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Abstract

This paper studies a labor market with search frictions and directed search, where firms
employ multiple workers and follow a firm-wage policy: a firm pays all its (equally pro-
ductive) workers the same. The policy introduces a tension into the static firm problem,
between setting a high wage to attract more new workers versus a low one to econo-
mize on labor costs on existing ones. The policy also introduces a time-inconsistency
into the dynamic firm problem that affects equilibrium allocations. A firm with com-
mitment plans on higher wages in the future than in the short run, where the firm
takes advantage of its existing workers with a low wage. I study labor market out-
comes when firms cannot commit to future wages, and show that one can, despite the
time-inconsistency, analyze Markov-perfect equilibria using a standard Euler equation
approach. The model generates endogenous real wage rigidity as firms raising wages
to increase hiring in an expansion must raise them for all workers instead of only new
hires. The commitment problem also gives a motive for firms to adjust wages only
infrequently, as observed. An equilibrium where firms adjust wages infrequently can
be better for welfare, especially that of workers.
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1 Introduction

The work of Truman Bewley (1999), based on interviews of managers in corporate America,

sketches a view of labor markets where employee compensation within firms is determined by

formal internal pay structures. These structures seek to balance the dual goals of providing

incentives and maintaining equity among a firm’s employees. The structure is described as

emerging as a managerial tool in a situation where employee productivity cannot be perfectly

measured, but the pay of a large number of employees within the firm must be determined by

their respective managers in a mutually consistent way, seeking to avoid favoritism between

individuals. Managers believe their employees to be aware of pay differences, even if salaries

are not made public, and inequity to antagonize and embitter employees. Such structures

are, in fact, reminiscent of the ones imposed on their members by labor unions, with employee

pay determined in grades according to the job and jobholder characteristics.1 To shed light

on the implications of such structures for labor market dynamics, this paper develops a

macroeconomic theory of multi-worker firms in a frictional labor market that incorporates a

notion of firm wages, and studies the consequences.

I study a labor market with search frictions and competitive search, where firms employ

a measure of workers and must pay their (equally productive) workers the same. I begin by

showing, in the context of a static model, that the equal treatment constraint changes the

tradeoffs firms face in choosing a wage to offer. In a standard model of competitive search,

firms set wages trading off the increased wage costs associated with offering higher wages

against the increased hiring rates resulting from such wages attracting more job seekers.

Here, higher wages increase the wage costs associated with the firm’s existing workers as

well as new hires, leading firms to choose lower wages than in the standard model. At

the same time, this also means that when firms start raising wages to increase hiring in an

expansion, the incentives to do so are curbed by the growing wage costs associated with their

existing workers. The equal treatment constraint thus gives rise to a mechanism generating

wage rigidity over the business cycle, relative to the standard competitive search model.

I then show, in the context of a dynamic infinite horizon model, that the firm’s wage set-

1In a related effort seeking to shed light on the underpinnings of wage rigidities, Blinder and Choi
(1990) also surveyed businesses on their wage setting practices. They found managers to believe workers
to be concerned with how their wages compare to other workers, with 84 percent of managers agreeing
that workers want to maintain a hierarchy of wages, and resist wage reductions for fear of interfering with
this hierarchy. Card, Mas, Moretti, and Saez (2012), Bracha, Gneezy, and Loewenstein (2015) and Breza,
Kaur, and Shamdasani (2017) provide recent evidence that relative pay concerns enter worker preferences,
and affect effort and output: workers appear to prefer equal treatment, unless productivity differences are
sufficiently large and evident.
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ting problem involves a time-inconsistency, an observation that appears new to the literature

on competitive search. The time-inconsistency arises due to the equal treatment constraint,

which ties together the wages of different cohorts of workers within the firm. The constraint

limits the ability of the firm to adjust the timing of wage payments a worker receives over

the course of a long-term employment relationship, and to a degree that the timing of those

payments is pinned down uniquely for a given path of market tightness. To see this, note

that, as usual in these models, there is a one-to-one mapping between the market tightness

and present value of wages in each period. With future wages given, the way the firm con-

trols the current present value – with the equal wage constraint in place – is via the current

wage. Hence, a path for the market tightness pins down a unique path of per-period wages.

Due to the linkages between the wages of different cohorts of workers, the dynamic firm

problem differs from the standard one in a non-trivial way. I show that if the firm has

commitment to future wages, this does not affect the firm’s optimality conditions beyond

the initial period, however, meaning the firm is able to get round the constraints to a sufficient

degree. In the initial period this is not the case, however, as the firm sets the initial wage

to simultaneously optimize on new hiring and minimize labor costs associated with existing

workers, with no way to independently control different cohorts. As a consequence, the

initial wage is set lower than in the standard model, leading to a different allocation as well.

In the standard competitive search model, this issue does not arise because firms are able to

offer different cohorts of workers different wages.2

The path of wages characterized above requires commitment on the part of the firm to

future wages, because if the firm were to reoptimize at a later date, it would generally depart

from its plan by setting lower wages in the reoptimization period than planned.3 To consider

outcomes when firms cannot commit to future wages, I study Markov-perfect equilibria. In

particular, I show that in this environment it can be profitable for firms to fix wages for a

period of time, because doing so allows the firm to get around the commitment problem it

faces. However, I also show that if all firms do so, the equilibrium shifts toward higher wages

in a way that makes workers better off. Thus, in this model infrequent wage adjustment can

2The standard competitive search framework does not determine firm size, hence whether employed
workers work for the same or different firms makes no difference. Moreover, in the standard competitive
search framework, whether the firm can commit to future wages matters for the path of wages during an
employment relationship, but not allocations. With no commitment the firm pays the worker a signing
bonus up front, and after that a lower wage making the worker indifferent between staying in the job and
unemployment. With commitment, the path of wages within the employment relationship is not pinned
down, as many paths are consistent with the same allocation. See Section 3 for a discussion.

3The firm problem resembles the problem of optimal capital taxation (Chamley 1986, Judd 1985) in the
sense that the firm would like to treat its initial stock of workers differently from those in later periods, with
an implied time-inconsistency of plans.
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be profitable for firms to adopt, as well as welfare improving for workers. While the socially

optimal outcome would have flexible wages, in a second best world where the duration of

wage commitments is the only instrument a social planner could use, also the planner would

prefer longer commitments.4

In addition to developing a model of labor market dynamics, this paper contributes by

offering a tractable approach to solving for Markov perfect equilibria in an environment with a

time-inconsistency. Such environments are typically difficult to analyze because the decision-

maker’s objective does not coincide with maximizing his/her value function, meaning that

standard dynamic programming arguments cannot be directly applied. An approach that has

been developed in the literature for characterizing differentiable Markov perfect equilibria

involves deriving a generalized Euler equation, which spells out the tradeoffs faced by the

decision-maker, as well as serves as a basis for solving the problem numerically. Solving

the generalized Euler equation remains challenging, however, due to the dependence of the

equation on the derivative of choice variables with respect to the state.5 In the environment

of the present paper solving for time-consistent outcomes is substantially simplified because

the firm’s decision problem is independent of the relevant state – its size – and thus a standard

Euler equation approach can be used. In addition to simplifying solving the model, this also

allows incorporating stochastic shocks into the model without difficulty.

In terms of empirical evidence, the observation that wages are adjusted only intermit-

tently is discussed by John Taylor (1999, 2016), with evidence going back to his own study

on union wage contracts (Taylor 1983). Documenting infrequent wage adjustment, he found

that only 15 percent of workers saw contract adjustments each quarter, and only 40 percent

each year. Recently, Barattieri, Basu, and Gottschalk (2014) have revisited this question

with broader data from the Survey of Income and Program Participation. They document

a quarterly frequency of wage adjustment ranging from 12 to 27 percent, which implies an

average duration of wages of 4-8 quarters. For European countries, Lamo and Smets (2009)

summarize related results based on data collected by the Wage Dynamics Network of the

European Central Bank. They report that 60 percent of firms surveyed changed wages once

a year, and 26 percent less frequently, with an average duration of wages of 15 months. From

a theoretical perspective such infrequent adjustment comes across as somewhat puzzling, as

4The equity constraints render the competitive search equilibrium allocation inefficient, both in the static
and dynamic context, as shown in Sections 2 and 3, departing from the typical efficiency result (Rogerson,
Shimer, and Wright 2005).

5In the literature time-inconsistencies appear in multiple contexts, either due to preferences directly or the
economic environment, such as in problems of optimal fiscal or monetary policy. See Klein, Krusell, and Rios-
Rull (2008) for a discussion on characterizing Markov-perfect equilibria in problems with time-inconsistency,
in the context of a study of optimal government spending.
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it should be costly for firms in a changing world.

Related Literature A set of papers have introduced multi-worker firms into search and

matching models to study the impact on employment dynamics. Such models with random

search include Smith (1999), Cooper, Haltiwanger, and Willis (2007), Hawkins (2011), Elsby

and Michaels (2013), Acemoglu and Hawkins (2014), and Fujita and Nakajima (2016), and

in the context of competitive/directed search Hawkins (2013), Kaas and Kircher (2015), and

Schaal (2017). In these papers production technologies feature decreasing returns to scale,

with a focus on how such technologies affect labor market dynamics. The most closely related

paper in this literature is Kaas and Kircher (2015), where firms also post long-term wage

contracts to attract workers. The key difference is that here the wages of different cohorts

of workers are explicitly linked, because the currently prevailing wage applies to all cohorts

today, imposing an additional restriction. At the same time, the present paper abstracts

from decreasing returns in technology, something that leads to significant simplification in

solving the dynamic model, as discussed in Section 3.

One recent study that also emphasizes the role of equity in pay is Gertler and Trigari

(2009), who study employment dynamics in a model where multi-worker firms pay their

workers the same and only rebargain wages when a Calvo-draw allows it. This leads to

amplification in the response of hiring to aggregate shocks, because firms that have not

adjusted to a shock offer pre-shock wages also to new hires, affecting vacancy creation. To

support the assumption of equal pay, Gertler and Trigari (2009) also offer new empirical

evidence that the wages of new hires and existing workers appear equally procyclical. A

conventional view has held that the wages of job movers are more cyclical than those of

stayers (Bils 1985, Haefke, Sonntag, and van Rens 2013), but the authors argue that these

findings are driven by cyclical variation in job quality, and vanish with proper controls – an

idea they pursue further in Gertler, Huckfeldt, and Trigari (2017). In a sense, the present

paper offers a microfoundation for the assumption of infrequent wage adjustment adopted

by these authors.6

Firm wages appear also in the framework of Burdett and Mortensen (1998) with on the

job search, and its dynamic extensions such as Moscarini and Postel-Vinay (2013, 2016).

The latter consider equilibria where firms have full commitment to future wages, while Coles

6Pay equity has been emphasized also by Snell and Thomas (2010), who propose a non-search model
of labor markets where equity across workers and the motive of risk neutral firms to insure risk averse
workers by smoothing their wages combine to result in real wage rigidity. The classic contribution of Akerlof
and Yellen (1990) also considered the implications of fairness concerns for labor market outcomes, formally
connecting a worker’s effort to the fairness of pay.
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(2001) considers the implications of relaxing this assumption, revealing the complexity of the

problem. In a related contribution, Menzio (2005) develops a framework where firms bargain

with their workers in the presence of private information about the firm’s productivity, and

offers a microfoundation for firm wages by showing that they can emerge as an endogenous

outcome of the bargaining game.

The role of commitment has also been emphasized in the competitive search models of

Rudanko (2009), who studies labor market dynamics when firms insure workers through wage

contracts, and Menzio and Moen (2010), who consider a related problem where firms commit

to wages but not employment. Krusell and Rudanko (2016) emphasize a time-inconsistency

and related commitment problem arising when a union sets wages in a frictional labor market.

This paper is organized as follows. Section 2 begins with a one-period model, to illustrate

the static tradeoffs involved with the firm-wage policy. Section 3 turns to a dynamic infinite

horizon model, to illustrate the time-inconsistency. Section 4 extends the basic model to

allow longer wage commitments. Section 5 considers the implications for wage rigidity and

infrequent wage adjustment in a quantitative experiment. The appendix contains proofs,

a two period model demonstrating the time-inconsistency in a simpler setting, as well as

details on the parametrization.

2 Static Model

This section considers a one period model, before proceeding to an infinite horizon model in

Section 3. The one period model illustrates the static tradeoffs involved in introducing firm

wages into a competitive search model of frictional labor markets.

Consider a labor market with measure one workers, and a large number I firms each with

ni existing workers for all i ∈ I. In the beginning of the period there are thus N =
∑

i∈I ni

workers that are employed and 1 − N workers looking for work. Each firm has access to a

linear production technology with output z per worker. Those workers who do not find work

have access to a home production technology with output b.

Search frictions in the labor market are formalized with a constant returns to scale

matching function. I denote the market tightness, or ratio of vacancies to job seekers,

by θ. The probability a worker finds a job is denoted µ(θ) and the probability a vacancy

is filled q(θ), where µ(θ) = θq(θ). Posting v vacancies is associated with a convex cost

κ(v, n) = f(v/n)n, where n is the producer’s existing workforce and f ′ > 0, f ′′ > 0.7

7The convexity in the vacancy cost is introduced to help ensure the multi-worker producer’s first order
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In a competitive search equilibrium, optimizing job seeker behavior ensures that for any

wage wi offered by a firm, the corresponding market tightness θi satisfies the equation

U = µ(θi)(wi − b), (1)

where U is the equilibrium value of search. The tightness is assumed to adjust such that job

seekers derive the same utility from applying for all wages offered, with the utility given by

the probability of getting hired times the gain from being employed. The equation implies

that if multiple wages are offered in equilibrium, a firm offering a higher wage attracts more

applicants per vacancy.

Each firm chooses the wage to offer and measure of vacancies to maximize profit:

max
wi,vi

(ni + q(θi)vi)(z − wi)− κ(vi, ni), (2)

taking as given ni and the condition (1). The firm has ni existing workers and hires q(θi)vi

new ones, all of whom produce z unit of output and are paid the wage wi. The new workers

are also associated with a vacancy cost, κ(vi, ni).

The key constraint the firm wage policy implies here is that all workers are paid the

same. In a multi-worker firm extension of the competitive search equilibrium (Kaas and

Kircher 2015), the wages offered to workers hired at different points in time are independent

of each other. The corresponding firm problem in this case would read

max
wi,θi,vi

ni(z − wa) + q(θi)vi(z − wi)− κ(vi, ni), (3)

where the firm again takes as given the constraint (1) on the wages of new hires, while wa is

the average wage of existing workers. Note that in this case the hiring wage can be chosen

freely to maximize profits on new hires, while the wages of existing workers naturally affect

profits.8

Returning to problem (2), note that if we define the firm’s rate of vacancy creation as

xi := vi/ni, we can scale the firm problem by ni to arrive at the scale-independent problem:

max
wi,θi,xi

(1 + q(θi)xi)(z − wi)− κ(xi), (4)

conditions characterize optimizing behavior. The form is consistent with Kaas and Kircher (2015).
8One aspect of the equal pay constraint is that in some circumstances the firm might prefer to opt out

of hiring altogether, and pay its existing workers the minimum to keep them, by setting vi = 0, wi = b. In
what follows I focus on the situation where the firm does not find it optimal to opt out, but ultimately one
must compare profits attained via such interior solutions with this corner solution, to ensure optimality.
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taking as given (1).9 This means that heterogeneity in initial size across firms does not

translate into differences in wages offered, or the vacancy rate, so the firms will behave

identically. Of course, because vacancies are proportional to initial size, larger firms hire

more new workers as well, preserving any initial differences in size. The same holds for the

case without the firm wage policy. Hence, I will drop the firm indexes on wi, θi, xi here on.
10

Proposition 1. Firms’ posted wages and hiring rates are independent of firm size, and

vacancy creation is proportional to firm size: wi = w, θi = θ, vi = xni, ∀i.

The first order condition for vacancy creation reads:

κv(x) = q(θ)(z − w). (5)

This says that the firm creates vacancies to a point where the marginal cost equals the

expected profits from filled vacancies.

The first order condition for the optimal market tightness involves the tradeoff the firm

faces when setting the wage: a higher wage increases the hiring rate but also implies greater

wage costs. For thinking about this tradeoff, denote by θ = g(w;U) the relationship between

wage and tightness defined by the unemployment value constraint (1). The implied decline in

tightness from an increase in the wage is given by the derivative gw(w;U) = −µ(θ)/(µ′(θ)(w−

b)). From the expression for firm profits then, the optimal choice of wage is such that the

decline in profits due to the higher wage costs equals the gains from increased hiring:

1 + q(θ)x = q′(θ)x(z − w)gw(w;U) (6)

The corresponding optimality conditions for the firm without the firm wage policy in (3)

include the same condition for optimal vacancy creation (5), together with the condition for

the optimal wage-market tightness tradeoff:

q(θ)x = q′(θ)x(z − w)gw(w;U) (7)

While both firms thus face a tradeoff when setting the wage between the increased hiring

rate involved with raising the wage and the coinciding increase in wage costs, the increase

9Note that κ(v, n)/n, κv(v, n), κn(v, n) are all functions of x = v/n only, so with a light abuse of notation,
in what follows I denote them κ(x), κv(x), κn(x), respectively.

10If production technologies had decreasing returns, such scale independence would no longer hold. Multi-
worker firm models such as Kaas and Kircher (2015) focus precisely on the implications of relaxing constant
returns in technology and the ability of that framework to explain firm-level observations. I abstract from
decreasing returns in order to focus on the impact of firm wages. In the context of the dynamic model doing
so leads to a significant simplification in solving the model, as discussed in section 3.
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in wage costs is greater with the firm wage policy because the increase in wage applies also

to its existing workers without a corresponding impact of hiring. Thus, the firm with the

firm wage policy sets a lower wage than the unconstrained firm. Optimal vacancy creation

then implies that the firm also creates more vacancies per existing worker, as workers are

less expensive for the firm.

Definition 1. A competitive search equilibrium with firm wages is an allocation {w, θ, x}

and value of unemployment U such that the allocation and value solve the problem (4), and

that each job seeker applies to one firm: 1−
∑

i ni =
∑

i xni/θ.

If all producers behave the same, then the equilibrium condition becomes x = θ(1−N)/N.

Due to this equilibrium condition, the allocation will generally depend on the aggregate

measure of existing workers N , even if firm choices do not depend on individual producer

size. This dependence also leads to an intuition that the firm wage policy will lead to wage

rigidity over the business cycle. As in the standard competitive search model if market

productivity increases, it will lead to an increase in wages as firms seek to attract more

workers by offering higher wages. In the model with the firm wage policy the incentives in

setting wages depend on the share of new hires relative to existing workers, with a larger

share of existing workers pushing down wages. This suggests that the firm wage policy will

reduce the procyclicality of wages by reducing wages in expansions relative to recessions.

Planner Problem With the dynamic model of the next section in mind, it is useful to

connect market outcomes to the planner problem. Firm wages break the typical efficiency of

the competitive search equilibrium discussed for example in Rogerson, Shimer, and Wright

(2005).

The planner problem maximizes output, taking into account the costs of search:

max
θi,vi

∑

i

[(ni + q(θi)vi)z − κ(vi, ni)] + [1−
∑

i

(ni + q(θi)vi)]b, (8)

such that
∑

i vi/θi = 1−
∑

i ni. Here the first term reflects the gains from a total of ni+q(θi)vi

matches, while the second deducts the costs of search involved with creating new matches.

Each production unit attracts vi/θi searching workers, the sum of whom must equal the

measure searching.

The first order conditions for the planner problem read

κv(xi) +
λ

θi
= q(θi)(z − b) (9)

λ

θ2i
= −q′(θi)(z − b). (10)
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This says that the planner creates vacancies to a point where the marginal cost equals the

expected gains from the workers working in the market rather than not. The planner’s choice

of market tightness reflects the efficient tightness to apply in hiring, taking into account the

frictions inherent in the matching function and the gains from having workers work with the

market technology rather than at home. Note that producer size does not enter into this

calculation. Combining the two equations and dropping the producer subscript, we have

that the optimal allocation is characterized by the optimality condition

κv(x) = µ′(θ)(z − b), (11)

where
∑

i xni/θ = 1−
∑

i ni, or xN/θ = 1−N .

Proposition 2. The efficient hiring rates are independent of producer size and the efficient

vacancy creation is proportional to producer size: θi = θ, vi = xni, ∀i.

Going back to the firm problem, it turns out that if one substitutes out wages using

equation (1), the firm problem becomes

max
θ,x

−
U

µ(θ)
+ (1 + q(θ)x)(z − b)− κ(x)− U(

x

θ
+ 1), (12)

where the firm takes U as given. This problem is nearly equivalent to the producer’s contri-

bution to the planner problem (8) above, with the value of unemployed workers standing in

for the planner’s Lagrange multiplier.11 The only difference is that the firm problem involves

one additional term − U
µ(θ)

involving θ, which means the firm’s choice of market tightness will

not be efficient. And consequently, other equilibrium allocations are expected to be distorted

also.

With this, the firms first order conditions can alternatively be written as

κv(x) +
U

θ
= q(θ)(z − b), (13)

U

θ2
[1 +

µ′(θ)θ2

xµ(θ)2
] = −q′(θ)(z − b). (14)

These equations are equivalent to the planner’s, short of the difference in the condition

for the optimal tightness (14), where the firm-wage policy leads to a distortion due to the

influence of the existing workers. For the firm problem without the firm wage policy on the

other hand, they coincide with the planner’s optimality conditions.

11The planner’s objective is equivalent to the objective
∑

i ni[q(θi)xi(z − b)− κ(xi)− λ(xi

θi
+ 1)], where λ

is the Lagrange multiplier.
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Proposition 3. The competitive search equilibrium with firm wages is inefficient.

The next section extending the model to a dynamics setting will begin with a planner

problem, and use the same relationship between the firm and planner problems to analyze

the problem.

3 Dynamic Model

This section endogenizes the measure of existing workers by extending the model to a dy-

namic infinite horizon setting, at the same time revealing the time-inconsistency in the firm’s

wage-setting problem. For a benchmark, I begin with a planner problem. This efficient al-

location corresponds to market outcomes when firms are not constrained to use firm wages,

as shown at the end of the section. I consider the role of commitment with and without firm

wages, in the context of equilibrium outcomes.

Consider a dynamic extension of the static environment of the previous section. Time

is discrete and the horizon infinite. All agents are rational and discount the future at rate

β. Employment relationships are long-term, and end with probability δ at the end of each

period, with the worker returning to the pool of job seekers.

Planner Problem To characterize efficient hiring, consider the planner problem:

max
{θit,vit}∞t=0

E0

∞
∑

t=0

βt[
∑

i

[(nit + q(θit)vit)zt − κ(vit, nit)] + [1−
∑

i

(nit + q(θit)vit)]b] (15)

s.t. nit+1 = (1− δ)(nit + q(θit)vit), ∀t ≥ 0
∑

i

vit/θit = 1−
∑

i

nit, ∀t ≥ 0

with initial employment ni0 given for all i. The planner maximizes the present discounted

value of market and home output, net of the costs of vacancy creation, taking into account

the law of motion for employment for each producer. In addition, the planners choices of

θit, vit must be consistent each period, in the sense that the measure of job seekers allocated

to each producer vit/θit must add up to the total measure of job seekers in period t.

The first order conditions for the planner’s choice of vacancies and tightness vit, θit are

κv(xit) +
λt

θit
= q(θit)Et[zt − b+

∞
∑

k=1

βk(1− δ)k(zt+k − b− κn(xit+k)− λt+k)] (16)

λt

θ2it
= −q′(θit)Et[zt − b+

∞
∑

k=1

βk(1− δ)k(zt+k − b− κn(xit+k)− λt+k)] (17)

11



where λt is the Lagrange multiplier reflecting the value of job seekers in period t. The first

determines optimal vacancy creation such that the marginal cost of an additional vacancy

together with the value of job seekers implied by the chosen tightness θ equal the resulting

returns to the marginal increase in employment relationships: the value of having the workers

working with the market technology rather than at home, together with the implied decrease

in vacancy costs from the increase in employment, and net of the value of keeping those

workers from applying for job. The second determines the optimal market tightness such

that the marginal value of additional unemployed workers per chosen measure of vacancies

equals the same.

Note that these are independent across producers, and in particular independent of firm

size. As a consequence, in what follows I drop the firm subscripts, for convenience.

Proposition 4. Efficient hiring rates are independent of producer size, and efficient vacancy

creation is proportional to producer size: θit = θt, vit = xtnit, ∀i, t.

The optimality condition for vacancy creation (16) implies

κv(xt) +
λt

θt

q(θt)
= zt − b+ β(1− δ)Et[

κv(xt+1) +
λt+1

θt+1

q(θt+1)
− κn(xt+1)− λt+1], (18)

where the Lagrange multiplier can be expressed, combining the conditions (16) and (17), as

λt = κv(xt)
µ(θt)−µ′(θt)θt

µ′(θt)
.

Taken together, this yields the Euler equation:

κv(xt)

µ′(θt)
= zt − b+ β(1− δ)Et

[

(1− µ(θt+1) + µ′(θt+1)θt+1)
κv(xt+1)

µ′(θt+1)
− κn(xt+1)

]

. (19)

The equation sets the marginal cost of a new employment relationship today, κv(xt)/µ
′(θt),

equal to the current period gains zt − b involved, together with the expected value of a

relationship tomorrow, κv(xt+1)/µ
′(θt+1). The expected value of the relationship takes into

account the probability of a separation, and that an increase in hires today reduces hires per

vacancy tomorrow, due to fewer job seekers.

In all, the planner’s allocation is thus characterized by the Euler equation (19), together

with the law of motion Nt+1 = (1− δ)(1 + q(θt)xt)Nt and the constraint xt = θt(1−Nt)/Nt.

Any initial heterogeneity in firm sizes persists over time, but aggregate employment follows

this system with identical growth across producers.

Firm Wages To think about a competitive search equilibrium with firm wages, begin by

considering the behavior of unemployed workers. The unemployed are assumed to be aware
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of the wages offered by all firms, as well as the corresponding market tightness. In the context

of this infinite horizon model, this means workers are aware of the present discounted value of

wages the firm will pay during the employment relationship, together with the corresponding

market tightness.

With this, the utility value of workers that enter period t unemployed, and apply for a

job with firm i, can be written as

Ut = µ(θit)Et

[

∞
∑

k=0

βk(1− δ)k(wit+k + βδUt+1+k)− b− βUt+1

]

+ b+ βEtUt+1. (20)

In the competitive search equilibrium the assumption is that for any present discounted

value of wages a firm might consider offering, the flow of job applicants will adjust such that

the market tightness leaves workers indifferent between applying with this firm and other

firms. The firm takes as given the value of unemployment determined by the market {Ut}
∞
t=0,

but can consider alternative combinations of present value of wages and market tightness

(Wit, θit) satisfying (20), where Wit ≡ Et

∑∞
k=0 β

k(1− δ)kwit+k.

For notational convenience, I define auxiliary variables Xt := Ut − b − βEtUt+1 and

Yt := Etβδ
∑∞

k=0 β
k(1− δ)kUt+1+k − b− βEtUt+1. Note that these are also taken as given by

the firms, as they derive from {Ut}
∞
t=0. With these, equation (20) becomes

Xt = µ(θit)(Wit + Yt). (21)

Commitment With this, the firm problem with commitment to future wages can be

written

max
{wit,θit,vit}∞t=0

E0

∞
∑

t=0

βt[(nit + q(θit)vit)(zt − wit)− κ(vit, nit)] (22)

s.t. nit+1 = (1− δ)(nit + q(θit)vit), ∀t ≥ 0,

Xt = µ(θit)Et(
∞
∑

k=0

βk(1− δ)kwit+k + Yt), ∀t ≥ 0, (23)

with ni0 and {Xt, Yt}
∞
t=0 given. The firm maximizes the present discounted value of profits,

revenue net of wage costs and vacancy costs, taking into account the law of motion for the

firm’s workers and the constraint reflecting optimal worker behavior each period.

Proposition 5. Problem (22) is equivalent to problem (24) if the firm participates in the

labor market each period.

13



To make progress on solving this problem, I proceed to substitute out the wages that

feed back into each period’s market tightness θt through the present values in the worker

constraint (23) and simultaneously appear in the firm profits, with the wages of different

cohorts of workers linked via the firm wage policy. Appendix A shows that one can do so

using equation (23), arriving at the firm problem:

max
{θit,vit}∞t=0

−
X0ni0

µ(θi0)
+ E0

∞
∑

t=0

βt[(nit + q(θit)vit)(zt − b)− κ(vit, nit)−Xt(
vit
θit

+ nit)] (24)

s.t. nit+1 = (1− δ)(nit + q(θit)vit), ∀t ≥ 0,

with ni0 and {Xt}
∞
t=0 given. Note that in this problem the firm simply chooses sequences of

market tightness and vacancies, reducing the dimensionality of the space of choice variables

significantly, while making sure the firm-wage policy is guaranteed to hold in the underlying

problem with wages.

The first order condition for vacancy creation reads, for t ≥ 0,

κv(xit) +
Xt

θit
= q(θit)Et[zt − b+

∞
∑

k=1

βk(1− δ)k(zt+k − b− κn(xit+k)−Xt+k)], (25)

while the condition for the market tightness reads, for t > 0

Xt

θ2it
= −q′(θit)Et[zt − b+

∞
∑

k=1

βk(1− δ)k(zt+k − b− κn(xit+k)−Xt+k)]. (26)

and for the first period, t = 0,

X0

θ2i0
[1 +

µ′(θi0)θ
2
i0

xi0µ(θi0)2
] = −q′(θi0)E0[z0 − b+

∞
∑

k=1

βk(1− δ)k(zk − b− κn(xik)−Xk)]. (27)

Note that these optimality conditions are identical across firms and in particular inde-

pendent of firm size nit for any period. In what follows I will thus drop the firm indexes,

considering symmetric equilibria. The firm’s posted wages are also independent of size in this

context, because condition (23) implies that identical tightnesses across firms imply identical

present values of wages across firms, which means the current period wage is also.

Proposition 6. Firms’ posted wages and hiring rates are independent of firm size, and

vacancy creation is proportional to firm size: θit = θt, vit = xtnit, ∀i, t.

The condition for vacancy creation (25) implies

κv(xt) +
Xt

θt

q(θt)
= zt − b+ β(1− δ)Et[

κv(xt+1) +
Xt+1

θt+1

q(θt+1)
− κn(xt+1)−Xt+1], (28)

14



where the value of job seekers satisfies

Xt = κv(xt)
µ(θt)− µ′(θt)θt

µ′(θt)
> 0 for t > 0, (29)

X0 = κv(x0)
µ(θ0)− µ′(θ0)θ0

µ′(θ0)

q(θ0)x0

1 + q(θ0)x0
> 0 for t = 0. (30)

Note that the expressions suggest this value Xt is lower in the initial period than later

periods, for the same θ, x.

Combining, these yield the inter-temporal Euler equation

κv(xt)

µ′(θt)
= zt − b+ β(1− δ)Et[(1− µ(θt+1) + µ′(θt+1)θt+1)

κv(xt+1)

µ′(θt+1)
− κn(xt+1)], (31)

for t > 0 and, for the initial period,

κv(x0)

µ′
0

[1−
(1− µ′

0θ0/µ0)

1 + q0x0

] = z0 − b+ β(1− δ)E0

[(

1− µ1 + µ′
1θ1

)κv(x1)

µ′
1

− κn(x1)
]

. (32)

These optimality conditions coincide with the planner’s after the initial period, but in

the initial period they differ. This is not surprising noting the close relation between the

firm problem and the planner problem, with the value of job seekers Xt standing in for the

Lagrange multiplier . The producer’s contribution to the planner problem (15)12 coincides

with the firm objective in (24) with Xt standing in for the Lagrange multiplier, except for

the additional term in the firm problem in period zero, −X0ni0/µ(θi0). This additional term

includes θ0 and thus distorts the initial period choice of θ0, something that feeds into the

equilibrium allocations in the initial period. After the initial period the allocation follow the

same dynamics, however.

Here the expression for X0 clearly differs from the planner’s shadow value λ0, and the

left hand side of the Euler equation reflects that difference. The expression for X0 includes

a multiplier on the right which is less than one, suggesting that the equilibrium valuation

of searching workers is lower in the market outcome than what the planner problem. This

would mean that the firm chooses a wage which is lower than what the planner would choose,

saving on labor costs on its existing workers, but also attracting fewer applicants per vacancy.

Because the measure of total applicants at time t = 0 is given, the latter also means that

firms will be creating more vacancies.

The firm’s behavior lines up with the planner’s after the initial period, in that the firm

chooses an efficient balance of using higher wages versus more vacancy creation to attract

12E0

∑

∞

t=0 β
t[(nit + q(θit)vit)(zt − b)− κ(vit, nit)− λt(

vit
θit

+ nit)]
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workers. The difference in the initial period is that there the firm takes the existing stock of

workers as fixed, and thus has an incentive to lower wages to economize on the wage bill of

those existing workers.

Definition 2. A competitive search equilibrium with firm wages is an allocation {wt, θt, xt}
∞
t=0

and job seeker value {Xt}
∞
t=0 such that the allocation and value solve the problem (24), and

that each searching worker applies to one firm: 1−
∑

i nit =
∑

i xtnit/θt, ∀t.

Relationship between market outcomes and efficient allocations:

Proposition 7. The competitive search equilibrium with firm wages is inefficient.

Limited Commitment What if the firm reoptimizes each period? To think about this

case, I write the firm problem recursively, taking into account the fact that the firm objective

has an additional term corresponding to the period when the firm reoptimizes, relative to the

continuation value. I consider Markov-perfect equilibria where the current aggregate state

is S := (N, z), and the firm takes as given the equilibrium aggregate X(S).

The recursive firm problem can be written:

max
θ,v

−
X(S)n

µ(θ)
+ (n+ q(θ)v)(z − b)− κ(v, n)−X(S)(

v

θ
+ n) + βESV (n′;S ′) (33)

s.t. n′ = (1− δ)(n+ q(θ)v),

where

V (n;S) = (n + q(θ)v)(z − b)− κ(v, n)−X(S)(
v

θ
+ n) + βESV (n′;S ′) (34)

and the firm takes as given the aggregate X(S). Note that this firm problem is the no-

commitment version of the sequence problem (22), with the distortion term appearing in

the period of reoptimization. The distortion term only includes the choice variable θ and

not v, so the only tradeoff directly affected by it is the tradeoff between wages and market

tightness.

Scaling by size, and defining V̂ (S) := V (n;S)/n, the firm problem becomes size indepen-

dent:

max
θ,x

−
X(S)

µ(θ)
+ (1 + q(θ)x)(z − b+ β(1− δ)ESV̂ (S ′))− κ(x)−X(S)(

x

θ
+ 1) (35)

where

V̂ (S) = (1 + q(θ)x)(z − b+ β(1− δ)ESV̂ (S ′))− κ(x)−X(S)(
x

θ
+ 1). (36)
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Because the firm problem (35) is size independent, so should the firm decisions be as

well. The first order conditions characterising firm behavior read

κv(x) +
X(S)

θ
= q(θ)(z − b+ β(1− δ)ESV̂ (S ′)), (37)

X(S)

θ2
[1 +

µ′(θ)θ2

xµ(θ)2
] = −q′(θ)(z − b+ β(1− δ)ESV̂ (S ′)). (38)

To arrive at an intertemporal Euler equation, note that one can combine equations (36)

and (37) to arrive at the same equation (28) as in the commitment problem.13

Meanwhile, from (37) and (38), we have that the value of job seekers in this case satisfies

Xt = κv(xt)
µ(θt)− µ′(θt)θt

µ′(θt)

q(θt)xt

1 + q(θt)xt

. (39)

With this, the intertemporal Euler equation becomes (combining (28) and (39)):

κv(xt)

µ′
t

[1−
(1− µ′

tθt/µt)

1 + qtxt
] (40)

= zt − b+ β(1 − δ)Et

[κv(xt+1)

µ′
t+1

(

1− µt+1 + µ′
t+1θt+1 − (1− µt+1)

(1− µ′
t+1θt+1/µt+1)

1 + qt+1xt+1

)

− κn(xt+1)
]

.

Note that despite the time-inconsistency, this Euler equation takes the form of a standard

Euler equation, instead of the generalized Euler equations that typically appear in problems

with time-inconsistencies. Such generalized Euler equations generally involve a derivative

of the choice variable with respect to a state, something that makes the Euler equation a

more complicated object to solve than standard Euler equations. The scale-independence

of the problem plays a key role in explaining this difference, because the derivative would

appear if the firm’s decisions depended on the size of the firm explicitly.14 Allowing for such

dependence would make for a richer problem to analyze, but its absence also serves to make

the problem significantly more tractable, and allows using standard solution methods.

In a (symmetric) equilibrium, it must also hold that xt = θt(1−Nt)/Nt. The equilibrium

is thus characterized by the Euler equation (40), this equilibrium condition, and the law of

motion Nt+1 = (1 − δ)(Nt + µ(θt)(1 − Nt)). This makes for a simple system of equations,

where it is easy to verify uniqueness of steady-state and the saddle-point stability of the

system.

13Note that κ(x) = xκv(x) − κn(x).
14For example due to decreasing returns in technology.
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Definition 3. A competitive search equilibrium with firm wages is an allocation {wt, θt, xt}
∞
t=0

and job seeker value {Xt}
∞
t=0 such that the allocation and value solve the problem (35), and

that each job seeker applies to one firm: 1−
∑

i nit =
∑

i xtnit/θt, ∀t.

Note that each firm in this equilibrium would, by construction, find it profitable to commit

to future wages over reoptimizing each period. The commitment wage would generally

involve a fixed – higher – level of wages, after the initial period distortion, than the no-

commitment wage. But in the absence of the ability to commit to arbitrary wage paths,

the firm might also find it profitable to adopt a simple wage rule of fixing wages and only

resetting them periodically. This is an experiment I consider in the next section. Note,

however, that even though individual firms might prefer this strategy, if all firms implement

it, the level of wages in the labor market will rise and the outcome may be favorable for

workers as well. I return to this in Section 4.

Without Firm Wages Finally, it is useful to contrast outcomes with the standard com-

petitive search benchmark, where firms offer independent contracts to workers hired at dif-

ferent points in time. In this case one can write the problem of a firm hiring in period t as

follows

max
{wt

t+k
}∞
k=0

,θt,vt
Et[q(θt)vt

∞
∑

k=0

βk(1− δ)k(zt+k − wt
t+k)−

∞
∑

k=0

βkκ(vt+k, nt+k)] (41)

s.t. Xt = µ(θit)Et(
∞
∑

k=0

βk(1− δ)kwt
it+k + Yt), (42)

where nt+k follows the law of motion for all k with nt given and optimal hiring for t + k,

k > 0. The first term in the objective represents the present value of output net of wages

associated with workers hired in period t, given vacancies vt and hiring rate q(θt), taking

into account turnover. The second term represents the vacancy costs affected by this hiring:

the costs of posting vacancies in period t together with the reduced vacancy costs associated

with having more workers in future.

Returning to consider the role of commitment in this case, note that wages enter the

problem only through their present value Wt =
∑∞

k=0 β
k(1 − δ)kwit+k. If the firm does not

have commitment to future wages, after a match has been created the firm would, in each

period, set this present value as low as possible while sustaining the match.15 The firm makes

the worker indifferent between remaining in the match and quitting into unemployment by

setting Wt+k + Yt+k = 0, or wt+k = b+ β(1− δ)Xt+k+1, for all k > 0.

15Note that if the worker walks away the firm value from the match is zero.
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Maintaining the assumption that the firm is able to commit to the posting-period payment

to the worker, and assuming the firm can choose this payment in an unconstrained way, it will

nevertheless be able to credibly offer job seekers any present value Wt despite the constraints

later on in the match. To determine the present value the firm chooses to offer, one can again

substitute out wages in the profit expression using the constraint (42). With that, the firm

problem in (41) becomes

max
θt,vt

Et[q(θt)vt[zt − b+
∞
∑

k=1

βk(1− δ)k(zt+k − b−Xt+k)]−
Xtvt
θt

−
∞
∑

k=0

βkκ(vt+k, nt+k)] (43)

where nt+k follows the law of motion for all k with nt given and optimal hiring for t + k,

k > 0. The optimality conditions read:

κv(xt) +
Xt

θt
= q(θt)Et[zt − b+

∞
∑

k=1

βk(1− δ)k(zt+k − b− κn(xt+k)−Xt+k)] (44)

Xt

θ2t
= −q′(θt)Et[zt − b+

∞
∑

k=1

βk(1− δ)k(zt+k − b− κn(xt+k)−Xt+k)] (45)

These optimality conditions coincide with the planner’s, with Xt representing the shadow

value of job seekers. The firm thus attains the efficient allocation in this case, despite having

limited commitment to future wages. The wage contract achieving the planner allocation

involves a signing bonus in the first period of employment, designed to provides the appro-

priate present value to the worker to attract the efficient measure of job seekers per vacancy.

In subsequent periods, on the other hand, the worker is paid a wage just enough to prevent

him/her from quitting into unemployment.

If the firm does have commitment to future wages, on the other hand, it is left indifferent

across a variety of wage contracts, each of which offer the same present value which achieves

the efficient allocation.

4 Infrequent Wage Adjustment

The commitment problem discussed in previous sections suggests that firms would prefer

to fix wages for a period of time rather than reoptimizing each period. To allow for longer

horizons of wage commitment, this section extends the firm problem to a setting where firms

set wages for a probabilistic period of time. I consider two experiments. In the first, a single

firm sets its wage for a probabilistic period in an equilibrium where other firms reoptimize

wages each period. I consider the impact of the duration of wages on firm profitability in
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particular. In the second, I consider equilibrium outcomes when all firms adjust infrequently

and how equilibrium outcomes change as the duration of wages changes.

In what follows, I begin with a setting where firms face purely idiosyncratic shocks to

their productivity, reflecting the empirical prevalence of firm level risk, before returning to

the setting with aggregate shocks.

Equilibrium with Firm Heterogeneity Consider an environment where firms face id-

iosyncratic shocks to their productivity.In a stationary equilibrium with firm heterogeneity,

the aggregate measure of matches N and value of job seekers X remain constant, while firm

shocks lead to reallocation of labor across firms over time.

The firm problem in this context reads:

max
θ,v

−
Xn

µ(θ)
+ (n+ q(θ)v)(z − b)− κ(v, n)−X(

v

θ
+ n) + βEzV (n′, z′) (46)

s.t. n′ = (1− δ)(n+ q(θ)v),

where the continuation value satisfies

V (n, z) = (n+ q(θ)v)(z − b)− κ(v, n)−X(
v

θ
+ n) + βEzV (n′, z′). (47)

Scaling by size, these equations again yield the size-independent problem:

max
θ,x

−
X

µ(θ)
+ (1 + q(θ)x)(z − b+ β(1− δ)EzV̂ (z′))− κ(x)−X(

x

θ
+ 1) (48)

where

V̂ (z) = (1 + q(θ)x)(z − b+ β(1− δ)EzV̂ (z′))− κ(x)−X(
x

θ
+ 1). (49)

The implied intertemporal Euler equation characterising firm behavior remains unchanged

from equation (40), while the intratemporal optimality condition (39) is simplified by the

value of job seekers remaining constant over time.

Definition 4. A stationary competitive search equilibrium with firm wages is an allocation

{wit, θit, xit}
∞
t=0 ∀i and job seeker value X such that the allocation and value solve the problem

(48-49), and that each job seeker applies to one firm: 1−
∑

i nit =
∑

i xitnit/θit, ∀t.

The stationary equilibrium is characterized by heterogeneity across firms in size and

productivity, with individual firms growing and shrinking over time in response to changes

in their productivity. Note that the size-independence of the firm problem implies that
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wages and corresponding firm growth rates are independent of size, but firms differing in

productivity will generally offer different wages and have different growth rates, which leads

to differences in size in equilibrium. Thus, in the cross section of firms, one would expect

wages and size to be correlated.

Single Firm Deviation to Longer Wage Commitment Consider introducing into

the above equilibrium an individual firm, small relative to the size of the market, that

today makes a wage commitment for a probabilistic period of time, returning to equilibrium

behavior once the commitment expires. Is the commitment profitable for the firm?

The deviating firm chooses a wage w, expecting each period going forward to revert to

equilibrium behavior with probability α and to maintain the wage with probability 1−α. To

connect the per-period wage to the market tightness, note that the equilibrium firms’ market

tightnesses imply these firms offer their workers specific present values of wages for each z,

due to the job seeker constraint. Taking these equilibrium values as given, one can solve for

the present value of wages for the deviating firm as a function of the wage w and productivity

z, denoted below as φ(w, z).16 Finally, the job seeker constraint gives the implied tightness:

X = µ(θ)(φ(w, z) + Y ).

In the period the firm deviates to the longer wage commitment, it chooses a wage w and

vacancy creation v, to solve the problem

max
w,v

−
Xn

µ(θ)
+ (n+ q(θ)v)(z − b)− κ(v, n)−X(

v

θ
+ n) + βEz(αV (n′, z′) + (1− α)V f(n′, w, z′))

s.t. n′ = (1− δ)(n+ q(θ)v),

X = µ(θ)(φ(w, z) + Y ),

given n, z. Here the firm expects to revert to equilibrium behavior in the following period

with probability α, implying the continuation value V (n′, z′), and to maintain the wage

commitment otherwise, implying the continuation value V f (n′, w, z′), discussed below.

In periods when the firm maintains the wage commitment, it only chooses vacancies, to

solve the problem:

max
v

−
Xn

µ(θ)
+ (n+ q(θ)v)(z − b)− κ(v, n)−X(

v

θ
+ n) + βEz(αV (n′, z′) + (1− α)V f(n′, w, z′))

s.t. n′ = (1− δ)(n+ q(θ)v),

16Denote the vector of equilibrium present values of wages across z as W and that of the deviating firm
as W

f (w). We have that W
f (w) = wi + β(1 − δ)[αΠW + (1 − α)ΠWf (w)], where Π is the transition

matrix for the productivity process and i a vector of ones. This gives the deviating firm’s present values as
W

f (w) = (I − β(1− δ)(1− α)Π)−1(wi+ β(1− δ)αΠW). I denote the components of this vector in the text
by φ(w, z). Note that the derivative of the value satisfies φw(w, z) = (1− β(1− δ)(1 − α))−1.
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where the tightness θ is determined by the job seeker constraint X = µ(θ)(φ(w, z)+Y ). The

continuation value V f (n′, w, z′) satisfies

V f(n, w, z) = (n+ q(θ)v)(z − b)− κ(v, n)−X(
v

θ
+ n) + βEz(αV (n′, z′) + (1− α)V f (n′, w, z′)).

The deviating firm’s problems can also be scaled to arrive at size-independent problems.

Defining V̂ f (w, z) := V f (n, w, z)/n, the deviating firm chooses w, x to solve

max
w,x

−
X

µ(θ)
+ (1 + q(θ)x)(z − b+ β(1− δ)Ez(αV̂ (z′) + (1− α)V̂ f(w, z′)))− κ(x)−X(

x

θ
+ 1)

s.t. X = µ(θ)(φ(w, z) + Y ).

In periods when the firm maintains the commitment to w, it chooses x to solve

max
x

−
X

µ(θ)
+ (1 + q(θ)x)(z − b+ β(1− δ)Ez(αV̂ (z′) + (1− α)V̂ f(w, z′)))− κ(x)−X(

x

θ
+ 1),

where the tightness θ is determined by the job seeker constraint X = µ(θ)(φ(w, z)+Y ). The

continuation value satisfies

V̂ f (w, z) = (1 + q(θ)x)(z − b+ β(1− δ)Ez(αV̂ (z′) + (1− α)V̂ f(w, z′)))− κ(x)−X(
x

θ
+ 1).

The two problems yield the same first order condition for vacancy creation

κv(x) +
X

θ
= q(θ)(z − b+ β(1− δ)Ez(αV̂ (z′) + (1− α)V̂ f (w, z′))), (50)

for the deviation period and periods when the commitment is maintained. Meanwhile, the

deviating firm’s first order condition characterizing the wage-tightness tradeoff reads

X

θ2
[1 +

µ′(θ)θ2

xµ(θ)2
] =− q′(θ)[z − b+ β(1− δ)Ez[αV̂ (z′) + (1− α)V̂ f(w, z′)]] (51)

− β(1− δ)(1− α)(1 + q(θ)x)/xEzV̂
f
w (w, z

′)/θw,

where the derivative of θ with respect to w is θw = −µ(θ)2/(µ′(θ)X(1 − β(1 − δ)(1 − α))),

while the derivative of the continuation value satisfies

V̂ f
w (w, z) =xq′(θ)[z − b+ β(1− δ)Ez[αV̂ (z′) + (1− α)V̂ f(w, z′)]]θw

+
xX

θ2
θw + β(1− δ)(1− α)(1 + q(θ)x)EzV̂

f
w (w, z

′).

Note that while the deviating firm holds its per-period wage fixed, the corresponding tight-

ness is expected to vary (as long as shocks are not iid). The tightness is determined by the

present value of wages, and if firm productivity changes toward a greater expected present

value of wages from reoptimizing tomorrow, this raises the present value of wages today,

bringing with it a lower θ and greater probability of filling vacancies q(θ). Of course the firm

also generally adjusts vacancy creation to changes in productivity as well.
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Equilibrium with Infrequent Adjustment If a longer wage commitment is profitable

for the deviating firm, it becomes interesting to consider an equilibrium where all firms

follow a strategy of infrequent adjustment. How do wage commitments affect equilibrium

outcomes? Do firms continue to benefit from the commitment, and do they do so at the

expense of workers?

To think about these questions, suppose all firms reoptimize their wage w each period

with probability α and maintain their existing wage commitment with probability 1−α. To

connect the per-period wage to the corresponding market tightness, one can again solve for

the present value of wages as a function of the wage w and productivity z, denoted φ(w, z).17

In this case, firms reoptimizing wages solve

max
w,v

−
Xn

µ(θ)
+ (n+ q(θ)v)(z − b)− κ(v, n)−X(

v

θ
+ n) + βEz(αV

r(n′, z′) + (1− α)V f(n′, w, z′))

s.t. n′ = (1− δ)(n+ q(θ)v),

X = µ(θ)(φ(w, z) + Y ),

where the implied continuation value satisfies

V r(n, z) = (n + q(θ)v)(z − b)− κ(v, n)−X(
v

θ
+ n) + βEz(αV

r(n′, z′) + (1− α)V f(n′, w, z′)),

and firms holding the wage commitment fixed solve

max
v

−
Xn

µ(θ)
+ (n+ q(θ)v)(z − b)− κ(v, n)−X(

v

θ
+ n) + βEz(αV

r(n′, z′) + (1− α)V f(n′, w, z′))

s.t. n′ = (1− δ)(n+ q(θ)v),

where the tightness θ is determined by the job seeker constraint X = µ(θ)(φ(w, z) + Y ), the

continuation value V f (n′, w, z′) satisfies

V f(n, w, z) = (n+ q(θ)v)(z − b)− κ(v, n)−X(
v

θ
+ n) + βEz(αV

r(n′, z′) + (1− α)V f (n′, w, z′)).

Once again, the problems can be scaled. Thus, firms reoptimizing wages solve

max
w,x

−
X

µ(θ)
+ (1 + q(θ)x)(z − b+ βEz(αV̂

r(z′) + (1− α)V̂ f (w, z′)))− κ(x)−X(
x

θ
+ 1)

17Denote the vector of equilibrium present values of wages for a reoptimizing firm across z as Wr and that
of a firm maintaining wage commitment w as Wf (w). We have that Wf (w) = wi+ β(1− δ)[αΠWr + (1−
α)ΠWf (w)], where Π is the transition matrix for the productivity process and i a vector of ones. This gives
the deviating firm’s present values as Wf (w) = (I − β(1− δ)(1−α)Π)−1(wi+ β(1− δ)αΠWr). I denote the
components of this vector in the text by φ(w, z).
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where the tightness θ is determined by the job seeker constraint X = µ(θ)(φ(w, z)+Y ), and

the implied continuation value satisfies

V̂ r(z) = (1 + q(θ)x)(z − b+ βEz(αV̂
r(z′) + (1− α)V̂ f (w, z′)))− κ(x)−X(

x

θ
+ 1),

and firms holding the wage commitment fixed solve

max
x

−
X

µ(θ)
+ (1 + q(θ)x)(z − b+ βEz(αV̂

r(z′) + (1− α)V̂ f (w, z′)))− κ(x)−X(
x

θ
+ 1)

where the tightness θ is determined by the job seeker constraint X = µ(θ)(φ(w, z) + Y ), the

continuation value V f (w, z′) satisfies

V̂ f (w, z) = (1 + q(θ)x)(z − b+ βEz(αV̂ (z′) + (1− α)V̂ f(w, z′)))− κ(x)−X(
x

θ
+ 1).

The first order conditions for the firms’ choice of wage and vacancy creation rate coincide

with those for the deviating firm (50-51), with the continuation values V̂ r(z) and V̂ f(w, z)

as characterized above. Each state z is associated with a corresponding reoptimization wage

w, tightness and vacancy rate. Once set, this wage remains fixed while the commitment is

maintained, despite changes in productivity. If productivity does vary during this time, the

tightness and firm’s probability of filling vacancies does vary as well, however, as does the

firm’s vacancy creation rate itself. Once the commitment finally expires, the firm adopts the

equilibrium wage consistent with the then prevailing state, with corresponding tightness and

vacancy creation rate.

Aggregate Shocks The above experiments can be implemented also in the preceding

setting where firms face aggregate shocks. Firms are ex post heterogeneous also in this version

of the model, because wages adjust to shocks in a staggered manner, leading to heterogeneous

growth rates across firms. The equations characterizing this alternative specification of

infrequent adjustment are spelled out in Appendix D.

5 Quantitative Illustration

This section uses the model developed in the previous sections to study the implications of

firm wages for labor market outcomes. I consider in particular: i) how firm wages affect wage

setting and hiring over the business cycle, and ii) the profitability and equilibrium impact of

infrequent wage adjustment in this context.
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5.1 Parameterizing and Solving the Model

Parametrization I begin with a benchmark parametrization for the standard competitive

search model, before proceeding to a comparable one for the firm wage model.18 I adopt

a monthly frequency, and set the discount rate to β = 1.05−1/12. To be consistent with

an average duration of employment of 2.5 years, I set the separation rate to δ = 0.033.

To be consistent with an average unemployment rate of 5 percent, when the steady-state

unemployment rate in the model is µ(θ)(1 − δ)/(µ(θ) + δ − µ(θ)δ), requires a steady-state

job-finding rate of µ(θ) = 0.388. I adopt the matching function m(v, u) = vu/(vℓ+ uℓ)1/ℓ for

this discrete time model, as in den Haan, Ramey, and Watson (2000), and target a steady-

state level of θ of 0.43 as in Kaas and Kircher (2015). To fit the above job finding probability

then requires ℓ = 1.85.

Labor productivity is normalized to z = 1 and for the vacancy cost I follow Kaas and

Kircher (2015) in setting κ(v, n) = κ0

1+γ
(v/n)γv with γ = 2.19 For this benchmark, I further

follow Shimer (2005) in adopting the value b = 0.4 and setting κ0 to ensure the corresponding

Euler equation holds in steady state. The implied value of κ0 implies an average cost of an

additional vacancy of 1.8.

To arrive at a comparable parametrization of the firm wage model, I seek to maintain the

basic labor market transition rates described above unchanged. To this end I hold the values

of δ, ℓ unchanged, which ensures that θ, µ(θ) as well as the vacancy rate x and unemployment

rate remain unchanged across models.

The firm wage model tends to have lower wages than the standard model, so to set the

remaining parameters in a way that holds steady-state levels fixed I adjust the values of

b, κ0. From the steady-state equations, it turns out that for the two models to yield identical

levels for wages and firm profit rate, in addition to the transition rates above, one must hold

the value of κ0 fixed between models (see Appendix C). I thus hold κ0 fixed, and allow b

to adjust so as to guarantee the firm wage model’s Euler equation holds. Doing so involves

raising the value of b relative to the standard model, to bring wages in the firm wage model

to their levels in the standard model, to b = 0.89. Wages are higher in the model with

infrequent wage adjustment, leading to b = 0.76.

18Details can be found in Appendix C.
19Note that κ(v, n)/n = κ0

1+γ
(v/n)1+γ and κv(v, n) = κ0(v/n)

γ , κn(v, n) = − κ0γ
1+γ

(v/n)1+γ are all functions

of x = v/n only.
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Solution Approach Despite the time-inconsistency, the model is relatively straightfor-

ward to solve. For the baseline model with aggregate shocks described in Section 3, one can

use Dynare to produce solutions to the Euler equation (40), corresponding intratemporal

optimality condition (39) and equilibrium condition xt = θt(1−Nt)/Nt.

For the model with firm heterogeneity, I use both Dynare as well as solving the non-linear

dynamic firm problem on a finite grid for productivity directly. The latter uses the feature

that the firm problem has effectively no endogenous state variable, depending only on current

productivity. For the model without probabilistic wages, solving the model this way involves

solving a nonlinear system of equations in the equilibrium firm choices of {θz, xz} for each

productivity realization z ∈ Z. For the model with probabilistic wages, the set of unknowns

is larger because a wage commitment chosen in state z can prevail also in other states z′

before wages are reoptimized. Finally, the model must be simulated to find the job seeker

value X consistent with the equilibrium condition aggregating across firms.20

Finally, in solving the model I also check second order conditions for the firm problem, as

well as that the interior solution prescribed by the first order conditions yields greater value

to the firm than the corner solution of creating zero vacancies and paying existing workers

the value of unemployment.

Next, I turn to describing the results.

5.2 Firm Wages over the Business Cycle

As discussed, firm wages pose an added constraint on firms setting wages over the business

cycle, by requiring any raises or cuts in wages aimed at attracting more or less new workers

to apply also to the firm’s existing workers. In an expansion firms would like to raise wages

to attract more workers, in addition to creating more vacancies. Intuition suggests that when

this wage increase must carry over to the firm’s existing workers as well, it becomes more

costly for firms to implement, leading them to curb the wage increase in favor of a larger

increase in vacancies instead. Thus, one would expect firm wages to reduce cyclical variation

in wages, and amplify those of labor market flows. Is this what the firm wage model implies?

A side-by-side comparison of the standard competitive search model and the firm wage

model, parameterized to maintain the levels of unemployment, wages and profits the same

as described, indicates that the firm wage model features more rigid wages over the business

cycle. To illustrate, Figure 1 plots impulse responses to a one percent increase in labor

20The model with infrequent adjustment with aggregate shocks is solved by linearizing and aggregating
up across firms, as in Gertler and Trigari (2009) (see Appendix D).
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Figure 1: Impulse Responses in Firm Wage vs Standard Model
Notes: The figure plots the percentage responses of model variables to a one percent increase in aggregate

labor productivity in the firm wage model and the standard competitive search model without firm wages.

Labor productivity follows an AR(1) with autocorrelation ρz = 0.96 and standard deviation σz = 0.02. The

two models compared have the same steady-state levels of wage, tightness, unemployment, as described in

the section on parametrization. The plotted vacancy-unemployment ratio is its model counterpart, which

differs slightly from θ due to timing.

productivity in the two models. As the figure shows, while the wage increase in the standard

model is almost identical to the increase in productivity, the corresponding increase in the

firm wage model is only about a quarter of that. This means that while in the standard

model the increase in wages absorbs a large share of the increase in productivity, leaving

limited room for the profitability of hiring to increase, in the firm wage model the profitability

of hiring rises more. This leads to an increase in the vacancy-unemployment ratio that is

nearly nine times greater, coinciding with equally significant amplification in the increase in

vacancies and reduction in unemployment. This degree of amplification is also non-trivial

in magnitude: As discussed in Shimer (2005), the standard model would require a ten fold

increase in the volatility of the tightness to be consistent with measured volatility in the

same.21,22

21The model in Shimer (2005) produces more variability that the standard model considered here, however,
because it has a linear vacancy cost, while the convex vacancy cost works to dampen fluctuations here.

22A higher value of b in itself generally amplifies responses to shocks in the Mortensen-Pissarides model.
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Figure 2: Single Firm Deviating to Longer Wage Commitment
Notes: The figure displays the steady-state values of a number of variables in the stationary equilibrium

with firm wages, along with the corresponding values for an individual firm in that equilibrium that is able

to set a wage commitment for a probabilistic period of time. The latter are plotted as a function of 1/α,

the expected duration of the wage commitment. The firm value plotted is the scaled firm value per existing

match.

The firm wage policy thus appears to translate into rigidity in wages that can be sub-

stantial in magnitude, and amplify labor market flows to a degree that helps bridge the gap

between model and data discussed in the literature.

5.3 Infrequent Wage Adjustment

It is intuitive that firms facing a commitment problem would prefer to be able to commit

to future wages. In this section I show that this mechanism can support a simple rule of

committing to wages for a period of time as a policy that is profitable for firms, despite the

costs associated with not responding to shocks in the interim.

The firm wage model does generate wage rigidity and amplification in the vacancy-unemployment ratio even
if the parameters are held fixed between the two models, but doing so affects the levels significantly. See
Figure 7 in Appendix C.
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The Profitability of a Wage Commitment To isolate the role of the wage commitment,

I begin with a version of the stationary equilibrium with firm heterogeneity discussed in

Section 4 where the firm-level shocks have been shut down. In this setting firms may differ

in size in the cross-section, but choose identical wages and vacancy rates independent of their

size, which are constant over time and leave firm sizes unchanged over time.23

I then consider an individual firm in this equilibrium that is fixing its wage for a proba-

bilistic period of time. Figure 2 shows how the deviating firm compares to the equilibrium

firms in terms of wages, market tightness, vacancy rate, hiring rate, and firm value, as a

function of the expected duration of the wage commitment 1/α. As the figure shows, the

deviating firm sets higher wages and creates more vacancies, thus hiring more than the equi-

librium firms and growing over time while the deviation lasts.24 In particular, the deviation

clearly increases firm value. Wage commitments are desirable for firms in the model because

of the commitment problem, something that is not true in the standard competitive search

model where firms do not face this issue.25

But fixing wages involves also costs for firms in an environment where firm productivity

varies over time. To show that the profitability of wage commitments survives these costs

in this context, I now return to the specification of the stationary equilibrium with firm

heterogeneity that includes firm-level shocks, discussed in Section 4.

To demonstrate how individual firms behave in this environment, Figure 9 produces

impulse responses to such firm-level shocks. An increase in productivity causes the firm

to raise wages, which attracts more job seekers per vacancy, as well as to increase vacancy

creation. Both contribute to an increase in the firm growth rate, causing firm employment to

rise over time. Firm growth rates are independent of firm size in the model, but because more

productive firms will tend to grow to be larger, firm size and wages are positively correlated

in the cross-section of firms. The figure also shows that the firm wage model tends to

feature more rigid wages than the standard competitive search model also in response to

firm-level, as well as aggregate, shocks. This wage rigidity translates to more variable hiring

23In anticipation of incorporating large and persistent firm-level shocks into this model with linear pro-
duction technologies, I adjust the calibration slightly to increase the magnitude of firm adjustment costs.
Specifically, I lower the target tightness to 0.4, implying ℓ = 2.67, b = 0.81 and an average cost of vacancies
of 3.8.

24Note that the deviation must be short enough that the firm remains small relative to the market. If the
deviating firm grows at rate g such that 1+g = (1+qx)(1−δ) > 1, and its size remains fixed after it reverts to
equilibrium behavior, then the expected firm size in period t is [α+(1−α)α(1+g)+ . . .+(1−α)t(1+g)t]n1 =
[α(1 + (1− α)(1 + g) + . . .+ (1−α)t−1(1 + g)t−1) + (1−α)t(1 + g)t]n1, where n1 = (1+ qx)(1− δ)n0 is size
after the initial deviation period. Firm size remains bounded as t grows iff (1− α)(1 + g) < 1.

25For reference, Figure 8 in Appendix C produces the corresponding figure for the standard competitive
search model.
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Figure 3: Single Firm Deviating to Longer Wage Commitment with Firm-Level Shocks
Notes: The figure displays the equilibrium values of a number of variables in the stationary equilibrium

with firm wages, along with the corresponding values for an individual firm in that equilibrium that is able

to set a wage commitment for a probabilistic period of time. The model is solved on three state grid for

productivity, approximating an AR(1) with autocorrelation ρz = 0.9 and standard deviation σz = 0.1 based

on the Rouwenhorst method. The deviating firm is in the intermediate productivity state and its choices are

plotted as a function of 1/α, the expected duration of the wage commitment. The firm value plotted is the

scaled firm value per existing match.

and employment in the firm wage model than the standard model, in this model comparison.

Returning to the impact of fixing wages, Figure 3 again shows how the deviating firm

compares to equilibrium firms in terms of wages, market tightness, vacancy rate, hiring

rate, and firm value, now in an environment with large firm-level shocks. For purposes of

illustration, the model is solved on a grid where productivity takes on three values: high,

intermediate and low. The figure shows the equilibrium firms’ values of wages, market

tightness, vacancy rate, hiring rate, and firm value, for each of these three states separately.

In line with the impulse responses, higher productivity is associated with a higher wage, lower

tightness, higher vacancy rate and greater firm value. The figure then shows how a firm in

the intermediate productivity state that deviates from equilibrium by fixing its wage for a

probabilistic period of time compares to these equilibrium firms. The figure reflects similar
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Figure 4: Equilibrium with Longer Wage Commitments
Notes: The figure displays the steady-state values of a number of variables in the stationary equilibrium

with firm wages and infrequent adjustment, as a function of 1/α, the expected duration of wages. The firm

value plotted is the scaled firm value per existing match. The figure also shows the corresponding values in

the planner’s allocation.

level effects as in the deterministic case: the deviating firm offers higher wages, attracts more

job seekers per vacancy, creates more vacancies and hires more, than other firms with similar

productivity. At the same time, the figure also shows that as the productivity shocks firms

face are large, prevailing productivity is also quite important for hiring outcomes. However,

despite this uncertainty, it remains true that firm value increases in the wage commitment.

Equilibrium with Wage Commitments Given the profitability of wage commitments,

it becomes interesting to consider also the equilibrium effects of firms systematically applying

such rules. To that end, I solve for the equilibrium with infrequent adjustment, and consider

how the duration of wage commitments affects the average level of wages, tightness, vacancy

creation, employment, as well as firm and worker value. For simplicity, I again abstract

from shocks in this exercise. Figure 4 plots the results. As expected, longer commitments

raise the level of wages, helping the firm overcome its desire to cut wages ex post on its

existing workforce. This makes the firm more attractive to job applicants, thus reducing
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market tightness, but also reduces vacancy creation as the profitability of hiring falls. As

a consequence, employment falls from the heightened levels associated with the firm wage

equilibrium. Overall, these changes bring the equilibrium closer to efficient allocations,

improving outcomes in that sense.

It is not the firms that benefit from this change, however, as in the case of the single

deviating firm. The higher wages are associated with the equilibrium shifting in a way that

is favorable to workers over firms, making both unemployed and employed workers better

off, but meanwhile reducing the profitability of firms. While longer wage commitments thus

improve on the overall allocation of resources, bringing the allocation closer to efficiency, it

is to the benefit of workers over firms.

In sum, the model thus helps explain the observation of infrequent wage adjustment by

offering a natural environment where longer wage commitments can be optimal for firms. At

the same time, it suggests that such infrequent adjustment can be good for welfare rather

than purely costly, especially for workers.

5.4 Infrequent Wage Adjustment over the Business Cycle

The findings carry over to the setting with aggregate shocks to productivity also. To demon-

strate, Figure 5 first considers a setting where a measure of identical firms reoptimize their

wages each period in the face or aggregate shocks, as in Section 5.2, and a single firm in that

equilibrium considers a deviation to a fixed wage for a probabilistic period of time. While

the deviation lasts, the firm behaves differently from the others in terms of the level of wage,

and consequently its growth, as well as responses to shocks. The longer wage commitment

tends to make the firm more forward-looking in setting the wage, leading to a higher wage

and promoting firm growth. At the same time, the wage commitment tends to also make

the firm more responsive to shocks, in terms of its hiring and profits, as the wage does not

respond to shocks.

To gauge the net effect on firm value, as well as demonstrating the effect on the level of

wages and growth, Figure 5 plots the mean values of wages, market tightness, vacancy rate,

and firm growth, for a firm deviating for a given duration. The figure also shows the impact

on the welfare of workers in the firm, as well as the impact on firm value, at the time of the

deviation. The values plotted come from averaging over a simulation of the model, which

compares at each instant the values of the then deviating firm to those of the equilibrium

firms. The figure mirrors the corresponding one with firm-level shocks, and in particular

shows that deviating tends to raise firm value, despite the added volatility implied.
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Figure 5: Deviation to Longer Wage Commitment with Aggregate Shocks
Notes: The figure displays simulation means in an equilibrium where wages are reoptimized each period,

together with those chosen by a firm deviating each period, as a function of 1/α, the expected duration

of wages. Labor productivity follows an AR(1) with autocorrelation ρz = 0.96 and standard deviation

σz = 0.02. The firm value plotted is firm value per existing match.

To then demonstrate the effects of longer wage commitments on labor market outcomes,

in a setting where all firms set wages probabilistically and in a staggered manner, Figure

6 plots simulation averages as a function of the duration of wages. Again, the presence of

aggregate shocks does not change the conclusions, including that workers are better off with

longer wage commitments – despite added labor market volatility.

Finally, one can revisit the impulse responses of Section 5.2 with this model of infrequent

adjustment. Adopting an annual horizon of wage commitment, a calibration holding the level

of profits fixed now brings the calibrated value of b down to 0.76, because the longer planning

horizon raises the level of wages in the model. The inertia in wages implied by the longer

wage commitments generates significant amplification in labor market flows nevertheless.

Figure 10 demonstrates that the resulting amplification in labor market flows is similar in

magnitude to the calibration of the firm wage model in Figure 1.
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Figure 6: Equilibrium with Longer Wage Commitments with Aggregate Shocks
Notes: The figure displays simulation means in the firm wage equilibrium with infrequent adjustment, as a

function of 1/α, the expected duration of wages. Labor productivity follows an AR(1) with autocorrelation

ρz = 0.96 and standard deviation σz = 0.02. The firm value plotted is firm value per existing match. The

figure also shows the corresponding values in the planner’s allocation.

6 Conclusions

TBW
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Appendix

A Proofs and Details

Proof of Proposition 5 For convenience, let yt := Yt − β(1 − δ)EtYt+1. We have yt =

Et[βδUt+1− b−βUt+1+β(1− δ)(b+βUt+2)] = Et[−b−β(1− δ)(Ut+1− b−βUt+2)], meaning

that yt = −b− β(1− δ)EtXt+1.

First, the firm objective in (22) can be rewritten as

E0[n0

∞
∑

t=0

βt(1− δ)t(z − wt) +

∞
∑

t=0

βt

t−1
∑

k=0

(1− δ)t−kq(θk)vk(z − wt)], (52)

using that nt + q(θt)vt = (1− δ)tn0 +
∑t−1

k=0(1− δ)t−kq(θk)vk.

The first term in (52) can then be rewritten as

E0n0

∞
∑

t=0

βt(1− δ)t(z − wt) = n0[Z0 + Y0 −
X0

µ(θ0)
], (53)

using that the job seeker value constraint (23) implies W0 = X0/µ(θ0)− Y0.

The second term in (52) can be rewritten as

E0

∞
∑

k=0

βkq(θk)vk

∞
∑

t=k

βt−k(1− δ)t−k(zt − wt)

= E0

∞
∑

k=0

βk[q(θk)vk

∞
∑

t=k

βt−k(1− δ)t−k(zt + yt)−
vk
θk

∞
∑

t=k

βt−k(1− δ)t−kXt]

= E0

∞
∑

t=0

βt

t−1
∑

k=0

(1− δ)t−k[q(θk)vk(zt + yt)−
vk
θk
Xt], (54)

where the first equality follows from rearranging terms, and the second uses the job seeker

value constraint to substitute out the present value of wages.

Combining the terms in (53) and (54) and rearranging, the firm objective becomes

E0n0[

∞
∑

t=0

βt(1− δ)t(zt + yt)−
X0

µ(θ0)
]

+ E0

∞
∑

t=0

βt

t−1
∑

k=0

(1− δ)t−k[q(θk)vk(zt + yt)−
vk
θk
Xt]−E0

∞
∑

t=0

βtκ(vt/nt, nt)

= −
X0n0

µ(θ0)
+ E0

∞
∑

t=0

βt[(nt + q(θt)vt)(zt + yt)−
Xtvt
θt

− κ(vt/nt, nt)]. (55)

38



Using that yt = −b− β(1− δ)EtXt+1, and rearranging, the firm objective can be written

as

−
X0ni0

µ(θi0)
+ ni0X0 + Et

∞
∑

t=0

βt[(nit + q(θit)vit)(zt − b)− κ(vit, nit)−Xt(
vit
θit

+ nit)]. (56)

Note that the term ni0X0 is independent of the firm’s actions, so may be omitted in writing

the firm problem as in (24) in the text.

Opting Out of the Labor Market Note that because the firm begins with a stock of

existing workers, it could potentially find it optimal to, instead of following the interior

solution characterized by the first order conditions, not hire at all in the first period and

instead set a wage that is so low as to make those existing workers indifferent between

remaining with the firm and unemployment. The latter would mean that W0 + Y0 = 0 and

no hiring that v0 = 0. How would this change firm value?

In the derivation above, it would mean that the expression in (53) would reduce to

ni0[Z0 + Y0], and the expression in (54) would have vi0 = 0, such that θi0 no longer appears.

Firm value, as in (56), would then become

ni0X0 + Et

∞
∑

t=0

βt[(nit + q(θit)vit)(zt − b)− κ(vit, nit)−Xt(
vit
θit

+ nit)]. (57)

with vi0 = 0.With commitment, after this initial period the firm problem becomes equivalent

to the planner problem, and hence hiring should be consistent with efficient allocations and

interior as long as standard conditions are met (z sufficiently above b). In the initial period,

one would want to check that this value does not dominate the equilibrium value. Note that

due to the size-independence of the firm problem, if one firm prefers to deviate, all firms will.

In the context of no commitment, if a firm in any period were to deviate to this non-hiring

option, its value would be, instead of that in (33):

n(z − b)−X(S)n+ βESV (n′;S ′) (58)

s.t. n′ = (1− δ)n,

where the continuation value V (n;S) follows (34). In solving the model using first order

conditions, one would want to make sure this deviation value does not exceed equilibrium

values, something that can restrict parameter values. In practice high aggregate levels of

existing matches tend to make deviating more attractive, so one would choose parameters

such that the desired steady-state measure of matches is sufficiently below this range, keeping

the economy below a range where deviating becomes attractive.
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Second Order Conditions For the sequence problem, denoting the firm objective as g,

second order conditions read, for t > 0: gxtxt
= −κ′′(xt) < 0, gθtθt = q′′(θt)xt(zt − b +

β(1 − δ)EtV̂t+1) −
2Xtxt

θ3
t

< 0, and det = gxtxt
gθtθt − g2xtθt

> 0, where gxtθt = q′(θt)(zt −

b + β(1 − δ)EtV̂t+1) +
Xt

θ2
t

= 0. For the initial period: gx0x0
= −κ′′(x0), gθ0θ0 = X0µ′′(θ0)

µ(θ0)2
−

2X0µ′(θ0)2

µ(θ0)3
+ q′′(θ0)x0(z0 − b + β(1 − δ)E0V̂1) −

2X0x0

θ3
0

and det = gx0x0
gθ0θ0 − g2x0θ0

> 0, where

gx0θ0 = q′(θ0)(z0 − b + β(1 − δ)E0V̂1) +
X0

θ2
0

. The periods separate when calculating second

order conditions.

For the no commitment case, again denoting the firm objective as g, second order condi-

tions read: gxx = −κ′′(x) < 0, gθθ =
Xµ′′(θ)
µ(θ)2

− 2Xµ′(θ)2

µ(θ)3
+q′′(θ)x(z−b+β(1−δ)EV̂ )− 2Xx

θ3
< 0,

and det = gxxgθθ − g2xθ > 0, where gxθ = q′(θ)(z − b+ β(1− δ)EV̂ ) + X
θ2
.

Proof of Proposition 6 The firm problem (22) is equivalent to the problem

max
{wit,θit,xit}

E0

∞
∑

t=0

βt(1− δ)t
t−1
∏

k=0

(1 + q(θik)xik)[(1 + q(θit)xit)(zt − wit)− κ(xit)] (59)

s.t. Xt = µ(θit)(Et

∞
∑

k=0

βk(1− δ)kwit+k + Yt), ∀t ≥ 0,

which does not depend on ni0. This can be seen by expressing the profits in problem (22)

in each period t scaled by size nit, and using the law of motion to adjust the discounting for

this scaling. Finally, normalizing the firm problem with initial size ni0 yields the expression

above.
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B Two Period Model

Consider a deterministic two period version of the dynamic problem considered in Section 3.

Planner Problem The planner problem reads:

max
{θit,vit}2t=1

2
∑

t=1

βt[
∑

i

[(nit + q(θit)vit)zt − κ(vit, nit)] + (1−
∑

i

(nit + q(θit)vit)b)] (60)

s.t. ni2 = (1− δ)(ni1 + q(θi1)vi1),
∑

i

vit/θit = 1−
∑

i

nit, for t = 1, 2, (61)

with ni1 given for all i. The planner maximizes the present discounted value of output

produced by employed workers with the market technology and by unemployed workers

with the home technology, net of the costs of vacancy creation. The planner takes as given

the law of motion for employment relationships, as well as a constraint (61) that imposes that

the planner’s choices of vacancies and market tightness across markets must be consistent

with the total measure of job seekers in each period. In what follows, the latter constraint

is associated with a Lagrange multiplier λt for t = 1, 2, reflecting the planner’s shadow value

of job seekers.

The first order conditions for the planner’s choice of vit, θit for t = 1, 2, read

κv(xi2) +
λ2

θi2
= q(θi2)(z2 − b), (62)

λ2

θ2i2
= −q′(θi2)(z2 − b), (63)

κv(xi1) +
λ1

θi1
= q(θi1)[z1 − b+ β(1− δ)(z2 − b− κn(xi2)− λ2)], (64)

λ1

θ2i1
= −q′(θi1)[z1 − b+ β(1− δ)(z2 − b− κn(xi2)− λ2)]. (65)

Note that these are independent of firm size, and in what follows I hence drop the producer

index i to consider symmetric allocations.

Taken together, the optimality conditions imply that the Lagrange multipliers satisfy

λt = κv(xt)
µ(θt)− µ′(θt)θt

µ′(θt)
(66)
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for t = 1, 2. Using this, the optimality conditions can be written in terms of allocations as

κv(x2)

µ′(θ2)
= z2 − b, (67)

κv(x1)

µ′(θ1)
= z1 − b+ β(1− δ)(

κv(x2)

µ′(θ2)
(1− µ(θ2) + θ2µ

′(θ2))− κn(x2)). (68)

In addition, the planner’s allocation must also satisfy the constraint (61), xt = θt(1−Nt)/Nt

for t = 1, 2, where the total measure of existing relationships satisfies the law of motion

N2 = (1− δ)(1 + q(θ1)x1)N1.

Firm Wages The worker value of entering period t = 1, 2 unemployed satisfies

U2 = µ(θi2)wi2 + (1− µ(θi2))b, (69)

U1 = µ(θi1)(wi1 + β(1− δ)wi2 + βδU2) + (1− µ(θi1))(b+ βU2). (70)

For convenience, define X2 ≡ U2−b,X1 ≡ U1−b−βU2 and Y2 ≡ −b, Y1 ≡ −b−β(1−δ)U2.

With this, the worker value constraints can be written as

Xt = µ(θit)(Wit + Yt), (71)

for t = 1, 2.

Commitment Assuming the firm can commit to future wages, the firm problem reads

max
{wit,θit,vit}2t=1

2
∑

t=1

βt[(nit + q(θit)vit)(zt − wit)− κ(vit, nit)], (72)

s.t. ni2 = (1− δ)(ni1 + q(θi1)vi1),

Xt = µ(θit)(
2

∑

k=1

βk(1− δ)kwit+k + Yt), for t = 1, 2, (73)

with ni1 given for all i. The firm maximizes the present discounted value of profits, taking into

account the law of motion for employment relationships, as well as the constraint reflecting

job seeker behavior each period, where the firm takes the market-determined values of Xt, Yt

as given.

Using the constraints (73), the firm problem can be rewritten as

max−
X1

µ(θi1)
+X1 + (1 + q(θi1)xi1)(z1 − b)− κ(xi1)−X1(

xi1

θi1
+ 1)

+ β(1− δ)(1 + q(θi1)xi1)[(1 + q(θi2)xi2)(z2 − b)− κ(xi2)−X2(
xi2

θi2
+ 1)]. (74)
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Note that this problem is independent of scale, and hence in what follows the producer-level

indicator is dropped.

The first order conditions for optimality in the second period read26

κv(x2) +
X2

θ2
= q(θ2)(z2 − b), (75)

X2

θ22
= −q′(θ2)(z2 − b). (76)

Taken together, these imply that X2 = κv(x2)
µ(θ2)−µ′(θ2)θ2

µ′(θ2)
and κv(x2)

µ′(θ2)
= z2 − b. Note

that these correspond to the planner’s optimality conditions, with X2 corresponding to the

Lagrange multiplier reflecting the shadow value of job seekers.

With the second period allocation θ2, x2, the second period firm value normalized by size

is

V̂2 = −
X2

µ(θ2)
+X2 + (1 + q(θ2)x2)(z2 − b)− κ(x2)−X2(

x2

θ2
+ 1). (77)

while the continuation value of the firm is

V̂ c
2 = (1 + q(θ2)x2)(z2 − b)− κ(x2)−X2(

x2

θ2
+ 1). (78)

Using the optimality conditions, these can be written as

V̂2 = −
X2

µ(θ2)
+ z2 − b− κn(x2) (79)

and

V̂ c
2 = z2 − b− κn(x2)−X2. (80)

The first order conditions for optimality in the first period are

κv(x1) +
X1

θ1
= q(θ1)[z1 − b+ β(1− δ)V̂ c

2 ], (81)

X1

θ21
[1 +

µ′(θ1)θ
2
1

x1µ(θ1)2
] = −q′(θ1)[z1 − b+ β(1− δ)V̂ c

2 ]. (82)

26Denoting the firm objective as g, second order conditions read: gx2x2
= −κ′′(x2) < 0, gθ2θ2 =

q′′(θ2)x2(z2 − b) − 2X2x2

θ3

2

< 0, and det = gx2x2
gθ2θ2 − g2x2θ2

> 0, where gx2θ2 = q′(θ2)(z2 − b) + X2

θ2

2

= 0,

and gx1x1
= −κ′′(x1), gθ1θ1 = X1µ

′′(θ1)
µ(θ1)2

− 2X1µ
′(θ1)

2

µ(θ1)3
+ q′′(θ1)x1(z1 − b + β(1 − δ)E1V̂2) −

2X1x1

θ3

1

and

det = gx1x1
gθ1θ1 − g2x1θ1

> 0, where gx1θ1 = q′(θ1)(z1 − b + β(1 − δ)E1V̂2) +
X1

θ2

1

< 0. The periods sepa-

rate when calculating second order conditions.
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Taken together, they imply that

X1 = κv(x1)
µ(θ1)− µ′(θ1)θ1

µ′(θ1)

q(θ1)x1

1 + q(θ1)x1

, (83)

and

κv(x1)

µ′(θ1)
[1−

(1− µ′(θ1)θ1/µ(θ1))

1 + q(θ1)x1
] = z1 − b+ β(1− δ)

[κv(x2)

µ′(θ2)

(

1− µ(θ2) + µ′(θ2)θ2
)

− κn(x2)
]

.

(84)

Given allocations and the continuation value of the firm, and using the optimality con-

ditions, the normalized firm value in the first period can be written

V̂1 = −
X1

µ(θ1)
+ z1 − b+ β(1− δ)V̂ c

2 − κn(x1), (85)

while the corresponding continuation value would read

V̂ c
1 = z1 − b+ β(1− δ)V̂ c

2 − κn(x1)−X1. (86)

Limited Commitment If firms do not have commitment to future wages, the firm prob-

lem is solved recursively.

In the second period, firms maximize the firm value

max−
X2

µ(θ2)
+X2 + (1 + q(θ2)x2)(z2 − b)− κ(x2)−X2(

x2

θ2
+ 1)]. (87)

The first order conditions for optimality read

κv(x2) +
X2

θ2
= q(θ2)(z2 − b), (88)

X2

θ22
[1 +

µ′(θ2)θ
2
2

x2µ(θ2)2
] = −q′(θ2)(z2 − b). (89)

They imply

X2 = κv(x2)
µ(θ2)− µ′(θ2)θ2

µ′(θ2)

q(θ2)x2

1 + q(θ2)x2
, (90)

and

κv(x2)

µ′(θ2)
[1−

(1− µ′(θ2)θ2/µ(θ2))

1 + q(θ2)x2
] = z2 − b. (91)
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Given allocations, the normalized firm value satisfies

V̂2 = −
X2

µ(θ2)
+ (1 + q(θ2)x2)(z2 − b)−

X2x2

θ2
− κ(x2) = −

X2

µ(θ2)
+ z2 − b− κn(x2) (92)

and the corresponding continuation value

V̂ c
2 = z2 − b− κn(x2)−X2. (93)

The first order conditions for optimality in the first period read27

κv(x1) +
X1

θ1
= q(θ1)[z1 − b+ β(1− δ)V̂ c

2 ], (94)

X1

θ21
[1 +

µ′(θ1)θ
2
1

x1µ(θ1)2
] = −q′(θ1)[z1 − b+ β(1− δ)V̂ c

2 ]. (95)

They imply

X1 = κv(x1)
µ(θ1)− µ′(θ1)θ1

µ′(θ1)

q(θ1)x1

1 + q(θ1)x1

. (96)

and

κv(x1)

µ′(θ1)
[1−

(1− µ′(θ1)θ1/µ(θ1))

1 + q(θ1)x1
] (97)

= z1 − b+ β(1− δ)
[κv(x2)

µ′(θ2)

(

1− µ(θ2) + µ′(θ2)θ2 − (1− µ(θ2))
(1 − µ′(θ2)θ2/µ(θ2))

1 + q(θ2)x2

)

− κn(x2)
]

.

Given allocations and continuation values, firm value in the first period equals

V̂1 = −
X2

µ(θ2)
+ z2 − b+ β(1− δ)V̂ c

2 − κn(x2). (98)

Whether or not firms have commitment, equilibrium requires allocations to be optimal

for firms, as well as the total measure of job seekers allocated to firms to be consistent with

the measure of job seekers in the market: xtNt

θt
= 1−Nt for t = 1, 2.

27Denoting the firm objective as g, second order conditions read: gx2x2
= −κ′′(x2) < 0, gθ2θ2 = X2µ

′′(θ2)
µ(θ2)2

−

2X2µ
′(θ2)

2

µ(θ2)3
+q′′(θ2)x2(z2−b)− 2X2x2

θ3

2

< 0, and det = gx2x2
gθ2θ2−g2x2θ2

> 0, where gx2θ2 = q′(θ2)(z2−b)+ X2

θ2

2

<

0, and gx1x1
= −κ′′(x1), gθ1θ1 = X1µ

′′(θ1)
µ(θ1)2

− 2X1µ
′(θ1)

2

µ(θ1)3
+ q′′(θ1)x1(z1 − b + β(1 − δ)E1V̂2) −

2X1x1

θ3

1

and

det = gx1x1
gθ1θ1 − g2x1θ1

> 0, where gx1θ1 = q′(θ1)(z1 − b + β(1 − δ)E1V̂2) +
X1

θ2

1

< 0. The periods separate

when calculating second order conditions.
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C Calibration Details

The law of motion for matches implies steady-state unemployment:

u = 1−N − µ(θ)(1−N) =
µ(θ)(1− δ)

µ(θ) + δ − µ(θ)δ
, (99)

and if δ is given, a target for steady-state u determines µ(θ).

Given a target for the tightness θ, the matching function parameter γ is then pinned

down (uniquely) from µ(θ) = θ/(1 + θℓ)1/ℓ. This also determines steady-state values of

x = θ(1−N)/N = δθ/((1− δ)µ(θ)) and µ′(θ).

These labor market flows must also be consistent with the Euler equation (28):

κv(x) +
X
θ

q(θ)
= z − b+ β(1− δ)[

κv(x) +
X
θ

q(θ)
− κn(x)−X ], (100)

where the value of job seekers X satisfies

X = κv(x)
µ(θ)− µ′(θ)θ

µ′(θ)
(101)

in the standard competitive search model and

X = κv(x)
µ(θ)− µ′(θ)θ

µ′(θ)
δ (102)

in the firm wage model. Note that X/κ0 is pinned down by the flows above for both models,

as are κv(x)/κ0 and κn(x)/κ0. It follows that the Euler equation pins down a unique value

of (z − b)/κ0 for each model, that allows the equation to hold with the flows chosen. This

still allows alternative combinations of b, κ0 consistent with any such value, however.

To consider the implications for wages and profits, note that (from equation (21)) the

present value of wages satisfies W = X/µ(θ)−Y, where Y = −(b+β(1−δ)X)/(1−β(1−δ)).28

The Euler equation can be rewritten using this expression for Y as

κv(x) +
X
θ

q(θ)
= z + β(1− δ)[

κv(x) +
X
θ

q(θ)
− κn(x)] + (1− β(1− δ))Y, (103)

or in terms of wages as

κv(x)

q(θ)
+W = z + β(1− δ)[

κv(x)

q(θ)
+W − κn(x)]. (104)

28Appendix A shows that yt = −b− β(1− δ)Xt+1, and by definition Y = y/(1− β(1− δ)).
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This equation determines the steady-state wage w = W (1− β(1− δ)) as

w = z −
κv(x)

q(θ)
+ β(1− δ)[

κv(x)

q(θ)
− κn(x)]. (105)

It follows that for both models to have the same steady-state wage, both models must have

the same κ0.

If this is the case, firm profits are also the same across models, as firm profit per worker

equals

(n+ q(θ)v)(z − w)− κ(v, n)

n+ q(θ)v
=

(1 + q(θ)x)(z − w)− κ(x)

1 + q(θ)x
. (106)

The above reasoning suggests a calibration approach where one first picks a b for the

standard model, with κ0 set to satisfy the corresponding Euler equation. To arrive at a

comparable parametrization of the firm wage model, one adopts the same κ0 to keep the

steady-state wage and profit rate unchanged across models, with b set to satisfy the Euler

equation for that model.

Probabilistic wages The calibration strategy again pins down values for θ, x via steady

state labor market flows. The optimality condition for vacancy creation and accounting

equation for firm value imply the same Euler equation (100) and wage expression (105) in

steady state. The latter again implies that a steady state target for the wage requires holding

κ0 fixed. The optimality condition for the wage, together with the accounting equation for

firm value and its derivative with respect to the wage imply:

X = κv(x)
µ(θ)− µ′(θ)θ

µ′(θ)

δ

1− β(1− δ)(1− α)
. (107)

Holding the wage unchanged, this implies a corresponding value of Y = X/µ(θ) −W, and

further an implied value of b such that Y = −(b+ β(1− δ)X)/(1− β(1− δ)).

D Infrequent Adjustment with Aggregate Shocks

This section lays out the equations characterising the impact of infrequent adjustment in the

presence of aggregate shocks.

Deviating Firm Take an equilibrium with aggregate shocks where firms reoptimize each

period, and consider a single deviating firm in that environment. The equilibrium determines
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X(S), Y (S), V̂ (S),W (S) as well as Λ(S) = ES

∑∞
k=0 β

k(1 − δ)k(1 − α)kβ(1 − δ)αW (Sk+1).

The deviating firm’s choice of wage is characterized by the first order condition

X(S)

θ2
[1 +

µ′(θ)θ2

xµ(θ)2
] =− q′(θ)[z − b+ β(1− δ)ES[αV̂ (S ′) + (1− α)V̂ f(w, S ′)]]

− β(1− δ)(1− α)(1 + q(θ)x)/xESV̂
f
w (w, S

′)/θw,

where the tightness coinciding with the wage is determined by X(S) = µ(θ)(φ(w, S)+Y (S))

where φ(w, S) = w/(1− β(1− δ)(1− α)) + Λ(S), and the derivative of θ with respect to w

is θw = −µ(θ)2/(µ′(θ)X(S)(1− β(1− δ)(1− α))).

The first order condition for vacancy creation reads

κv(x) +
X(S)

θ
= q(θ)(z − b+ β(1− δ)ES(αV̂ (S ′) + (1− α)V̂ f(w, S ′))),

for the deviation period and periods when the commitment is maintained.

The continuation value satisfies

V̂ f(w, S) = (1 + q(θ)x)(z − b+ β(1− δ)ES(αV̂ (S ′) + (1− α)V̂ f(w, S ′)))− κ(x)−X(S)(
x

θ
+ 1),

and the derivative of the continuation value

V̂ f
w (w, S) =xq′(θ)[z − b+ β(1− δ)Ez[αV̂ (S ′) + (1− α)V̂ f(w, S ′)]]θw

+
xX(S)

θ2
θw + β(1− δ)(1− α)(1 + q(θ)x)ESV̂

f
w (w, S

′).

Equilibrium with Infrequent Adjustment The equilibrium determinesX(S), Y (S), V̂ (S),W (S)

as well as Λ(S) = ES

∑∞
k=0 β

k(1− δ)k(1− α)kβ(1− δ)αW (Sk+1).

The reoptimizing firm’s choice of wage is characterized by the first order condition

X(S)

θ2
[1 +

µ′(θ)θ2

xµ(θ)2
] =− q′(θ)[z − b+ β(1− δ)ES[αV̂ (S ′) + (1− α)V̂ f(w, S ′)]]

− β(1− δ)(1− α)(1 + q(θ)x)/xESV̂
f
w (w, S

′)/θw,

where the tightness coinciding with the wage is determined by X(S) = µ(θ)(φ(w, S)+Y (S))

where φ(w, S) = w/(1−β(1− δ)(1−α))+Λ(S), and the derivative of θ with respect to w is

θw = −µ(θ)2/(µ′(θ)X(S)(1− β(1− δ)(1 − α))). The firm that holds the wage fixed, on the

other hand, has tightness pinned down by the condition X(S) = µ(θ)(φ(w, S) + Y (S)).

For both types of firms, the first order condition for vacancy creation reads

κv(x) +
X(S)

θ
= q(θ)(z − b+ β(1− δ)ES(αV̂ (S ′) + (1− α)V̂ f(w, S ′))),
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with the corresponding wage and tightness (as discussed above).

The fixed-wage firms’ continuation value satisfies

V̂ f(w, S) = (1 + q(θ)x)(z − b+ β(1− δ)ES(αV̂ (S ′) + (1− α)V̂ f(w, S ′)))− κ(x)−X(S)(
x

θ
+ 1),

and the derivative of the continuation value

V̂ f
w (w, S) =xq′(θ)[z − b+ β(1− δ)ES[αV̂ (S ′) + (1− α)V̂ f (w, S ′)]]θw

+
xX(S)

θ2
θw + β(1− δ)(1− α)(1 + q(θ)x)ES V̂

f
w (w, S

′).

The reoptimizing firms’ value satisfies

V̂ (S) = (1 + q(θ)x)(z − b+ β(1− δ)ES(αV̂ (S ′) + (1− α)V̂ f (w, S ′)))− κ(x)−X(S)(
x

θ
+ 1),

where the tightness and wage are the reoptimized values in the prevailing state.

Solving for Equilibrium with Infrequent Adjustment The model is solved by lin-

earization, following Gertler and Trigari (2009).

Given a wage w, we have the present value of wages:

W (w) =
w

1− β(1− δ)(1− α)
+ β(1− δ)α

∞
∑

k=0

βk(1− δ)k(1− α)kWt+k+1

For short, let Λt = β(1− δ)α
∑∞

k=0 β
k(1− δ)k(1−α)kWt+k+1, which satisfies the dynamic

equation
Λt

β(1− δ)α
= Wt+1 + β(1− δ)(1− α)

Λt+1

β(1− δ)α

First, I solve for a linear approximation to the firm continuation value when the wage is

fixed: V f
t (w)− V̄ = V 0

t + V 1
t (w − w̄).

While a firm’s wage w is fixed, the present value of wages at the firm follows:

Wt(w)− W̄ = (w − w̄)/(1− β(1− δ)(1− α)) + Λt − Λ̄

where the equilibrium contracting wages (not the wage held fixed w) determine Λt according

to

(Λt − Λ̄)/β(1− δ)α = Wt+1 − W̄ + β(1− δ)(1− α)(Λt+1 − Λ̄)/β(1− δ)α.
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The present value of wages Wt(w) determines the tightness according to:

Xt − X̄ = µ′(θ̄)(θt(w)− θ̄)[W̄ + Ȳ ] + µ(θ̄)[Wt(w)− W̄ + Yt − Ȳ ]

as a linear function θ(w, S)− θ̄ = At +B(w − w̄) with

B = −µ(θ̄)/(µ′(θ̄)[W̄ + Ȳ ](1− β(1− δ)(1− α)))

At = (Xt − X̄ − µ(θ̄)(Λt − Λ̄ + Yt − Ȳ ))/(µ′(θ̄)[W̄ + Ȳ ])

The firm’s choice of x follows:

κ′′(x̄)(xt − x̄) +
Xt − X̄

θ̄
−

X̄

θ̄2
(θt − θ̄) = q′(θ̄)(θt − θ̄)(z̄ − b+ β(1− δ)V̄ ))

+ q(θ̄)(zt − z̄ + β(1− δ)(α(Vt+1 − V̄ ) + (1− α)(V 0
t+1 + V 1

t+1(w − w̄)))

Substituting in for θt(w), this gives the hiring rate x as a linear function xt(w) − x̄ =

Ât + B̂t(w − w̄), where

B̂t =
BX̄

κ′′(x̄)θ̄2
+

Bq′(θ̄)(z̄ − b+ β(1− δ)V̄ )

κ′′(x̄)
+

q(θ̄)

κ′′(x̄)
β(1− δ)(1− α)V 1

t+1

Ât = −
Xt − X̄

κ′′(x̄)θ̄
+

X̄At

κ′′(x̄)θ̄2
+

q′(θ̄)

κ′′(x̄)
(z̄−b+β(1−δ)V̄ )At+

q(θ̄)

κ′′(x̄)
(zt−z̄+β(1−δ)(α(Vt+1−V̄ )+(1−α)V 0

t+1)

Finally, the dynamic equation for the value V f(w, S) implies that for all such w we have:

V 0
t + V 1

t (w − w̄)

= zt − z̄ + β(1− δ)(α(Vt+1 − V̄ ) + (1− α)(V 0
t+1 + V 1

t+1(w − w̄))) + x̄κ′′(x̄)(xt(w)− x̄)− (Xt − X̄)

Using the expression for xt(w), the expression yields equations for the constant and coefficient

on w for this equation to hold.

The coefficient on w:

V 1
t = β(1− δ)(1− α)V 1

t+1 +
x̄X̄B

θ̄2

+ x̄q′(θ̄)(z̄ − b+ β(1− δ)V̄ )B + x̄q(θ̄)β(1− δ)(1− α)V 1
t+1

Note that this is an unstable equation with constant coefficients, implying the coefficient

V 1
t is a constant. Further, B̂t is also then a constant.

The constant:

V 0
t = zt − z̄ + β(1− δ)(α(Vt+1 − V̄ ) + (1− α)V 0

t+1)− (Xt − X̄)

−
x̄(Xt − X̄)

θ̄
+

x̄X̄At

θ̄2
+ x̄q′(θ̄)(z̄ − b+ β(1− δ)V̄ )At

+ x̄q(θ̄)(zt − z̄ + β(1− δ)(α(Vt+1 − V̄ ) + (1− α)V 0
t+1))
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This is a dynamic equation that is also unstable, but with coefficients that can vary over

time. Add this equation into model system, to determine the coefficients (they enter into

the system).

Second, proceed to solve for equilibrium.

Firms that are optimizing this period, choose a wage according to:

Xt − X̄

θ̄2
− 2

X̄

θ̄3
(θt − θ̄) +

µ′(θ̄)

x̄µ(θ̄)2
(Xt − X̄)

−
µ′(θ̄)X̄

x̄2µ(θ̄)2
(xt − x̄) +

X̄

x̄

µ(θ̄)2µ′′(θ̄)− 2µ(θ̄)(µ′(θ̄))2

µ(θ̄)4
(θt − θ̄)

= −q′′(θ̄)(θt − θ̄)(z̄ − b+ β(1− δ)V̄ )

− q′(θ̄)(zt − z̄ + β(1− δ)(α(Vt+1 − V̄ ) + (1− α)(V 0
t+1 + V 1

t+1(wt − w̄)))

− β(1− δ)(1− α)[q′(θ̄)(θt − θ̄)V̄ 1/θ̄w − (xt − x̄)V̄ 1/(θ̄wx
2)

+ (1 + q(θ̄)x̄)(V 1
t+1 − V̄ 1)/(θ̄wx̄)− (1 + q(θ̄)x̄)V̄ 1(θwt − θ̄w)/(θ̄

2
wx̄)]

with θt(w) = At +B(w − w̄), xt(w) = Ât + B̂t(w − w̄) from above and

(Xt − X̄)
µ̄′

µ̄2
θ̄w +

µ̄′

µ̄2
X̄(θwt − θ̄w) +

µ̄2µ̄′′ − 2µ̄(µ̄′)2

µ̄4
X̄θ̄w(θt − θ̄) = 0

The rest of firms apply a previously set wage, and the cross-firm average wage follows:

ŵt = αwt + (1− α)ŵt−1.

The cross-firm average tightness and vacancy rate are: θ̂t = At + B(ŵt − w̄), x̂t =

Ât + B̂t(ŵt − w̄).

The average firm size follows the law of motion:

n̂t+1 − n̄ = (1− δ)((1 + q(θ̄)x̄)(n̂t − n̄) + n̄q(θ̄)(x̂t − x̄) + n̄q′(θ̄)x̄(θ̂t − θ̄))

Finally, the equilibrium adding up constraint reads:

n̄

θ̄
(x̂t − x̄) +

x̄

θ̄
(n̂t − n̄)−

x̄n̄

θ̄2
(θ̂t − θ̄) = −(n̂t − n̄)
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System equations read (in linear form)

(Λt − Λ̄)/β(1− δ)α = Wt+1 − W̄ + β(1− δ)(1− α)(Λt+1 − Λ̄)/β(1− δ)α.

Wt − W̄ = (wt − w̄)/(1− β(1− δ)(1− α)) + Λt − Λ̄

(Xt − X̄)
µ̄′

µ̄2
θ̄w +

µ̄′

µ̄2
X̄(θwt − θ̄w) +

µ̄2µ̄′′ − 2µ̄(µ̄′)2

µ̄4
X̄θ̄w(θt − θ̄) = 0

Xt − X̄

θ̄2
− 2

X̄

θ̄3
(θt − θ̄) +

µ′(θ̄)

x̄µ(θ̄)2
(Xt − X̄)

−
µ′(θ̄)X̄

x̄2µ(θ̄)2
(xt − x̄) +

X̄

x̄

µ(θ̄)2µ′′(θ̄)− 2µ(θ̄)(µ′(θ̄))2

µ(θ̄)4
(θt − θ̄)

= −q′′(θ̄)(θt − θ̄)(z̄ − b+ β(1− δ)V̄ )

− q′(θ̄)(zt − z̄ + β(1− δ)(α(Vt+1 − V̄ ) + (1− α)(V 0
t+1 + V 1

t+1(wt − w̄)))

− β(1− δ)(1− α)[q′(θ̄)(θt − θ̄)V̄ 1/θ̄w − q(θ̄)(xt − x̄)V̄ 1/(θ̄wx
2)

+ (1 + q(θ̄)x̄)(V 1
t+1 − V̄ 1)/(θ̄wx̄)− (1 + q(θ̄)x̄)V̄ 1(θwt − θ̄w)/(θ̄

2
wx̄)]

V 0
t = zt − z̄ + β(1− δ)(α(Vt+1 − V̄ ) + (1− α)V 0

t+1)− (Xt − X̄)

−
x̄(Xt − X̄)

θ̄
+

x̄X̄At

θ̄2
+ x̄q′(θ̄)(z̄ − b+ β(1− δ)V̄ )At

+ x̄q(θ̄)(zt − z̄ + β(1− δ)(α(Vt+1 − V̄ ) + (1− α)V 0
t+1))

Ât = −
Xt − X̄

κ′′(x̄)θ̄
+

X̄At

κ′′(x̄)θ̄2
+

q′(θ̄)

κ′′(x̄)
(z̄−b+β(1−δ)V̄ )At+

q(θ̄)

κ′′(x̄)
(zt−z̄+β(1−δ)(α(Vt+1−V̄ )+(1−α)V 0

t+1)

At = (Xt − X̄ − µ(θ̄)(Λt − Λ̄ + Yt − Ȳ ))/(µ′(θ̄)[W̄ + Ȳ ])

n̂t+1 − n̄ = (1− δ)((1 + q(θ̄)x̄)(n̂t − n̄) + n̄q(θ̄)(x̂t − x̄) + n̄q′(θ̄)x̄(θ̂t − θ̄))
n̄

θ̄
(x̂t − x̄) +

x̄

θ̄
(n̂t − n̄)−

x̄n̄

θ̄2
(θ̂t − θ̄) = −(n̂t − n̄)

ŵt = αwt + (1− α)ŵt−1

θt − θ̄ = At +B(wt − w̄)

xt − x̄ = Ât + B̂(wt − w̄)

θ̂t − θ̄ = At +B(ŵt − w̄)

x̂t − x̄ = Ât + B̂(ŵt − w̄)

Vt − V̄ = V 0
t + V 1(wt − w̄)
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Figure 7: Impulse Responses with Identical Parameters
Notes: The figure plots the level responses of model variables to a one percent increase in aggregate labor productivity in

the firm wage model and the standard competitive search model without firm wages. Productivity follows an AR(1) with

autocorrelation ρz = 0.96 and standard deviation σz = 0.02. The two models compared are parameterized identically. The

plotted vacancy-unemployment ratio is its model counterpart, which differs slightly from θ due to timing.
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Figure 8: Single Firm Deviating in the Standard Competitive Search Model
Notes: The figure displays the steady-state values of a number of variables in a stationary equilibrium with competitive search,

along with the corresponding values for an individual firm in that equilibrium that is able to set a wage commitment for a

probabilistic period of time. The latter are plotted as a function of 1/α, the expected duration of the wage commitment. The

firm value plotted is the scaled firm value per existing match.
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Figure 9: Impulse Responses in Firm Wage vs Standard Model
Notes: The figure plots the percentage responses of model variables to a one percent increase in firm-level labor productivity

in the firm wage model and the standard competitive search model without firm wages. Labor productivity follows an AR(1)

with autocorrelation ρz = 0.9 and standard deviation σz = 0.1. The response is based on a quadratic approximation, produced

with Dynare. The two models compared have the same steady-state levels of wage, tightness, unemployment.
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Figure 10: Impulse Responses with Annually Reset Wages vs Standard Model
Notes: The figure plots the percentage responses of model variables to a one percent increase in aggregate labor productivity

in the firm wage model with annual wage adjustment and the standard competitive search model without firm wages. Labor

productivity follows an AR(1) with autocorrelation ρz = 0.96 and standard deviation σz = 0.02. The two models compared

have the same steady-state levels of wage, tightness, unemployment, as described in the section on parametrization. The plotted

vacancy-unemployment ratio is its model counterpart, which differs slightly from θ due to timing.
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