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Abstract

The asset ownership structure in financial markets worldwide has changed sig-
nificantly over the last few decades. Institutional investors own a larger fraction
of assets, the distribution of their ownership is more concentrated, and the own-
ership by passive investors is getting increasingly more important. To study
implications of these facts, we develop a general equilibrium portfolio-choice
model with endogenous information acquisition and market power. We show
that the size and concentration of institutional investors have opposite effects
on price informativeness. Further, the introduction of passive investors has a
negative effect on price informativeness, both through quantities and through
changes in active investors’ learning. Finally, we show that predictions of the
model with endogenous information acquisition are significantly different from
those implied by models with exogenous information, such as Kyle (1985).
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1 Introduction

The last few decades have witnessed a number of significant changes in the com-

position of U.S. equity ownership. First, institutional ownership of an average stock

more than doubled, to around 60%. Similarly, the equity holdings by ten largest

institutional investors more than doubled, to an average 35%. Finally, the holdings

of passive funds have grown considerably relative to those of active funds. The per-

centage of equity mutual funds’ total assets that are held by index funds has grown

from 12% in 2007 to 25% in 2016.

These changes in ownership structure have drawn considerable attention from

market participants, policy makers, and academics. One major consideration is the

implication of changing market structure on asset prices, particularly the effect of large

active and passive investors on price discovery and, more broadly, on the efficiency

of capital allocation in the economy. On the one hand, larger active investors have

greater capacity to conduct fundamental research, which would increase the amount

of information revealed in their trading. On the other hand, they also recognize the

price impact of their trades, which makes them trade less on any information they have

(as in Kyle, 1985). In this paper, we provide a micro-founded theory of endogenous

choices on both of these margins: which assets to learn about and which assets to

optimally hold. We then study the implications of the theory for the interaction

between market structure and price informativeness—a measure summarizing how

well the variation in asset prices predicts the variation in fundamentals.1

Our theoretical framework incorporates three new elements crucial for capturing

the impact of market structure on price informativeness: (i) investors have different

sizes, and therefore different price impacts; (ii) investors have different abilities to ac-

quire information, which yields signals of endogenous quality about future shocks; (iii)

1Formally, we define price informativeness as the covariance of the price of that asset with its
future fundamental, normalized by the volatility of the price. This definition has been also used in
Bai, Philippon, and Savov (2016). However, other standard measures correlate positively with ours
and would not change our conclusions.
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investors make learning and portfolio decisions across a range of risky assets. These

elements allow us to study the interaction between investors’ absolute and relative

sizes and the incentives to acquire and reveal information about assets via trades.

In particular, we identify information pass-through—how much an investor is willing

to respond in quantity adjustment to the arrival of new private information— as the

main (and novel) force in the model responsible for determining price informativeness.

The model features a financial market with heterogeneous assets and investors.

A subset of investors are atomistic (competitive fringe), while the rest have market

power (oligopolists) and internalize the effect of their trades on equilibrium prices.

(Active) investors have differential ability to learn about the future paths of prices,

and other (passive) investors have no ability to do so. Oligopolists play a Nash

equilibrium in their acquisition of information, and then play a Cournot game in

the asset market to optimize their portfolios. Inputs into the model are the size of

the investors, interpreted as assets under management, and their learning capacities.

The presence of large investors is a novel component of portfolio choice models with

endogenous information acquisition. The combination of endogenous learning and

trading in a multi-asset model is a significant extension of the theoretical literature

on market power, whose focus is either on exogenous information or a single asset

market.

We identify three key forces that affect price informativeness. The first one is the

degree to which prices track fundamentals, which can be viewed as average ownership-

weighted information. This effect increases with agents’ ability to learn, and is pos-

itively related to price informativeness. The second one is the sensitivity of the

oligopolists’ quantities to private information, or what we call the information pass-

through to quantities. Information pass-through is also positively related to price

informativeness, as increases in pass-through reduce price volatility. We find that

information pass-through is hump-shaped in the size of the oligopoly sector, which

implies that size has a non-monotonic effect on price informativeness. On the one
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hand, the larger an oligopolist is, the larger will be her asset positions, and hence

a change in asset position will reveal more in price. On the other hand, because of

her price impact, she will actively reduce her reaction to signals in terms of quanti-

ties. The third factor impacting price informativeness is concentration of ownership,

which in our model takes the form of the Herfindahl-Hirschman Index, weighted by

agents’ learning intensity—we term this measure the learning HHI or LHHI. This

force arises due to the noise introduced by large players’ trades and is independent of

any learning by the fringe. It is, therefore, unambiguously negatively related to price

informativeness. The overall effect of size on price informativeness is a result of a ten-

sion between these three forces. Quantitatively, in numerical examples parameterized

to match the features of the U.S. market, we find that the information pass-through

effect dominates the other two forces and gives rise to price informativeness that is

hump-shaped in size.

We further study the effects of different market structures on price informativeness

by changing the distribution of sizes (assets under management). Two features of the

theory shed light on the response of the model. The first feature is the effect of

changing size on a single investor. When an investor is atomistic she will specialize

in her information collection, choosing only one asset to learn about. As the investor

increases in size, she continues to specialize for a time, but also internalizes the

increasing effect of her learning and trading on prices. When the magnitude of that

effect gets large enough, the investor’s information pass-through declines and it is

no longer optimal to specialize and so she diversifies her learning. This is a novel

finding, and one that is central to the results that follow. The second feature is that,

from an aggregate price informativeness perspective, diversified learning is beneficial

because price informativeness exhibits decreasing returns to learning on an asset-by-

asset basis.

We present three sets of results from the model. First, we find that aggregate

price informativeness has a non-monotonic, hump shape in the size of the oligopoly
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sector. On the one hand, as oligopolists increase in size, they diversify their learn-

ing, which helps average price informativeness. On the other hand, over a certain

size, their informational pass-through starts decreasing, hurting price informative-

ness for all assets, and also the average. For small sizes, information pass-through is

increasing and both effects increase price informativeness, but eventually information

pass-through starts declining and dominates the diversification effect. Second, we

show that increases in the concentration of ownership (or equivalently, size) unam-

biguously decrease price informativeness. A concentrated distribution of oligopolists

means that comparatively larger parts of the market are controlled by just a few

agents. The increased presence of oligopolists reduces price informativeness because

their own private signal mistakes increase the noise introduced in the price, as well

as because their information pass-through goes down.

Finally, we find that an increase in the size of passive investors—those who do

not trade in an informed way (e.g., index funds)—at the expense of active investors,

unambiguously reduces price informativeness. This result, while partly expected,

sheds additional light on the information effect of passive investors’ size on active

investors’ behavior. There are two aspects to this effect. First, assets in the market

get diverted from active to passive investors, resulting in less informed funds for

trade. Second, as the active investors lose market power, they specialize more in

their learning. Specialization leads to a decrease in aggregate price informativeness,

but because of agents’ preferences for learning about high-volatility over low-volatility

assets, the decrease is not uniform across all assets—some asset prices become more

informative.

In order to further elucidate the key economic channels at play, we compare the

results from the general model to those coming from two special cases. In the first

case, the oligopoly sector is represented by one large, monopolistic investor. In the

second case, all investors are atomistic. In these special cases, we obtain closed-

form solutions for price informativeness and learning, which provide useful points of
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comparison. In additional tests, we derive closed-form solutions for the size thresholds

at which investors find it privately optimal to specialize in their learning, and at which

it would be optimal from a price informativeness standpoint for them to specialize in

their learning.

Our work is reminiscent of the literature developed by Kyle (1985), and subse-

quent papers. Similar to that literature, we are interested in issues related to price

informativeness when dealing with non-atomistic investors. However, unlike any of

the papers in that literature, we introduce endogenous learning across many risky

assets, which allows for the results on specialization and spreading of attention. Fur-

ther, ours is one of the first papers to think about the impact of passive investing on

active investors’ behavior and the subsequent effects on asset pricing. We compare

the results of our paper to a setup that is closer in spirit to Kyle’s work, in which

information quality is exogenously determined. We show that changing market struc-

ture in an exogenous information world has vastly different implications for price

informativeness because of the inability of active investors to adjust their learning

optimally. In particular, we show that the optimal level of institutional ownership

coming from a model with exogenous information choice can be biased upwards or

downwards relative to the fully endogenous model, depending on the exogenous infor-

mation structure one assumes. We conclude that modeling endogenous information

choices is crucial when making statements about the size and structure of the asset

management sector.

In Section 2, we present a set of motivating facts from the U.S. data on institutional

ownership and its concentration. Section 3 presents the theoretical framework, the

equilibrium concept, and derives basic theoretical tradeoffs between the ownership

structure and price informativeness. In Section 4, we derive numerical solutions for

the more general settings and discuss various policy experiments. Section 6 concludes.

Any omitted proofs and derivations are in the Appendix.
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1.1 Related Literature

Our paper spans several research themes. The literature on informed trading

with market power dates back to Kyle (1985) and Grinblatt and Ross (1985) whose

setup is one strategic trader, and Holden and Subrahmanyam (1992), which extends

the model of Kyle into an oligopolistic framework. Lambert, Ostrovsky, and Panov

(2016) extend the Kyle’s model to study the relation between the number of strategic

traders and information content of prices.2 In all these studies, information is an

exogenous process, which is a key dimension along which our model works. Also,

they do not examine the role of concentration and active/passive traders, both being

the main focus of our study. Kyle, Ou-Yang, and Wei (2011) allow for endogenous

information acquisition but their mechanism depends on differences in risk aversion.

Also, they focus on the contracting features of delegation and only consider one risky

asset. In turn, our framework utilizes heterogeneity in information capacity and

multi-asset economy.

Our general equilibrium model is anchored in the literature on the endogenous

information choice, in the spirit of Sims (1998, 2003). More closely related to our

application are the models of costly information of Van Nieuwerburgh and Veldkamp

(2009, 2010), Mondria (2010), Kacperczyk, Van Nieuwerburgh, and Veldkamp (2016),

and Kacperczyk, Nosal, and Stevens (2017). Ours is the first theoretical study to

introduce market power into a model with endogenous information acquisition. This

novel aspect allows us to study strategic responses of oligopolistic traders in terms of

their demand and information choices.

We also contribute to the literature on information production and asset prices.

Bond, Edmans, and Goldstein (2012) survey the literature on information production

in financial markets, emphasizing the differences between new information produced

in markets (revelatory price efficiency: RPE) and what is already known and merely

2Models in which traders condition on others’ decisions also include Foster and Viswanathan
(1996) and Back, Cao, and Willard (2000).
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reflected in prices (forecasting price efficiency: FPE). Our focus is solely on RPE and

is largely dictated by the modeling framework we use.3 Stein (2009) develops a model

of market efficiency and sophisticated (arbitrage) capital in the presence of capital

constraints. Garleanu and Pedersen (2015) examine the role of search frictions in

asset management for price efficiency. Breugem and Buss (2018) study the impact of

benchmarking on price informativeness in a costly information acquisition competitive

equilibrium model.

On an empirical front, Chen, Goldstein, and Jiang (2007) and Bakke and Whited

(2010) find that the relation between stock prices and investment is stronger for firms

with more informative stock prices, whereas Baker, Stein, and Wurgler (2003) find

that it is stronger for firms that issue equity more often. None of the above studies

investigates the role of market power and endogenous information acquisition. The

exception is Bai, Philippon, and Savov (2016) who show empirically that price in-

formativeness is greater for stocks with greater institutional ownership. We confirm

their findings for the range of the ownership values. However, we show that beyond

certain levels (not observed in their data) ownership may in fact reduce price infor-

mativeness. Separately, we also investigate the role of ownership concentration and

provide a micro-founded general equilibrium model that allows us to study the un-

derlying economic mechanism in more depth. In a contemporaneous work, Farboodi,

Matrey, and Veldkamp (2017) examine differences in price informativeness between

companies included and not included in the S&P 500 index. They show that the in-

dexed companies exhibit larger efficiency, which they attribute to composition effect

of these companies, being older and larger. Their focus, however, is not on market

power and changes in market structure.

Finally, we add to a growing empirical literature that studies the impact of market

structure in asset management on various economic outcomes. Following the disec-

3Theoretical work on asset prices and real efficiency also includes Dow and Gorton (1997),
Subrahmanyam and Titman (1999), Kurlat and Veldkamp (2015), and Edmans, Goldstein, and
Jiang (2015).
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onomies of scale argument of Chen et al. (2004), Pástor, Stambaugh, and Taylor

(2015) show significant diseconomies of scale at the industry level. Using a merger

between BlackRock and BGI as a shock to market power, Massa, Schumacher, and

Yan (2016) study the asset allocation responses of their competitors. They find that

competitors scale down positions which overlap with those held by the merged en-

tity. More broadly, He and Huang (2014) and Azar, Schmalz, and Tecu (2016) study

consequences of common asset ownership by large blockholders for product market

competition and prices. Our work complements these studies by studying, theoreti-

cally and empirically, the effect of ownership structure on price informativeness.

2 Motivating Facts

The growth in institutional ownership has been previously documented in several

studies, starting with Gompers and Metrick (2001). The evidence on concentration

is much more sparse. Similarly, evidence on passive investments has been largely

explored, theoretically, from the agency perspective (e.g., Basak and Pavlova (2013)).

In this section, we show details of the three empirical facts that motivate our study.

First, institutional stock ownership has increased over the last 35 years. Second, the

ownership structure is skewed towards the largest owners. Third, the ownership mix

has shifted from active towards passive investors. Except for the recent paper by

Bai, Philippon, and Savov (2016) which emphasizes the first fact, no other study has

exploited the implications of these facts for longer-horizon price informativeness.4

Our data on institutional stock ownership come from Thomson Reuters and span

the period 1980–2015. Even though the formal requirements to report holdings allow

for smaller companies not to report, the representation of institutions in the data is

more than 98% in value-weighted terms. We calculate the stock-level institutional

4A parallel microstructure literature (Boehmer and Kelley (2009)) examines empirically the
relation between institutional ownership and price efficiency due to trading intensity. Efficiency
there is measured using variance ratios and pricing errors. The conclusions from this literature are
akin to those reported in our paper.
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ownership by taking the ratio of the number of stocks held by financial institutions at

the end of a given year to the corresponding number of shares outstanding. Next, we

aggregate the measures across stocks by taking a simple average across all stocks in

our sample. Using equal weighting, rather than value weighting, gives a conservative

metric of the trends in the data. Subsequently, we calculate a similar measure, but

only taking into account the holdings of the top-10 largest holders for a given stock.

We present the time-series dynamics of the two quantities in Figure 1.
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Figure 1: Institutional Ownership: Unconditional and Top-10 Holders

Both series indicate a clear pattern underlying the recent policy discussions: Insti-

tutional ownership has grown and the increase has been mostly fueled by the growing

concentration of ownership. The magnitudes of the growth are economically large:

Over the period of over 35 years, each ownership statistic has more than doubled.

While we focus here on the average trends in the data, even stronger effects can be

observed in the cross section of stocks with different characteristics.

In our model, a more natural way to measure concentration is the Herfindahl-

Hirshman Index (HHI), defined as the sum of squared shares of all institutional own-

ers of a given stock. However, the problem with using the index is its mechanical

correlation with the number of investors. To the extent that the number of insti-
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tutions has been growing steadily over the same period the unadjusted index would

reflect two effects going in opposite direction. To filter out this mechanical sorting, we

take out the predicted component in the HHI accounted by the number of investors.

The untabulated results indicate that the concentration levels have been generally

going up over time. This pattern has been particularly visible since the early 1990s.

The magnitude of the growth is economically large and the large values of concentra-

tion, especially in the last few years, reflect the concerns policy makers have voiced

with regard to this phenomenon.

To illustrate the effects on ownership mix we define active investors as those

engaged in information acquisition process and passive investors as those who strictly

invest in pre-defined index portfolios. The latter group includes both index mutual

funds and ETFs. Because identifying passive funds in the institutional investors data

is not trivial we borrow the evidence from the Investment Company Institute (ICI)

Fact Book. We show the time-series evolution of the percentage of passively managed

equity mutual funds in the U.S. in Figure 2.
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Figure 2: Passive Equity Fund Share

The results indicate a significant increase in passive ownership in the period 2001–

2016. While passive funds accounted for less than 10% of total equity fund market in

the U.S., this share has increased to almost 25% by 2016. In the paper, we take this

trend as given and merely focus on its consequences for stock price informativeness.

To conclude, we note that while the motivating facts we present relate to institu-
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tional investors, the model we present next is a general theory of asset allocation and

information acquisition by investors with market power. We believe institutions are

natural candidates for this type of investors.

3 Model

This section presents a noisy rational expectations portfolio choice model in which

investors are constrained in their capacity to process information about assets payoffs.

The setup departs from standard information choice models (e.g., Van Nieuwerburgh

and Veldkamp (2010) or Kacperczyk et al. (2017)) by introducing market power for

some investors. In the model, we solve for price informativeness of the aggregate

economy and individual assets differentiated by their volatility.

3.1 Setup

The model features a finite continuum of traders, divided into L+1 many segments,

represented by λi, i ∈ {0, ..., L}. The traders in the first segment, λ0, are atomistic—

these traders act as a competitive fringe, in that they are able to pay attention to

innovations in asset prices, but do not have any market power. They are indexed by h.

Measures {λ1, λ2, ..., λL} of investors act as oligopolists, indexed by j. Each measure

collects information and trades, as the fringe does, but the oligopolists collect and

trade as a unit, and therefore have market power in information, and market power

in trading.

Every member of the fringe and every oligopolist observes signals about inno-

vations in asset prices. The vector of signals for the oligopolists for asset j is

sj = (sj1...sjL). The vector of signals for the fringe for asset j is indexed by h.

Investors of both types maximize mean-variance utility function, with common risk

aversion ρ.

The market comprises one risk-free asset, with a price normalized to one and a
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net payout of r, and n > 1 risky assets, indexed by i, with prices pi and independent

payoffs zi = z̄ + εi, where εi ∼ N(0, σ2
i ). The risk-free asset has unlimited supply,

and each risky asset has a stochastic supply with mean x̄ and variance {σxi}. We can

think of these as noisy supply shocks.

Agents make portfolio decisions and can choose to obtain information about price

innovations for some or all of the risky assets. The capacity to process information for

the oligopolists is denoted {Kj}, while the capacity of each member of the fringe is

constant at Kh. We place no restrictions on the values of Kj and Kh other than they

must be finite and nonnegative. Investors do not learn from prices. Oligopolists and

members of the fringe can use their capacities to receive informative signals about

the payoff of the asset and reduce that variance accordingly. We model signal choice

using entropy reduction, as in Sims (2003).

We denote an agent j’s posterior variance on asset i as σ̂2
ji ≤ σ2

i . For simplicity, we

also define αji ≡ σ2
i

σ̂2
ji
≥ 1. We conjecture and later verify the following price structure:

pi = ai + biεi − ciνi −
L∑
j=1

djiζji (1)

where εi and νi are the innovations in the payoff and noisy supply shocks, respectively.

The first term corresponds to the base price, and the second one to the innovation.

The innovation is not typically revealed completely in prices, because agents cannot

perfectly observe it. The third term corresponds to noise or liquidity shocks, while

the fourth one is defined as follows: First, define δji as the data loss of oligopolist

j: δji ≡ zi − sji, then define ζji ≡ δji − 1
αji
εi to be the portion of the data loss that

is uncorrelated with the price innovation. Then pi ∼ N
(
ai, σ

2
pi

)
where σpi can be

expressed as:

σ2
pi = b2

iσ
2
i + c2

iσ
2
xi +

L∑
j=1

d2
ji

(
1− 1

αji

)
σ̂2
ji (2)
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See the Appendix for the derivations. Before solving the oligopolists’ problem, we

first analyze the problem faced by the competitive fringe.

3.1.1 Competitive fringe

Portfolio problem Given posterior beliefs and equilibrium prices, each competitive

investor h solves the following problem:

Uh = max
{qhi}ni=1

Eh(Wh)−
ρ

2
Vh(Wh) s.t. Wj = r

(
W0h −

n∑
i=1

qhipi

)
+

n∑
i=1

qhizi (3)

where Eh and Vh are the perceived mean and variance of investor h conditional on her

information set, and W0h is her initial wealth. Optimal portfolio holdings are given

by:

qhi =
µ̂hi − rpi
ρσ̂2

hi

(4)

where µ̂hi and σ̂2
hi are the mean and variance of investor h’s posterior beliefs about

payoff zi.

Given this second-stage solution, the fringe agents solve a first-stage information

choice problem. Each member of the fringe can choose to receive signals shi about

each asset payoff εi. The vector of signals is subject to an information capacity

constraint, based off Shannon’s (1948) mutual information measure: I(z; sh) ≤ Kh.

Since Kh is finite, this expression constrains the ability of fringe members to reduce

the uncertainty of signals.

Information problem Each member of the fringe faces the following information

problem:

max
{σ̂2

hi}
n

i=1

U0h ≡
1

2ρ

n∑
i=1

E0h (µ̂hi − rpi)2

σ̂2
hi

(5)
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subject to the relative entropy constraint

n∏
i=1

σ2
i

σ̂2
hi

≤ e2Kh . (6)

The information problem can also be written as:

U0h =
n∑
i=1

Gi
σ2
i

σ̂2
hi

, (7)

We obtain a corner solution: each investor h learns about one asset lh ∈ arg max{Gi}.

The gain to the competitive investors from learning about asset i is:

Gi ≡
(z − rai)2

σ2
i

+ (1− rbi)2 + r2c2
i

σ2
xi

σ2
i

+ r2

(
L∑
j=1

d2
ji

(
1− 1

αji

)
σ̂2
ji

)
− σ̂2

hi

σ2
i

(1− 2rbi)

Derivation in Appendix. The gain from learning about a particular asset is the same

across all competitive investors. However, this gain is a function of the learning by

the oligopolist in that asset (namely, it is a function of the oligopolist’s posterior

variance, σ̂2
ji). The gains to learning about an asset’s payoff result from the fact that

the fringe traders can take advantage of deviations in the price from their perception

of the asset’s value. The first term of Gi corresponds to the gains of trade from the

fundamental; the second one to the gains of trade from deviations in the innovation;

the third one to the gains of trade from noise traders; and the fourth one to alterations

in price due to data loss by the oligopolists.

3.1.2 Oligopolists

Portfolio problem Oligopolists have a similar trading problem as the fringe, and

the quantity demanded by each oligopolist is:

qji =
µ̂ji − rpi (qji)
ρσ̂2

ji + r
dpi(qji)

dqji

, (8)
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The derivative in the denominator reflects the fact that oligopolists have market

power. Each oligopolist internalizes the fact that their asset purchase decisions affect

the equilibrium price. Using market clearing, we can solve for this derivative to get:

dpi(qji)

dqji
=

λjρσ
2
i

λ0r(1 + Φhi)
> 0, (9)

where

Φhi ≡ mhi

(
e2Kh − 1

)
, (10)

and mhi is the mass of competitive investors learning about asset i. Hence, how

sensitive the price is to an oligopolist’s demand depends (inversely) on what fraction

of the competitive fringe is learning about that asset, and how much.

The oligopolist’s demand becomes:

qji =
µ̂ji − rpi

ρ
(
σ̂2
ji + λ̂jiσ2

i

) (11)

where λ̂ji =
λj

λ0(1+Φhi)
- essentially a ratio of the effective size shares of the oligopolists

relative to the fringe. Given the expression for quantity demanded, we can calculate

indirect utility as:

Uj =
1

2ρ

n∑
i=1

(µ̂ji − rpi)2

 σ̂2
ji + 2λ̂jiσ

2
i(

σ̂2
ji + λ̂jiσ2

i

)2

 . (12)

Derivation in Appendix. As with the fringe, oligopolists’ expected utilities depend

positively on the deviations of their personal estimates from the equilibrium price

(larger deviations mean larger quantities demanded). Further, the smaller is the

oligopolists’ posterior variance the larger is their utility. The larger is the oligopolist’s

market power (or conversely the smaller is the fringe, or the less informed the fringe),

the larger is the oligopolist’s price impact, and therefore the smaller her utility.
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Information problem The oligopolist’s information problem is

max
{σ̂2

ji}ni=1

U0j s.t.
n∏
i=1

σ2
i

σ̂2
ji

≤ e2Kj . (13)

We can also write the constraint as

n∏
i=1

αji ≤ e2Kj ⇔
n∑
i=1

lnαji ≤ 2Kj. (14)

with

lnαji ≥ 0. (15)

The Lagrangean is [dropping the 1/2ρ term]

L =
n∑
i=1

[ui (αji)− µlnαji + ηilnαji] + nγ2Kj, (16)

The optimality conditions are

u′i (αji)−
µ

αji
+

ηi
αji

= 0, ∀i = 1, ..., n. (17)

The capacity constraint is always binding, so
∑n

i=1 lnαji = 2Kj and µ > 0. Let L

denote the set of assets that are learned about by the oligopolist. We have that

αjl > 1 and ηl = 0 and µ = αjlu
′
l (αjl) ∀l ∈ L (18)

and ∑
l=L

lnαjl = 2Kj. (19)

For assets i /∈ L,

αjl = 1 and ηl = µ− u′i (1) ≥ 0 ⇔ αjiu
′
i (αji) ≥ u′i (1) ∀l ∈ L. (20)
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These conditions yield the oligopolist’s allocation of attention across assets, {αji}, as a

function of the equilibrium price coefficients, ai, bi, ci, di, and the share of competitive

investors’ learning about each asset, mhi. Given the oligopolist’s choice of the set

{αji}, variance of the posterior belief of the oligopolist is σ2
i /αji and the corresponding

mean is just the signal sji. The signal is distributed, conditional on the realizations

zi = z̄ + εi, as

E(sji|zi) = z̄ +

(
1−

σ̂2
ji

σ2
i

)
εi = z̄ +

(
1− 1

αji

)
εi,

V ar(sji|zi) = σ2
i

(
1−

σ̂2
ji

σ2
i

)
σ̂2
ji

σ2
i

=

(
1− 1

αji

)
1

αji
σ2
i .

3.2 Equilibrium

We solve for the coefficients of equation (1): ai, bi, ci, dki, and dji (derivation in

the Appendix):

ai =
z̄

r
− x̄

r

Niρσ
2
i

λ0(1 + Φhi)
(21)

bi = Ni

(
L∑
j=1

Mji(αji − 1)

rαji
+

Φhi

r(1 + Φhi)

)
(22)

ci =
Niρσ

2
i

rλ0(1 + Φhi)
(23)

dji =
NiMji

r
(24)

where Mji ≡ λ̂jiσ
2
i

(σ̂2
ji+λ̂jiσ

2
i )

and Ni ≡ 1

1+
∑L
j=1 Mji

. The fundamental component of

the price, ai, depends positively on z̄. An increase in supply also decreases ai,

as do increased risk aversion and fundamental volatility. As the fringe’s size or

attentional capacity increase, their demand increases, and thus prices increase. As

the oligopolists’ size increases, or as their attention to asset i increases, demand goes

up, Mji increases, and Ni decreases, again driving up the price.
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The coefficient bi depends almost exclusively on the information choices of the

fringe and oligopolists. If the fringe cannot pay attention, then Φ drops to zero, and

so does the second term of the expression. If the oligopolists cannot pay attention,

each αji goes to zero. bi is increasing in Φhi and αji, because increased attention

increases investors’ ability to predict the innovation, and therefore their information

will be better reflected in prices.

The same reasons for demand’s fluctuation in ai apply to ci, as ci corresponds to

the random component, while ai corresponds to the mean component. We next show

the existence of an equilibrium.

Proposition 1. An equilibrium in learning exists.

All proofs are in the Appendix.

3.3 Price Informativeness

Without loss of generality, we analyze a form of the model in which the fringe

cannot learn. Price informativeness in the model is given by the covariance of the

price with the fundamental shock, normalized by the standard deviation of the price.

Alternatively, this can be seen as the correlation of the price with the fundamental,

multiplied by the asset’s price variance. This definition is taken from Bai, Philippon,

and Savov (2016).

PI =
biσi√

b2
i + c2

iσ
2
xi/σ

2
i +

∑
j d

2
ji
αji−1

α2
ji

,

where ai, bi, ci and dji are the coefficients of the equilibrium price function. In the

expression for PI, bi parameterizes the covariance of the price with the shock zi; the

second term in the denominator captures noise in the price coming from the noise

trader demand shock, and the third term in the denominator captures the noise in

the price coming from the noise in the oligopolists’ private signals. Clearly, the lower
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are the noise terms relative to the signal term bi, the higher is price informativeness.

Plugging in terms, we get:

We can use the equilibrium expressions for the price coefficients to express PI as

PI =
σi
∑

j ωji
αji−1

αji√(∑
j ωji

αji−1

αji

)2

+ 1
(
∑
jWji)2

σ2
xi

σ2
i

+
∑

j ω
2
ji
αji−1

α2
ji

, (25)

where ωji is the average share of asset i held by oligopolist j, given by

ωji ≡
Qji∑
kQki

,

and Qji is the average quantity of asset i held by oligopolist j, and Wji is the re-

sponsiveness of the quantity traded of asset i by oligopolist j to the private signal of

oligopolist j. We call W the information passthrough to quantities, and calculate as,

Wji =
∂λjqji
∂µ̂ji

=
λjαji

ρσ2
i (1 + λ̂jiαji)

.

Intuitively, PI is increasing in the term
∑

j ωji
αji−1

αji
, which is the ownership share-

weighted average of the reduction in uncertainty5 about asset i’s payoffs due to learn-

ing by oligopolist j. PI is also increasing in W , the information passthrough to

quantities. The more information affects trading, the more it shows up in prices.

Finally, PI is decreasing in the term
∑

j ω
2
ji
αji−1

α2
ji

, which is given by the weighted

sum of the noise in private signals, with weights given by the square ownership shares

of each oligopolist. We define this term as the Learning HHI or LHHI. To see that

this expression is related to ownership concentration, notice that, in a symmetric case

of αji = αi, it simplifies to αi−1
α2
i
HHIi, where HHIi is the Herfindahl index for asset

i. Therefore, if the noise in oligopolists’ signals is equally volatile, high concentration

hurts PI through this channel.

5Note that (αji − 1)/αji = (σ2
i − σ̂2

ji)/σ
2
i
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The expression in (25) highlights the importance of modeling the choice of infor-

mation for price informativeness. For an exogenously fixed learning structure (that

is, fixed {αji}j=1,..,l,i=1,...,n), putting high weight on the highest-α oligopolist is ben-

eficial as it always increases the numerator of PI. However, working through the

third term in the denominator, high concentration of ownership could be detrimental

(e.g., for equal αs), or beneficial (e.g., for very unequal distribution of α). Hence, the

information structure one assumes in an exogenous information model dictates the

conclusion on the benefits of concentration.

3.4 Economic Forces

Given the derivations of the model, we can now set up our next two Propositions.

These results describe the economic forces that drive all of the results of this section.

The first one concerns the shape of the PI function:

Proposition 2. Price Informativeness for asset j is concave in αji, ∀i. That is,

∂2PI
∂α2

ji
< 0.

Intuitively, price informativeness exhibits decreasing returns to learning. This re-

sult is significant because if we care about higher levels of aggregate price informative-

ness, we would want agents to learn about many assets, as opposed to concentrating

their learning in a few assets.

The second force concerns the shape of the utility function:

Proposition 3. An oligopolist’s utility function is concave in her own learning.

The result on concavity follows from the proof of the existence of an equilibrium.

Further, we also know that as λ increases, agents reduce their quantities of trade due

to their increased price impact. What this Proposition implies, is that as an investor

gets bigger, the same level of informational investment is less attractive, as returns

diminish more quickly. Therefore, an oligopolist would prefer to spread her attention

as she grows rather than to specialize.
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In sum, we can observe a quantity effect and a learning effect of size on price

informativeness. The two effects are related, but distinct. When an oligopolist gets

bigger, the quantity effect implies that she reduces trade size to mitigate price impact.

A reduction in trade size would reduce price informativeness for all assets, regardless

of whether the oligopolist learned about them or not. But as she gets bigger, she will

spread her learning to more assets, due to the concavity of her utility function. By

Proposition 2, this would increase aggregate price informativeness. Therefore, one

can observe a clear tradeoff when an oligopolist grows in size.

3.5 Price Informativeness Effects

Three primary results related to price informativeness are born out of the above

two forces.6 First, PI is non-monotonic in the size of the oligopoly sector. We can

prove this in the case with a single oligopolist (a monopolist):

Lemma 1. Suppose L = 1 and Kh = 0. Then, PI ′′(λ1) < 0.

When λ1 is very small, the monopolist will specialize in her learning, and will

have limited capital at her disposal. As a result, her impact on the price will be very

small. When λ1 is arbitrarily close to 0, PI is also close to 0. As λ1 increases, the

increase in capital offsets the increased price impact. As λ1 increases to the size of

the entire market, the monopolist will barely trade at all, because such trade would

be fully revealed in prices, thus pushing price informativeness to zero again.

Second, PI monotonically decreases as the concentration of the λs increases. This

effect can be clearly seen in the decomposition of price informativeness above—the

volatility of the price is impacted positively by the sum of squared ownership shares

weighted by α.

The third result concerns the changes to PI when λ of passive investors is increased

at the expense of active investors’ λ. Because capital is now moving from being

6We cannot show all three analytically in full generality, but at least we can always show a
version of the result analytically.
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actively managed to being passively managed, there is an immediate quantity effect

that decreases price informativeness. That is, holding α’s constant, the marginal

change of λ’s results in non-learning terms getting weighed more, and learning terms

getting weighed less. Theoretically, the learning effect could offset this force, but, by

Proposition 3, we know that the opposite will happen. Therefore, a flow of assets from

the active sector to the passive sector will decrease price informativeness through two

channels: a quantity channel, and a learning channel.

4 Numerical Analysis

In this section, we provide a set of quantitative results from the solution to the

equilibrium of the model.7 We select parameter values for the return distribution

z̄ and {σi}ni=1, the liquidity distribution x̄ and {σxi}ni=1, the risk-free return r, risk

aversion ρ, fringe and oligopolists’ learning capacities Kh and {Kj}lj=1, and their

respective sizes λ0 and {λj}lj=1. The simulation generates equilibrium levels of price

informativeness, oligopoly holdings, and oligopoly concentration for each asset.

In our simulations, we choose the parameters with two goals in mind: they have

to be in an empirically relevant region of the parameter space and the solution needs

to involve some degree of learning. Specifically, we consider parameters such that the

benchmark model exhibits: (i) learning about all assets, (ii) aggregate institutional

holding share of between 60% and 70% (which corresponds to the information in

Figure 1), (iii) market excess real return of around 7% (which corresponds to the

average over 1980-2015). For the results reported below, we set the number of assets

to n = 10 and the number of oligopolists to l = 6.8 We report parameter values in

Table 1.

7This involves solving a fixed point of the best responses of the oligopolists to each other’s
learning and trading policies.

8The choice is largely dictated by the computational speed. Experiments with larger values of
each parameter do not change the conclusions from this exercise.
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Table 1: Parameter values

Parameter Symbol Value

Mean payoff, supply z̄i, x̄i 10, 5 for all i

Number of assets n, l 10, 6

Risk-free rate r 2.5%

Vol. of noise shocks σxi 0.41 for all i

Vol. of asset payoffs σi ∈ [1, 1.5], linear distribution

Risk aversion ρ 1.3

Information capacities Kh, {Kj} 0, 4.5, constant

Investor masses λ0, λl/λ1 0.45, 4 λjs linearly distributed

4.1 Cross-sectional Patterns

We begin by analyzing the cross section of equilibrium output variables across

assets for the benchmark parameter values in Table 1. Figure 3 presents the relation

between equilibrium price informativeness per asset (on the y-axis) and equilibrium

oligopoly holdings per asset (on the x axis). We find that price informativeness is

increasing in underlying volatility, and so are total oligopoly holdings.
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Figure 3: Price informativeness and institutional ownership

Figure 4 presents the relation between equilibrium price informativeness and equi-
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librium oligopoly concentration. The larger an oligopolist’s presence in a particular

asset’s market, the more likely she is to internalize the price effect of her trade. As

such, she would like to be less informed than she would be if she had a small presence.

As a result, concentration in a particular asset is associated with lower levels of price

informativeness.
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Figure 4: Price informativeness and concentration

In Figure 5, we present the above cross-sectional relations for the part of price

informativeness due to only the correlation of prices and shocks. That is the part

of the information measure that is endogenous to the information choices of agents,

and does not come from pure cross-sectional dispersion of the exogenous shocks. As

the figure indicates, the positive relation with institutional holdings and the negative

relation with concentration hold for the correlation part of price informativeness,

consistently with the empirical patterns documented before.

4.2 Policy Experiments

The different signs of the relation suggest an interesting interaction between own-

ership and concentration for the overall effect on price informativeness. We now move
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Figure 5: Price informativeness: correlation only

on to analyze the effect of policy on the aggregate price informativeness. While in

Figures 3 and 4, each point corresponded to one asset, in the following exercise, each

point corresponds to one iteration of a full financial market (with several assets). The

experiments are useful as a way to isolate the relative effects of levels and concentra-

tion of institutional holdings on price informativeness.

The size of the oligopoly In our first experiment, we look at how average price

informativeness across assets changes in response to different levels of λ0. Holding the

distribution of λj fixed, we look at simulations of the model by varying λ0 from 0.05

to 0.95. The type of policy we test here could be thought of as a limit on entry, or a

limit on a per-agent size in a given market, which would then affect the composition

of ownership in the market, keeping the total mass of investors constant.

Figure 6 shows the relation between the size of the institutional sector (param-

eterized by 1 − λ0) and endogenous variables of interest. The price informativeness

in Panel (a) shows a hump-shaped relation, on average and also for each asset (as

indicated by interquantile 10-90 range) with the parameterized size, and hence also

with the actual realized ownership which is monotonically increasing (Panel (b)).

The model’s results point to an interior solution for optimal institutional sector size.

This result can be explained by the tradeoff between more efficient (that is, diver-

sified) learning due to larger size of the institutional sector, and an inefficiency due
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to the endogenous restriction of size of trades (quantities) due to the price impact

considerations of the large investors.

When initially the size of the institutional sector is small, the oligopolists’ price

impact considerations are not very important in their quantity decisions, which means

that increasing their size will mean more diversified learning without adverse impact

of how quantities react to individual signals (and hence how they show up in price).

As the size of the institutional sector increases further, learning about each asset be-

comes more diversified: Additional oligopolists start learning (Panel (d)) and trading

any given asset, which results in a large drop in concentration (Panel (c)), and in-

creased ownership (Panel (b)). The increased diversification in learning means more

efficient price informativeness while still relatively small size means that the negative

quantity effects have not kicked in. Above a certain size of the institutional sector,

the information choice is fully diversified and does not change by much further, but

the size considerations are very significant and result in decreasing the size of trades

as the size of the sector goes up—too much information is revealed in prices as quan-

tity reacts to private signals. These effects give rise to a hump-shaped relation in

the model between price informativeness and both institutional ownership and the

concentration measure of that ownership. We present these results in Figure 7.

The concentration of the oligopoly In our second experiment, we consider the

effects of a policy that affects the concentration of actively trading oligopolists. Hold-

ing λ0 constant, we vary the size distribution of {λj} in order to measure an impact

on the concentration measure. Specifically, we vary λl/λ1 from 1.05 to 10, with in-

termediate λjs growing linearly from λ1 to λl. In doing so, we keep the sum of all λjs

equal to 1 − λ0 to isolate the effect of concentration on endogenous variables. Fig-

ure 8 presents the results for price informativeness and concentration.9 The results

with respect to concentration are roughly monotonic: Holding ownership relatively

9Institutional ownership in this case varies only by 1.4% of the mean—by design—and hence we
do not show its graph explicitly.
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Figure 6: Response of model to changing size of institutional sector (1− λ0).

constant, a decrease in concentration increases the price informativeness in the ag-

gregate. This is in line with the intuition from the previous exercise. If ownership

is relatively stable, then there is no change in average market power across these

markets. However, changing the size distribution of the oligopolists towards a more

unequal one increases the concentration of ownership and hence increases market

power of some of the oligopolists, distorting their quantity choices more. That leads

to a negative relation between concentration and price informativeness, keeping the

ownership stable.

Decomposition To better characterize the channels through which size affects

price informativeness, we conduct the following decomposition exercise. We take

the experiment as before—that is, changing the size of the oligopoly sector while
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Figure 7: Price informativeness in the model when changing 1− λ0.
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Figure 8: Average price informativeness and concentration relative to dispersion λl/λ1

maintaining the same relative concentration of oligopolists within the sector. We

calculate the actual values of price informativeness under that experiment, as well

as counterfactuals under three other alternatives. Each alternative corresponds to a

world in which we allow the terms of the model to adjust as we adjust the size of the

oligopoly sector, but we keep one part of the expression for price informativeness fixed

at the value obtained in the first (smallest size) experiment. We plot the different

informativeness levels in Figure 9.

The red, dashed line shows the evolution of price informativeness across differ-

ent oligopoly sector sizes, holding the covariance term constant. When the sector

is small, oligopolists specialize in their learning, and their price impact is relatively

small, which makes the covariance term relatively high. As the oligopolists get big-
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Figure 9: Price Informativeness decomposed into the relative contribution of the three
component parts.

ger, they spread their attention, and trade less on their information. Consequently,

the holdings become relatively less concentrated, and learning also becomes relatively

more dispersed, thus reducing the covariance term. Therefore, holding the covari-

ance term fixed and increasing the size of the sector results in the overestimation of

aggregate price informativeness.

For the same reason, holding concentration fixed (the dashed, green line) results

in consistent underestimation of aggregate price informativeness. But holding either

constant does not change the hump-shape of the experiment. That shape comes from

the final component: pass-through. When pass-through is held fixed, the resulting

shape is flat. This is because at low levels of oligopoly sector size, oligopolists will

feel free to adjust their quantity decisions due to their small level of price impact. As

their size increases, their quantities increase, but their sensitivity to their information

declines as their price impact increases. As the two effects interact, holding pass-

through constant first underestimates and then overestimates the level of aggregate
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price informativeness.

We conduct a similar decomposition for the concentration experiment. Here, we

keep the overall size of the oligopoly sector constant at 45%. We also keep the

relative size of the five smallest oligopolists the same, but vary the assets under

management of the largest oligopolist, from 35% of the oligopoly sector to 98% of the

oligopoly sector. We present the results in Figure 10. The decomposition effect looks
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Figure 10: Price Informativeness decomposed into the relative contribution of the
three component parts.

quite different, but some similarities still exist. As the concentration of the sector

increases, the concentration in holdings is going to increase, but the concentration in

learning is going to decrease, as the largest player starts to spread her attention across

several assets. As a result, holding concentration fixed overestimates aggregate price

informativeness, while holding covariance fixed underestimates it. However, as before,

holding either of the margins constant still yields a downward-sloping relationship.

This downward slope is again driven by the pass-through, which is our most important

channel. If pass-through is held fixed, we miss the fact that the largest trader has
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more and more price impact, making her less and less sensitive to information. Thus,

we overestimate not only the level of price informativeness, but also the trend.

The role of passive investors The importance of oligopoly traders results from

two sources: their informational advantage and their size. While all oligopolists exert

price impact not all of them need to be equally informed. In particular, passive

investors do not directly participate in the market for information. In this section, we

explore the predictions of the model with respect to the size of such passive investors.

In Figure 11, we present results from the simulation in which the size of the passive

sector increases from 25% to 52% of the market. As is evident, when the passive

sector increases in size, there are two effects. The red line shows the effect of a

growth in the passive sector on PI when only quantities are allowed to change and

prices are not. The effect is uniformly negative, which is not surprising—assets under

management are transferred from active to passive investors, so quantities will reflect

less information. The blue line also allows for learning to adjust. The green bars

plot the number of assets in total that are learned about by the active sector. As

the active sector gets smaller in size, they will choose to specialize in their learning,

resulting in fewer assets being learned about. Whenever an asset stops being learned

about, the blue line drops faster than the red, indicating that the decline in price

informativeness from the transfer of assets is amplified by the endogenous learning

response of the active sector.

We can also show the breakdown of these effects using the decomposition method

employed earlier. Consider Figure 12.

Here the experiment is as follows. There are three active investors, who take up

45% of assets under management. From left to right, the share of the institutional

sector’s AUM that is managed by passive investors is plotted on the x-axis (it increases

from left to right). Thus the experiment shows the effects on PI of fringe members

allowing their cash to be managed by a passive investor, while the size of the active
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Figure 11: Price Informativeness as a function of passive share.

sector remains unchanged. Because the fringe does not collect information, this has

no effect on the overall capacity of information-collection in the market. The changes

nonetheless have a deleterious effect on price informativeness. Unlike previous cases,

where the main mechanism for the decline was passthrough, the main mechanism here

is covariance. As the passive sector increases in size, they trade less and less, and

the fringe’s size decreases, making the price impact of all agents higher. Therefore,

specializing becomes less and less attractive, indicating that fixing Covariance at a

small passive sector would over-state the level of price informativeness.

4.3 The Role of Endogenous Learning Choice

In this section, we present a comparison of the model with endogenous learning

choice (our benchmark) to a model in which the information structure is given and set

the same as in the benchmark model. The model with a fixed information structure

is similar in spirit to that presented in Kyle (1985), in that the effect of market power

in the absence of endogenous reoptimization of information choices depends entirely
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on how the quantities adjust.

Figure 13 presents the interaction of institutional ownership and price informa-

tiveness, where the different points are generated by varying λ0. The black dots

represent the benchmark case in which we allow both quantities and information

choices to adjust in response to changing λ0. The red crosses correspond to a case

with a fixed learning structure. For the fixed learning cases, the information choice is

either fixed at the benchmark value (i.e., λ0 = 0.45, Panel (a)), or at values such that

information structures are optimal at λ0 = 0.999 (small oligopolists, Panel (b)) and

λ0 = 0.05 (large oligopolists, Panel (c)). In all the fixed-information cases, the level

of price informativeness is below that of the benchmark model for which capacity

choice adjusts optimally. The gains in price informativeness from optimal learning

can be quite large. For example, for the benchmark specification of fixed alphas, price

informativeness is reduced by up to 40%. More important, fixing the learning choices

leads to very different conclusions about the optimal size of the institutional sector.
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Depending on what values of learning one exactly fixes, the optimal size lies either

below or above the actual optimum derived when all the choices are endogenous. This

finding underscores the importance of modeling the information choice margin when

making normative statements about the size of the institutional sector.
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Figure 13: Aggregate price informativeness and institutional ownership with varying
λ0

Next, we evaluate the ‘concentration of oligopoly’ exercise of Section 4.2, in which

we hold λ0 fixed but vary λl/λ1. Figure 14 presents the relation between concentration

of ownership and price informativeness for the benchmark model with endogenous

information choice (black dots), as well as three cases of fixing the information choice

at the benchmark values (i.e., for λl/λ1 = 4, Panel (a)), as well as at values that are

optimal at two extremes of the size distribution of the oligopolists, λl/λ1 = 9 (Panel
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(b)) and λl/λ1 = 2 (Panel (c)). For all the three cases, the exogenous and endogenous

information models give remarkably different predictions in terms of the relation of

concentration and price informativeness. In particular, for the benchmark model,

lower concentration always increases price informativeness. In contrast, models with

fixed information structure exhibit a hump-shaped relation between concentration

and price informativeness. Similar to the previous exercise, the two models give very

different recommendations regarding the level of concentration that maximizes price

informativeness. The exogenous information models optimally imply an intermediate

level of concentration, while at the same time the fully endogenous model prescribes

a concentration level that is at the lower bound of the potential values.
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Figure 14: Aggregate price informativeness and concentration of institutional owner-
ship with varying λl/λ1

Overall, we conclude that the predictions resulting from a model with endogenous

35



learning choices are not a simple extension of the model where information choices

are fixed. The differences are not only quantitatively important but also qualitatively

relevant from the perspective of policy making.

5 Other Results and Extensions

In this section, we discuss a number of additional results that shed more light on

the importance of oligopolists’ size and asset prices for learning process.

5.1 Thresholds

Our model shows that oligopolists try to spread their learning across assets when-

ever possible to mitigate their price impact. In this section, we provide the characteri-

zation of the optimal size threshold at which such diversification effect takes place. In

particular, the point at which the oligopolist stops specializing in her learning might

be different from the point at which she would stop specializing if her objective was

to maximize aggregate PI. For analytical tractability, we consider a special case of a

monopolist, of size λ1, who has a positive K and a fringe that is uninformed.

From our earlier discussion, we know that, for sufficiently small levels of λ1, the

monopolist will choose to specialize in her learning, and learn only about the most

volatile asset. This specialization result arises from the fact that the monopolist’s

returns to learning are diminishing when she has positive size. We can characterize

this threshold implicitly using the following expression:

e2Kj

(1 + 2 T
λ0
e2Kj)2

((
ρ

λ0

)2

(x̄2 + σ2
x)σ

2
1 + 1 + 2

T

λ0

)

=
1

(1 + 2 T
λ0

)2

((
ρ

λ0

)2

(x̄2 + σ2
x)σ

2
2 + 1 + 2

T

λ0

)

where σ1 is the volatility of the most volatile asset, and σ2 is the volatility of the
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second-most volatile asset. If the monopolist specializes, she learns only about asset

1. When the marginal benefit of additional learning about asset 1 when the agent

specializes is equal to the marginal benefit of starting to learn about asset 2, an

increase in the agent’s size will make her not specialize.

Next, we characterize the size threshold between specialization and diversification

from the perspective of a monopolist maximizing aggregate price informativeness.

This threshold is given by comparing the derivative of price informativeness for the

most volatile asset with respect to the monopolist’s learning (assuming specialization)

to the derivative of price informativeness of the second-most volatile asset with respect

to the monopolist’s learning (assuming no learning):

∂PI

∂α
= mP (α, λ1) ≡ σ2

i (((2λ
2
1 + 2λ1λ0)ρ2σ2

x + λ2
0 + λ2

1)αi + (2λ0λ1 + 2λ2
1)ρ2σ2

x − λ2
0 − λ2

1)

2(λ2
0 + λ2

1)
(

(αi − 1)2σ2
i + (αi − 1)σ2

i +
(λ0+λ1αi)2ρ2σ4

i σ
2
x

λ2
0λ

2
1

)3/2

mP (e2K , T ) = mP (1, T )

Subsequently, we analyze the sensitivity of the threshold level with respect to

the monopolist’s capacity and differences in volatilities between asset 1 and 2. To

provide a numerical solution to the above equations, for the analysis based on changes

in capacity, we choose the following parameter values: Kh = 0, σ1 = 2, σ2 = 1, x̄ = 5,

ρ = 1.3, and σx = 0.41, consistent with our calibration exercise. We plot the results

in Figure 15 below.

The two size thresholds vary with the parameters as follows: First, they are both

decreasing in K. As the monopolist has greater capacity to learn, specializing in

learning means better ability to trade that asset, and higher price impact. Therefore,

a monopolist wants to diversify her learning at smaller sizes. Similarly, the more

information a monopolist can collect, the more quickly a planner might want her

to spread her wealth (learning-wise) to other assets. For lower values of K, the

monopolist wants to specialize later than the planner. For higher values of K, the
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Figure 15: Optimal size thresholds for the monopolist as a function of her capacity.

monopolist wants to specialize sooner.

For the analysis based on differences in volatilities, we set Kh = 0, Kj = 2, x̄ = 5,

ρ = 1.3, and σx = 0.41. We report the results from this analysis in Figure 16.

As is evident from the graph, the larger the gap in volatilities, the more a monop-

olist wants to specialize. However, the opposite is true for the planner. As the gap in

volatilities grows, the monopolist would diversify sooner to increase PI. Notably, we

only analyze the threshold conditions for two sets of parameter values, because in-

creases in ρ, x̄, and σx all increase the size threshold for a monopolist by economically

small margins.

In summary, we derive closed-form solutions for the size thresholds at which in-

vestors find it privately optimal to specialize in their learning, and at which it would

be optimal for them to specialize in their learning from a price informativeness stand-

point. We relate these thresholds to changes in the monopolist’s capacity and differ-

ences in volatilities between most volatile assets. We find that the optimal thresholds

vary depending on what objective function a monopolist maximizes and also de-

pending on the assumptions about her information capacity and underlying asset
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Figure 16: Optimal size thresholds for the monopolist as a function of differences in
asset volatilities.

volatilities. These results suggest that the objective function plays an important role

to establish the optimality conditions in learning behavior.

6 Concluding Remarks

The last few decades have witnessed important changes in institutional equity

ownership structure, with significant consequences for financial stability and social

welfare. These trends have triggered an active discussion among financial regulators

and finance industry. While several participants in the debate have raised important

reasons for or against regulatory changes, the ultimate verdict is difficult to reach

in the absence of a well-specified economic model. This paper aims to take one

step in this direction by offering a general equilibrium model in which asymmetric

information, market power, and heterogeneity of assets play an important role. We

think this setting is a good way to characterize the world of equity ownership. Our

goal is to rank various equilibria by comparing their implications for average price

informativeness.
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We show that for the level of ownership equal to the currently observed levels

in the U.S. (roughly 60%), the average price efficiency is positively related to the

levels of institutional ownership and negatively related to its concentration. This

cross-sectional result is strongly supported by the data. Further, we show that the

average price informativeness across assets is maximized for the values of ownership

and concentration that are strictly within the range of admissible outcomes. This

result suggests an interesting role for policy makers to enforce optimal structure of

equity ownership.

Our model can be flexibly applied to settings with rich cross-section of assets,

differences in information asymmetry across agents, and differences in market power.

Hence, it can generate interesting policy implications at the aggregate and cross-

sectional dimensions. It can also be a good tool to evaluate asset pricing implications

in the presence of market power and information asymmetry. We leave these questions

for future research. At the same time, while our research can inform the debate for

the role of institutional owners for price informativeness and learning in the economy,

it naturally abstracts from other important dimensions relevant for policy makers,

such as investment costs or flows of funds in and out of the sector.
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7 Appendix: Proofs

7.0.1 Derivation of Equation 2
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7.0.2 Derivation of Equation 8
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Posterior beliefs and prices are conditionally independent given payoffs.
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7.0.3 Derivation of Equation 12
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ρ(σ̂2

ji+λ̂jiσ
2
i )

+ z̄ + Φhi
1+Φhi

εi −
ρσ2
i

λ0(1+Φhi)
xi

which becomes

rpi

(
1 +

∑n
j=1

λ̂jiρσ
2
i

ρ(σ̂2
ji+λ̂jiσ

2
i )

)
=
∑n

j=1
λ̂jiρσ

2
i

ρ(σ̂2
ji+λ̂jiσ

2
i )
µ̂ji + z̄ + Φhi

1+Φhi
εi −

ρσ2
i

λ0(1+Φhi)
xi

dividing through gives
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rpi =

∑n
j=1

λ̂jiρσ
2
i

ρ(σ̂2
ji

+λ̂jiσ
2
i )
µ̂ji+z̄+

Φhi
1+Φhi

εi−
ρσ2
i

λ0(1+Φhi)
xi(

1+
∑n
j=1

λ̂jiρσ
2
i

ρ(σ̂2
ji

+λ̂jiσ
2
i )

)

The indirect utility function Uj =
∑n

i=1 qji (µ̂ji − rpi)− ρ
2

∑n
i=1 q

2
jiσ̂

2
ji becomes

Uj =
∑n

i=1

[
q2
jiρ
(
σ̂2
ji + λ̂jiσ

2
i

)
− ρ

2q
2
jiσ̂

2
ji

]
Uj =

∑n
i=1

[
ρq2
ji

(
σ̂2
ji + λ̂jiσ

2
i − 1

2 σ̂
2
ji

)]
Uj =

∑n
i=1

{
(µ̂ji−rpi)2

ρ(σ̂2
ji+λ̂jiσ

2
i )

2

(
1
2 σ̂

2
ji + λ̂jiσ

2
i

)}

Uj = 1
2ρ

∑n
i=1

{
(µ̂ji − rpi)2

[
σ̂2
ji+2λ̂iσ

2
i

(σ̂2
ji+λ̂iσ

2
i )

2

]}
.

More detailed expression for U : We can rewrite E0j(µ̂ji − rpi)2 as R̂2
i + V̂ji, where R̂i and

V̂ji denote the ex-ante mean and variance of expected excess returns, which means: R̂i ≡

E0j (µ̂ji − rpi) =

ρσ2
i

λ0(1+Φhi)(
1+
∑n
j=1

λ̂jiρσ
2
i

ρ(σ̂2
ji

+λ̂jiσ
2
i )

) x̄ Define

Mji ≡
λ̂jiσ

2
i

(σ̂2
ji+λ̂jiσ

2
i )

Ni ≡ 1
1+
∑n
j=1 Mji

V̂ji ≡ V0j (µ̂ji − rpi)
= V0j

(
µ̂ji −Ni

∑n
k=1Mkiµ̂ki −Niz̄ −Ni

Φhi
1+Φhi

εi +Ni
ρσ2
i

λ0(1+Φhi)
xi

)
= V0j

(
Ni (µ̂ji +

∑n
k=1Mki(µ̂ji − µ̂ki))−Ni

Φhi
1+Φhi

εi +Ni
ρσ2
i

λ0(1+Φhi)
xi

)
= N2

i V0j

(
µ̂ji +

∑n
k 6=jMki(µ̂ji − µ̂ki)− Φhi

1+Φhi
εi +

ρσ2
i

λ0(1+Φhi)
xi

)
= N2

i

(
1 +

∑n
k 6=jMki

)2
(σ2
i − σ̂2

ji) +
(
NiΦhi
1+Φhi

)2
σ2
i +
(

Niρσ
2
i

λ0(1+Φhi)

)2
σ2
xi+

∑
k 6=jM

2
ki(σ

2
i − σ̂2

ki)−

2

(
N2
i Φhi(1+

∑n
k 6=jMki)

1+Φhi

)
(σ2
i − σ̂2

ji) + 2
∑

k 6=j N
2
i

Φhi
1+Φhi

Mki(σ
2
i − σ̂2

ki)

U0j =
1

2ρ

∑
i

N2
i (σ̂2

ji + 2λ̂iσ
2
i )(

σ̂2
ji + λ̂σ2

i

)2

[(
ρσ2

i

λ0(1 + Φhi)

)2

(x̄2 + σ2
ix) +

(
Φhi

1 + Φhi

)2

σ2
i +

∑
k 6=j

M2
ki(σ

2
i − σ̂2

ki)

+

(1 + Φhi)
(

1 +
∑n

k 6=jMki

)
− 2Φhi

1 + Φhi

 (σ2
i − σ̂2

ji)

1 +
n∑
k 6=j

Mki

+ 2
∑
k 6=j

Φhi

1 + Φhi
Mki(σ

2
i − σ̂2

ki)

]
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7.0.4 Derivation of Equations 21

The market clearing condition is

rpi =

∑n
j=1

λ̂jiρσ
2
i

ρ(σ̂2
ji+λ̂jiσ

2
i )
µ̂ji + z̄ + Φhi

1+Φhi
εi −

ρσ2
i

λ0(1+Φhi)
xi(

1 +
∑n

j=1
λ̂jiρσ2

i

ρ(σ̂2
ji+λ̂jiσ

2
i )

) (26)

From here we identify the price coefficients as a function of the monopolist learning and the
competitive fringe learning. Now, conditionally on zi, we have

µ̂ji = sji

and sji is normally distributed with mean z̄+(1− 1
αji

)εi and variance (1− 1
αji

) 1
αji
σ2
i . What

we want is to express the posterior mean in terms of delta as in zi = si + δi. Given that,

δji = zi − sji = − 1

αji
εi + noise

rpi = Ni

n∑
j=1

Mji

(
z̄ +

(
1− 1

αji

)
εi − ζji

)
+Ni

[
z̄ +

Φhi

1 + Φhi
εi −

ρσ2
i

λ0(1 + Φhi)
xi

]
(27)

rpi = z̄ − x̄ Niρσ
2
i

λ0(1 + Φhi)
+ εiNi

 n∑
j=1

Mji(αji − 1)

αji
+

Φhi

1 + Φhi


− Niρσ

2
i

λ0(1 + Φhi)
νi −Ni

n∑
j=1

Mjiζji

7.0.5 Derivation of Proposition 1

Proof. In order to apply Kakutani’s Fixed Point Theorem, we need to define a few terms.
Agents select αi First, define Ai ({α−j}) to be the best response correspondence for
oligopolist j. Next define α = {α1, α2, ..., αL}, and let ℵ define the set of all possible
α. Then the best response correspondence can be defined as A : ℵ ⇒ ℵ such that for all
α ∈ ℵ, we have that A(α) = [Aj(α−j)]j∈L. This best response function takes into account
the associated demand schedule for every oligopolist, as well as the learning and demand
decisions for the fringe. Now we need to check whether there is a fixed point to A.

• ℵ is compact and convex. Each αj must satisfy the capacity constraint. Therefore
each αj is convex, closed, and bounded, and therefore compact. Therefore ℵ is as
well.

• A is non-empty. This is trivially true if an interior solution exists. If an interior
solution does not exist, then the solutions are corners, so A is always non-empty.
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• A has a closed graph. The first order conditions of the oligopolist are continuous, so
this is trivial. (see above).

• A is convex-valued. A is convex iff Ai are all convex. The oligopolist’s objective
function is weakly more concave than the fringe’s due to size. We show here that the
second derivative is negative.

We just need to show that the utility function is concave in α.To show this, we can write
the utility function down:

U0j =
1

2ρ

∑
i

N2
i (σ̂2

ji + 2λ̂iσ
2
i )(

σ̂2
ji + λ̂σ2

i

)2

[(
ρσ2

i

λ0(1 + Φhi)

)2

(x̄2 + σ2
ix) +

(
Φhi

1 + Φhi

)2

σ2
i +

∑
k 6=j

M2
ki(σ

2
i − σ̂2

ki)

+

(1 + Φhi)
(

1 +
∑n

k 6=jMki

)
− 2Φhi

1 + Φhi

 (σ2
i − σ̂2

ji)

1 +

n∑
k 6=j

Mki

+ 2
∑
k 6=j

Φhi

1 + Φhi
Mki(σ

2
i − σ̂2

ki)

]

And we can rewrite this as:

U0j =
Ni(1 + λ̂jiαji)

(1 + λ̂jiαji)2

αji
σ2
i

[
X + Y

(
αji − 1

αji

)]
where X and Y are positive. This in turn can be rewritten as:

U0j =

1
1+
∑
Mji

(1 + λ̂jiαji)

(1 + λ̂jiαji)2

αji
σ2
i

[
X + Y

(
αji − 1

αji

)]
And rewriting yet again:

U0j =
1

Z +
λ̂jiαji

1+λ̂jiαji

1 + 2λ̂jiαji

(1 + λ̂jiαji)2
λ̂jiαji

[
X + Y

(
αji − 1

αji

)]

Where Z > 1. To finally get to:

U0j = X
λ̂jiαji + 2λ̂2

jiα
2
ji

Z + λ̂jiαji(1 + 2Z) + λ̂2
jiα

2
ji(1 + Z)

+ Y
λ̂jiα

2
ji + 2λ̂2

jiα
3
ji − λ̂jiαji − 2λ̂2

jiα
2
ji

Zαji + λ̂jiα2
ji(1 + 2Z) + λ̂2

jiα
3
ji(1 + Z)

Both terms are concave in α, and the sum of concave functions is concave, so the proof is
completed.

7.0.6 Derivation of Proposition 2

Proof.

PI ′ =
b′iσ√

b2i + c2
i
σ2
x

σ2
i

+
∑
d2
j
αji−1

α2
ji
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+
biσi(√

b2i + c2
i
σ2
x

σ2
i

+
∑
d2
j
αji−1

α2
ji

)3

(
2bib

′
i +

2cic
′
iσ

2
x

σ2
i

−
d2
ji(αji − 2)

α3
ji

+
2djid

′
ji(αji − 1)

α2
ji

)

PI ′′ ∝
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< 0

(
b2i + c2
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x

σ2
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+
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αji − 1

α2
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)
︸ ︷︷ ︸
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′
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2
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α3
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+
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′
ji(αji − 1)

α2
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
−2b′i︸︷︷︸
< 0

− 3bi(
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i
σ2
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∑
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αji−1
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+

bi

(
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2cic
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2
x
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ji(αji−2)

α3
ji
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α3
ji

+
2djid′ji(αji−1)

α2
ji
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︸ ︷︷ ︸
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PI ′′ < 0

7.0.7 Derivation of Proposition 3

Proof. The sign of ∂2U
∂α2

ji
was shown in the proof of proposition 1.

7.0.8 Derivation of Lemma 1

Proof. If only the monopolist can learn, then Φhi = 0. First we can write: Mji =
λ̂jiαji

1+λ̂jiαji
, Ni =

1+λ̂jiαji

1+2λ̂jiαji
. Then we need to solve the monopolist’s information problem:

0 =
∂

∂αji

1

2ρ

∑
i

1
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ρσ2

i

λ0

)2
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1
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1
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i

+ 1
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(1 + 2λ̂jiαji)2
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ρσ2

i

λ0

)2

(x̄2 + σ2
ix)
αji
σ2
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]
+ 2ρ
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αji
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r
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i

λ0(λ0 + 2λ1αji)
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λ1(αji − 1)
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σ2
pi = b2iσ

2
i + c2
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2
xi + d2
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(
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αji
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[
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i σ
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]
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Cov(pi, zi)

σpi
=

Cov(ai + biεi − ciνi − diζji, zi)
σpi

=
λ1(αji − 1)σ2

i√[
λ2

1(αji − 1)2σ2
i + (λ0 + λ1αji)2ρ2σ4

i σ
2
xiλ
−2
0 + λ2

1σ
2
i

]
=

λ1(αji − 1)σi√[
λ2

1(αji − 1)2 + (1 + λ̂jiαji)2ρ2σ2
i σ

2
xi + λ2

1

]
It is straightforward to see that PI = 0 when α = 0 and when α = 1. Because PI ≥ 0, it
is nonmonotonic, and by Proposition 2.
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