example page from one of the transcribed college yearbooks showing information on college
faculty. This image is from the 1910 University of New Hampshire yearbook.
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