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Abstract

Recent papers suggest a strong interaction between agglomeration externalities and hu-

man capital. We analyse a Mincerian wage equation with regional fixed effects and variation

in the return to human capital, using data on 47 states and 34 metropolitan areas for the US.

Agglomeration externalities are strongly related to the occupational structure. We show that

regional difference in house prices offset these externalities.We develop a multi-region model

with regional heterogeneity in workers and jobs, tradable versus non-tradable (land) commodi-

ties, consumption amenities, regional house prices, non-homothetic utility, and interregional

labour mobility. The model allows for two forms of spatial organization: cities and rural areas.

The model fits the regional data on the fixed wage effects, the return and mean level of human

capital, land prices, and the city-rural area distinction well. The contribution of agglomeration

externalities to GDP capitalizes in land values. We use these land values to calculate the value

of agglomeration.
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1 Introduction

Around 1920, Frits Philips was pondering where to set up the new factory of electric light bulbs.

He considered several villages in the South Eastern part of the Netherlands, like Helmond, Veghel,

and Veldhoven. He ended up in building his factory in the village of Eindhoven. Subsequently,

that little village went through several decades of exceptional growth. By 1950, Eindhoven was the

7th city of the Netherlands, and 20 years later it had climbed to the 5th rank, a position Eindhoven

still holds. Philips Electronics built extensive laboratory facilities, which were renowned in the in-

dustry. The city started its own technical university. From 1970 onwards, Philips Electronics went

through a difficult episode. It had difficulty marketing its excellent technological innovations and

went almost bankrupt. The renowned laboratories were closed down. Eventually, Philips decided

to move its headquarters to Amsterdam, seeking a more open labour market and a better connec-

tion to the outside world. Eindhoven experienced a deep trough. But in the end, the backbone of

former researchers of Phillips’ laboratories, well trained engineers, many of them receiving their

education at Eindhoven’s technical university, saved the city. There were many new startups, of-

ten supported by Philips. Nowadays, the city is striving again, hosting ASML, the world leader

in new production technologies for ICs. The current market capitalization of ASML exceeds that

of its parent Philips.

This story is just one of many. Glaeser (2005) compared the different development of Boston

and Detroit. Why did Boston recover from the closing down of its harbour activities, while Detroit

is still struggling after the demise of the automobile industry? The answer is in the permanent in-

flow of new excellently trained workers, which were able - in Glaeser’s words - to reinvent the

city. Lucas (1988, 2001, 2009) used standard economic models to explain the importance of en-

trepreneurship, human capital externalities and the city agglomeration impact. In a recent paper,

Gennaioli, La Porta, Lopez-de-Silanes and Shleifer (2013) use Lucas’s model as framework for

the analysis of the regional distribution of human capital and economic activity in more than 100

countries across the world. They find very strong agglomeration forces. Human capital tends to

cluster within a small number of regions within each country. GDP per capita and wages in these

regions are much higher than the nationwide average. These wage differentials are much higher

than can be explained from the standard private return to human capital. For example, a simple

regression of the regional GDP per capita on the regional mean years of education yields returns

to a year of education far above any reasonable estimate of the private return to education, e.g.

54% for Brazil, 31% for India, 23% for Colombia, and 55% for Russia.

In this paper, we discuss the relationship among education, population, agglomeration, us-

ing a spatial equilibrium framework and discuss the importance of occupation structure. Our

first conclusion is that knowledge spillover effects are big and significant. We present an empir-

ical analysis on regional average wages, education levels and occupation structure. We use the
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Current Population Survey in United States from 1979 to 2015, combining other regional level

variables. US data provides a wide regional disparity and large data availability. In line with Gen-

naioli et al.(2013), year of education matters in term of the local wage determination. Knowledge

spillover leads to a general higher social return to workers. Higher educated workers benefit other

workers in the same area by increasing the overall wage. It is the quality of workers, rather than

the quantity that matters. We use a simple comparative advantage human capital and occupation

model to evaluate the results. By comparing and discussing the single index model and double

index model, we provide evidence that the observed social return cannot be fully explained by un-

observable worker characteristics. The observable features which describe the human capital level

can nicely predict the unobservable part. Taking this into consideration, the estimated knowledge

spillover can be a little smaller but still economically and statistically significant. Using only a few

variables, this framework gives almost complete descriptions of the interregional average wage

differential.

Our second conclusion is that shocks to the occupational structure can explain a large fraction

of spillover and agglomeration effects. By empirical example, we show that occupation struc-

tures also have significant impacts. Areas with more complex occupations in general have higher

income. Spill-overs come from certain occupational structures. We decompose the impact by

occupation and find out that computer science and financial services generate most of the occu-

pation spillover. Interestingly, entrepreneurs have no impact in our sample. The full model gives

both a static and dynamic explanation on regional wage determination and occupation structure

shocks. We integrated the cities and states sample, by setting up both city and non-city regions

in a spatial equilibrium and agglomeration model, similar to Lucas and Rossi-Hansberg (2002).

Three agglomeration forces are considered. In city regions, workers commute to the center and

knowledge spillover is fully transmitted into total productivity. However, due to the commuting

cost, the productivity is partly consumed by the crowding effect. In non-city areas, there is no

commuting cost, but the knowledge spillover will diminish along the distance, at a given decay

rate. The last distance concept is the transportation cost. It gives a larger market for regions with

better connections with their neighboring regions, due to the larger market demand. Wage and

housing price or the land price are the outcome of local market and play the role to guide the

inflow and outflow of labour force, to further make the economy reach the equilibrium states. In

production technology, we use the search and matching friction model by Gautier and Teulings

(2006), who focus on search frictions. Here, search frictions are ignored.

Last, we estimate the welfare gain from agglomeration and the knowledge spillover. Using the

theoretical model, we estimate the equation system using instrumental variables, labour demand

Bartik instruments, January temperature, and the roughness of land area. Estimations indicate

that occupation structure shocks can explain the correlations among the key variables. We further

calculate the macro valuation of externalities, i.e. the welfare gain from agglomerations, using
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housing wealth and its counterfactual value.

2 Some empirical evidence

2.1 A simple statistical model

The strawman of our paper is a simple statistical model following ideas of the hedonic ”kissing

curves” models by Rosen (1974), Sattinger (1975), and Teulings (1995) that serves as a first descrip-

tion of our data. The model describes the wage rate for workers i which differ by their level of

human capital and who can take jobs with different occupational complexity in an economy with

multiple regions r. Both worker’s human capital hi and the occupational complexity oi can be

captured by a single index. Each region has a separate labour market. Relative wages may differ

between region. However, within each region, wages are increasing in workers’ human capital

and there is perfect positive sorting of job complexity by human capital. Since wages are an in-

creasing function of human capital within each region, we can use a wage equation to obtain a

metric for the worker’s human capital. We do this by means of a simple log linear wage equation1

wir = ω0 + ωr + ρrhi + eir, (1)

hi ≡ ĥi + hi,

ĥi ≡ ω′xi,

where wir is the observed log hourly wage for worker i working in region r, where ĥi and hi are

the observed and unobserved part of human capital respectively, where eir reflects measurement

error in the observed wage, and where xi is a vector of standard personal characteristics like

age, years of education, gender, marital status, and race. Without loss of generality, we assume

the components ĥi and hi to be orthogonal over the full sample of all regions. For the sake of

convenience, all elements of xi are demeaned over the full sample; hence, E
[
ĥi

]
= 0. Similarly,

we assume that hi has mean zero over the full sample; however, within a region, its mean might

be different from zero due to selective interregional migration. The parameter ω0 is an overall

intercept, ωr is a dummy for each region r, ρr is the return to hi in each region r, and ω is a

vector of parameters of the same dimension as the vector xi which is common to all regions; the

parameter vector aggregates the components xi into the single human capital index hi. For future

reference, it is useful to define

ω̂0r = ωr + ρrE [hi|r] . (2)

1The linearity of this equation is not an important restriction on the generality of the analysis, see Gautier and
Teulings (2008). Suppose wages are an increasing but non-linear function of some human capital index h∗: w =
w (h∗) = w (ω′x) , with w′ (h∗) > 0. By defining a transformed human capital index h = w (h∗) the linearity can
be imposed without loss of generality. The non-linearity in the relation with the vector x can then be addressed by
applying a polynomial in x.
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Estimation of equation (1) by standard techniques, see the discussion below, yields an estimate of

ω̂0r, but not of ωr, because hi and hence E[hi|r] is unobserved. Referring hi as the human capital

of a worker glosses over all kind of hairy issues like whether the effect of gender or race might

attributed to differences in human capital or that these variables might be proxies for all kind of

other processes, like interrupted careers of women or discrimination against women and blacks.

Since our aim is just to agglomerate all observable variables in a single index that reflects the

earning capacity of a worker, we sidestep these issues.

Equation (1) imposes a multiplicative restriction compared to a more general model

wir = ω0 + ωr + ω′xrxi + e′ir.

In equation (1), interregional variation in ρr affects the returns to the each components of xi pro-

portionally, while in the general model, the returns to each component of xi can vary indepen-

dently between regions.2 Substitution of the definition of ĥi in the wage equation yields

wir = ω0 + ωr + ρr
(
ω′xi

)
+ e

(h)
ir , (3)

where e(h)ir = ρrhi + eir. The full model in equation (1) is unidentified: multiplying the vector ω by

a constant and dividing all ρr by that same constant changes does not change anything. The same

applies to ω0 and ωr. Hence, we add convenient normalizing assumptions for the mean of ρr and

ωr across regions.

Er [ωr] = 0, Er [ρr] = 1. (4)

For future reference, we refer to R2
h as the share of observed human capital in the total variance of

human capital

R2
h ≡

Var
[
ĥi

]
Var

[
ĥi

]
+ Var [hi]

. (5)

Equation (3) can be estimated by NLLS (Non-Linear Least Squares). The non-linearity stems

from the multiplicative restriction on the coefficients ρrω. We can apply a simple iterative scheme

for the estimation of the model. First, estimate equation (1) setting ρr = 1 for all regions to obtain

a first estimate for ω0, ω̂0r, and ω. Next, calculate ĥir = ω′xi and estimate equation (3) to obtain

a second estimate for ω0 and ω̂0r and a first estimate for ρr. Then, calculate x(2)ir = ρrxir and use

these data to reestimate equation (1) from the first step to obtain new parameters for ω0, ω̂0r, and ω,

etc.. In practice, the estimates from this second step deviate hardly from the first step. We can test

the non-linear restriction ωr = ρrω by means of a likelihood ratio test. Due to the large number of

data, this test will surely reject this non-linear restriction. Alternatively, we can ask what share of

2The saturated model has R× (K + 1) parameters, where R is the number of regions and K is the dimension of the
vector xir , while equation (1) has only 2R+K + 1 coefficients.
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the variance of a model with a separate parameter vector ωr for each region r relative to variation

spanned by a restricted model with a single common vector ω for all regions is covered by the

restriction ωr = ρrω. For future reference, we define the mean level of observed human capital in

region r as

Ĥr ≡ E
[
ĥir|r

]
;

Hr is defined similarly; the means of Ĥr and Hr over the full sample are zero by construction

(since xi is demeaned over de full sample and E[hi] = 0).

These equations describe the supply side. We use a similar model for the demand side. Since

wages are increasing in human capital and since there is perfect positive sorting of job complexity

by human capital, wages are increasing in the job complexity. Hence, analogous to equation (1),

we obtain a measure of occupational complexity using the following model

wir = ω0 + χ0r + χoroi + eir, (6)

oi ≡ ôi + oi,

ôi ≡ χ′zi,

Er [χ0r] = 0, Er [χhr] = 1,

Ôr ≡ E [ôi|r] .

where zi is a vector of occupational dummies; like xi, zi is demeaned over the full sample.3 We

shall refer to ôi as the level of observed occupational complexity. Again, the means of Ôr and Or

over the full sample are zero. R2
o is defined analogously to R2

h.

2.2 Data

We draw data from five different sources. Individual level data are taken from the Current Pop-

ulation Survey, Merged Outgoing Rotation Groups (CPS-MORG) from 1979 till 2015. We use the

hourly wage, years of education, occupation, industry and other demography information as gen-

der, age, marital status, and race. Our sample includes all workers age 16 to 64.

For our classifications of regions, we select 34 MSAs for which both individual level and re-

gional level data set are available. We then take the remaining part of each state as one non-city

region. The definition of MSAs changes overtime. To make the samples consistent, we match

different ID of these areas over time. From 1979 to 1985, we use 1970 Census ranking to iden-

tify MSAs. From 1986 to 1988, we use CMSA and PMSA identifier. From 1989 to 2003, we use

MSAFIPS and for the rest of samples we use CBSAFIPS. Out of the total sample, 2,027,727 obser-

3By construction, the intercept of this regression must be the same as in equation (1), since all explanatory variables
are demeaned in both regressions. The element of χ corresponding to a particular occupation is the mean log relative
wage in that occupation in the full sample.
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vations, 36.7%, are living in MSAs and the proportion is stable over time. We have 47 Non-MSA

state regions. As is common practice, we exclude Hawaii and Alaska. Furthermore, New Jersey is

excluded since all of its area is part of NY-NJ MSA, leaving us with 34 MSAs and 47 rural areas,

81 regions in total. The list of MSAs is in appendix, see Table A1.

The definition of occupation and industry varies over time. We use the occupation defini-

tion proposed by Autor and Dorn (2013), which uses the similarity of tasks to form a consistent

definition of occupations over time. We consider 330 different 3-digit occupations. We use the

industry definition suggested by Autor, Levy, and Murnane (2003) and the crosswalk constructed

by IPUMS.

The regional population and employment data are taken from US Census Bureau. The Hous-

ing Price Index (HPI) is taken from the Federal Housing Finance Agency All-Transaction Indexes,

both for states and for Metropolitan Statistical Areas (MSAs). To make the housing price compa-

rable across regions, we also calculated the housing value index, using the additional information

from Zillow Research, Zillow Home Value Index. We use the estimated median home value for

all homes within a region. State level data for two states, Maine and Louisiana, are missing from

this data set. Instead, we use the available average home value at the county level. Proximity data

is from US Department of transportation. We collect information on the bordering regions and

whether a given region is close to sea coast or one of the main navigable rivers. Average January

temperature data is from US National Oceanic and Atmospheric Administration, 1981-2010 US

climate normals, following Glaeser (2004). All regional data covers the research period 1979 to

2015 at annual frequency.

2.3 Summary statistics

We use these data to estimate equation (1) and (6). We add time dummies to account for nation

wide nominal wage growth. Estimation results for the parameter vector ω are presented in the

Appendix, estimation results for χ are available from the authors on request. Three examples of

the index ĥi characterize the distribution. The 10th percentile of the distribution of ĥi is -0.426,

a typical worker in this group is a black married female with 10 years of education and 26 years

of experience. The median value of ĥi is -0.012, corresponding to a white married male with 12

years of education and 8 years of experience. The 90 percentile is 0.429, which corresponds to a

white married female with 18 years of education and 21 year of experience. On the demand side,

the 10th percentile of the distribution of ôi is -0.465, which are occupations like laundry and dry

cleaning. The median is -0.019: health technicians. The 90th percentile is 0.396, which are financial

service sales. Clearly, the median level of ĥi and ôi should be close to zero by construction, since

we demeaned xi and zi across the full sample; the only reason for the medians not being exactly

zero is that the median is not equal to the mean.
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Table 1: Summary Statistics
Individual level Var Decomposition %
Variable Mean S.D. Inter-region Intra-region
wir 2.387 0.5691 4.15 95.85
ĥi 0.000 0.3432 0.92 99.08
ôi 0.000 0.3341 1.07 98.93
cor(ĥi, ôi) 0.5655
Regional level Correlation Matrix
Variable Mean S.D. Hr Or ω̂0r ρr χ0r χor
Ĥr 0.0010 0.0323 1
Ôr 0.0010 0.0320 0.7854 1
ω̂0r -0.0637 0.0811 0.6363 0.7913 1
ρr 0.9860 0.0480 0.1180 0.4462 0.5493 1
χ0r -0.0397 0.0785 0.7270 0.7265 0.9695 0.4622 1
χor 0.9861 0.0456 0.2019 0.5356 0.5311 0.8603 0.4376 1

Note: The summary statistics for key individual and regional level variables. Log wage from data. Human
capital index and occupation index are calculated using equations in section 2. Mean and standard
deviation are presented. Variance decomposition represents the contribution of inter- and intra- region.
Data Source: Current population survey, the US Census Bureau,the Federal Housing Finance Agency,
Zillow Research, the US Department of transportation, and the US National Oceanic and Atmospheric
Administration.

The estimation results for equation (1) are summarized in Table A2. The variance of in the

human capital index ĥi is (0.343/0.569)2 = 36% of the variance of log wages (the numbers for ôi
are very similar). Most of the variance in observed human capital is within regions; only 1% of

the variance is between regions. The standard deviations of the mean observed levels of human

capital and occupational complexity, Ĥr and Ôr, are 3%, while the standard deviation of inter-

regional wage differentials is
√

0.0415 × 0.569 = 11%. Hence, since the average return to human

capital is normalized to unity, observed human capital explains only only (0.03/0.11)2 = 7% of the

interregional variation in wages. The estimated region fixed effect ω̂0r accounts for a large part of

the remaining variation; its standard deviation is 8%. The mean observed levels of human capital

and occupational complexity, Ĥr and Ôr, are positively correlated across regions: a region with

a well-educated workforce tends to have many jobs in complex occupations. Finally, we observe

that the returns to human capital and to occupational complexity, ρr and χor, vary substantially

between regions (std.dev. 5%), but are strongly correlated across regions (86%). Since their means

and standard deviations are also almost equal, this justifies a simplifying assumption.

The Equal Return Assumption

ρr = χor, ∀r.
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Though this assumption does not hold exactly, it provides a good first order approximation of the

data. It simplifies the subsequent analysis. Elimination of wir from equation (1) and equation (6)

gives

oi =
ωr − χ0r

χor
+

ρr
χor

hi.

The assignment of human capital type hi to occupation type oi is an increasing linear function

with the interregional variation in its coefficients. This equation can be simplified by imposing the

Equal Return Assumption

oi =
ωr − χ0r

χor
+ hi. (7)

Taking expectations in equation (7) for region r shows that the same relation between hi and oi

that holds at the individual level, also holds at the aggregate level betweenHr and Or. Solving for
ωr−χ0r

χor
and substitution in equation (7) yields

Or =
ωr − χ0r

χor
+Hr, (8)

h = o−Or +Hr.

Under the Equal Return Assumption, the interregional variation in the assignment of human cap-

ital to occupational complexity is a simple mean shift. There is no a priori reason for this assump-

tion to hold. It just turns out to be a good description of the data.

2.4 The Proportionality Assumption

Our interpretation of the occupational structure as capturing the supply side of the labour market

is not undisputed. For example, Autor and Dorn (2013) have argued that our observed measures

of human capital are imperfect and that occupation is just an alternative measure for the worker’s

human capital. This section addresses this issue: what information can we extract from data on

the worker’s occupation?

We refer to the model set out in Section 2.1 as the Single Index Model. This model claims that a

worker’s human capital can be meaningfully summarized in a single index h (we drop the index

i in what follows, since it is by now clear which variables are defined on the individual level).

Its decomposition in an observed and an unobserved component is irrelevant from an economic

point of view; both components are perfect substitutes. The model implies that high human capital

workers sort into complex occupations; see equation (7). Since human capital and occupational

complexity are only partially observed, the model predicts that the observed part of occupational

complexity will be correlated to the unobserved part of human capital. Hence, in a regression

with both human capital variables and occupational dummies, the effect of occupational dummies
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proxies unobserved human capital, and the other way around. However, this view implies that

when aggregating over all individuals in region r, the means of observed human capital and

occupational complexity, Ĥr and Ôr, are an imperfect measure of supply and demand for human

capital in region r due to the selectivity in the unobserved components.

The alternative view is dubbed the Double Index Model. Where the Single Index Model assumes

that observed and unobserved characteristics can be aggregated into a single index h, the Double

Index Model assumes that ĥ and h measure economically different aspects of workers’ human

capital, which are required for different occupations and for which the return might therefore

vary independently between regional markets. For example, let us presume for the sake of the

argument that formal education is conducive to a student’s analytical skills, but not to her emo-

tional skills. In that case, the index h alone is a sufficient statistic for IQ, but not for EQ. Hence, the

occupational assignment of a worker cannot be predicted based on the index h alone; one needs

information on its decomposition in ĥ and h. In a wage regression with both standard human

capital variables and occupational dummies, the occupational dummies pick up the effect of EQ

on the occupational assignment.

A meaningful comparison of both interpretations of the data requires us to raise the hurdle for

the Single Index Model by making a further assumption. This assumption increases the empirical

content of the model, which makes it therefore more easy to reject the model (hence, we refer to it

as the Extended Single Index Model). Equation (7) specifies the relation between observed indexes

h and o implied by the model. However, it does not specify the relation between the unobserved

and the unobserved components of both indexes. The assumption below fills this gap.

The Proportionality Assumption

When a worker with human capital h = ĥ+ h is assigned to an occupation o = ô+ o in region

r, then the index h is a sufficient statistic for the expectation of the observed and unobserved

component of the occupational complexity indexes ô and o respectively. The components of h, ĥ

and h, do not provide further information about these expectations. In particular, the following

relations apply

E [ô|h, r] = R2
oE [o|h, r] , (9)

E [o|h, r] =
(
1−R2

o

)
E [o|h, r] ,

where E[o|h, r] is given by equation (7). Similarly, o is a sufficient statistic for the expectation of

the observed and the unobserved component of human capital, ĥ and h, and mutatis mutandis

the same relations as in equation (9) apply.

This assumption is a natural extension of the idea that observed and unobserved human capital

are perfect substitutes and that the decomposition of h in these components is therefore irrelevant
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Table 2: Intraregional Variance Decomposition
No. Variance Data Formula Calculated

1. Cov
[
ĥ, ô
]
/Var[w|r] 21% (1− E)R2

hR
2
o 20%

2. Cov
[
ĥ, o
]
/Var[w|r] 16% (1− E)R2

h

(
1−R2

o

)
17%

3. Cov[h, ô] /Var[w|r] 16% (1− E)
(
1−R2

h

)
R2
o 17%

4. Cov[h, o] /Var[w|r] 17% (1− E)
(
1−R2

h

) (
1−R2

o

)
15%

5. Var[e] /Var[w|r] 30% E 30%

Note: The decomposition of intraregional variance of wages. Human capital index and occupation index
are calculated using equations in section 2. Data Source: Current population survey.

for the decomposition of the occupational complexity of the worker’s job into its observed and

unobserved component.

The Proportionality Assumption implies that the intraregional variance in log wages can be

decomposed into five orthogonal components. Let E be the share of the measurement error in the

variance of the data on wages. Then,

The percentage for the first three components can be calculated directly from the data.4 The sum

of the final two components can then be calculated as a residual item. However, its decomposition

into both components cannot be derived from the data. We apply an independent estimate of the

measurement error in wages by Angrist and Krueger (1999). Then, the covariance between the

unobserved components follows as a residual item.

As a first test of the Extended Single Index Model, we check whether this distribution into

five components is consistent with the Proportionality Assumption. We have the last column of

Table 2. A similar calculation as for R2
h yields the same value R2

o (which is accidental; it follows

from the equality of Component 2 and 3). We use these numbers to calculate the predicted share of

Component 1 and 4 in the total variance; the result is in line which the outcome that is predicted by

the Proportionality Assumption. This is a first confirmation of the Extended Single Index Model.

The second test directly compares the Single to the Double Index Model. If ĥ and h measure

different aspects of human capital, as in the Double Index Model, they span a two-dimensional

space. Different combinations of ĥ and h make a worker apt for different occupations even when

their sum h is the same. Since our occupational classifications has more than 300 entries, this

classification can be expected to span this two dimensional space. The linear combination that

correlates best to the observed component ĥ should therefore be different from the linear combi-

4For the second component, we use

Cov
[
ĥ, o
]
= Var

[
ĥ
]
− Cov

[
ĥ, ô
]

which holds since ô+ o = o = h. A similar relation applies for Cov[h, ô].

11



nation that correlates best to the unobserved component h. The estimation results on equation (3)

provide an estimate of the observed component ĥ = ω′x. We also have a measure of the unob-

served component: ρ−1r
(
w − ω0 − ρrĥ

)
. Hence, we run two regressions

ĥ = χ(1)′z + e(1),

wi − ω0 − ωr
ρr

− ĥ = h+ ρ−1r e = χ(2)′z + e(2),

where e(1) and e(2) are individual specific error terms. If the Single Index Model holds, the corre-

lation between χ(1)′z and χ(2)′z should be close to unity. Instead, if the Double Index Model holds,

this correlation should be substantially lower. Moreover, the R2 of the first regression should be

R2
o = 0.53 (the share of observed occupational complexity in the total variance), while theR2 of the

second regression should be 1−R2
h

1−R2
h+E

R2
o = 0.32; the R2 of this second regression is lower since the

measure of unobserved human capital is diluted by the measurement error in wages. The actual

correlation between χ(1)′z and χ(2)′z is 0.84, while the actual R2s are 0.36 and 0.11 respectively.

This provides strong evidence in favour of the Extended Single Index Model.

The Extended Single Index Model yields an estimate of the actual means Hr and Or of human

capital and occupational complexity based on the means Ĥr and Ôr of their observed components.

Taking expectations for region r in equation (9) yields

Hr = R−2h Ĥr = 1.89Ĥr, (10)

Or = R−2o Ôr = 1.89Ôr,

where we use R2
h = R2

o = 0.53 in the last step. These relations extend the selection process for

a single occupation o to the regional level. Though the relation between o and h is deterministic,

see equation (7), the deconvolution of h in its observed and unobserved component is random.

The workforce in region r is a selective sample from the nation’s total workforce. This selection

follows the same rules as the selection process for an individual occupation. The selection affects

the observed and the unobserved component proportional to their share in the variance of h for

the total population.

Under the Proportionality Assumption, the mean of observed human capital, Ĥr, is there-

fore an underestimation of the mean of total human capital, Hr, since it ignores the selectivity in

the unobserved component. A similar argument applies to the mean of occupational complexity.

One might object that this assumption about the selectivity of unobserved components is specu-

lative. However, this approach follows immediately from the Proportionality Assumption for the

selection process at the level of individual occupations, for which we provided strong empirical

evidence. It is hard to conceive a model where this process would apply at the level of individual

occupations, while it would not apply when aggregating over all occupations in a region. Equa-
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tion (10) implies

E [hi|r] =
1−R2

h

R2
h

Ĥr,

Hence, by equation (2), ωr satisfies

ωr = ω̂r − ρr
1−R2

h

R2
h

Ĥr = ω̂0r − ρr0.89Ĥr, (11)

where we use again R2
h = 0.53 in the last step. Using equation (10) for calculation of the total

interregional variance in human capital, human capital explains 1.892× (0.03/0.11)2 = 27% rather

than 9% of the interregional variation in log wages; see Section 2.3.

One can take the argument in favour of the Double Index Model one step further, by consid-

ering a Multiple Index Model. Where the Double Index Model assumes that ĥ and h are different

components of human capital, the Multiple Index Model claims that the observed human capital

ĥ measures general human capital, but that occupations require specific skills that are badly mea-

sured by years of education but are picked up by the occupational classification. In this view, the

effect of occupations in a wage regression measures the market value of this occupation specific

human capital. Taking it to the extreme, a secretary is called a secretary, not because she has a dif-

ferent job than her boss, but because she has a typing certificate, unlike her boss. The arguments

in favour of the Single Index Model in comparison to the Double Index Model apply a fortiori to

the Multiple Index Model.

2.5 What explains the interregional variation?

Table 1 has documented the substantial interregional variation in the intercept ω̂0r and the return

to human capital ρr in regression for log wages. What explains this variation? This section pro-

vides a first answer to this question. We regress the regional dummies ωr (derived from ω̂0r using

the correction in equation (11)) on a number of explanatory variables, see Table 3. Column (1)

includes only the regional mean observed level of human capital Hr (using the correction in equa-

tion (10)). It comes in significantly with a coefficient of 0.38, the R2 being 0.12. Our methodology

yields an easy interpretation of the magnitude of the coefficient.5 A coefficient of unity would

imply that when we raise the observed human capital of all workers by 0.01, which increases their

wage via the term ρrĥ by 1% due to our normalization, then there is an indirect effect via the inter-

cept ω0r of 0.38%. It is tempting to interprete this as evidence of agglomeration externalities from

a better skilled workforce.

5The reader might who is sceptical about the proposed correction for selectivity might wonder what would be the
size of the spillover when using the uncorrected estimated ω̂0r and Ĥr . In that case, the coefficient would be much
larger, 1.58.
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Table 3: Interregional variation of the intercept
(1) (2) (3) (4) (5)

VARIABLES Adj. Avg. Wage ωr
Human Capital Index Hr 0.376 0.250 0.00768 -0.330 -0.531

(3.44) (3.11) (0.09) (-2.67) (-2.97)
Occupation Index Or 0.575 0.736

(2.95) (3.11)
City Dummy -0.308 -0.299 -0.284

(-2.93) (-5.36) (-4.27)
City x ln Population 0.0262 0.0237 0.0225

(3.51) (6.07) (4.77)
Spatial Lag 0.865 0.747 0.685 0.658

(7.75) (7.50) (8.20) (7.72)
South Dummy -0.0229

(-2.24)
Constant -0.0653 0.000480 -0.0358 -0.0301 -0.0239

(-9.36) (0.05) (-3.10) (-3.29) (-2.75)

R-squared 0.118 0.480 0.688 0.760 0.773
R-MSE 0.0630 0.0486 0.0382 0.0337 0.0330

Note: Columns (1)-(5) present the estimated social returns using OLS regression. Dependent variable is the
average wage controlling for individual human capital wr. Human Capital index measures the average
human capital in a region. Occupation index measures the occupation complexity of local labour market.
Metro Dummy equals one if an observation is city area, zero if it is non-city area. Log MSA Population is
the reported population in each region. Spatial local wage is the average of all the neighbouring region
wages. Detailed definitions in section 2. Robust t-statistics in parentheses.
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In column (2) we measure the potential interactions between regions by adding a spatial lag.6

Agglomeration benefits in neighboring regions might spill over to the own region. The spatial lag

is highly significant and the R2 increases to 0.48. The coefficient on Hr drops slightly. In column

(3) we add city variables: a city dummy and the log population of a city; the combination of

both terms implies that any city with more than 100,000 inhabitants pays higher wages than the

countryside. This applies to all cities in our sample. The R2 increases to 0.69. The coefficient on

Hr is no longer significant. Clearly, the city variables and the mean level of education level are

highly correlated. The spatial lag term remains largely unaffected.

The surprise comes in column (4), where the mean occupation indexOr is added as a regressor.

The R2 jumps again, to 0.76 in this case. The coefficient on Hr flips signs, while the coefficient on

Or takes over and is clearly significant. Just five variables explain the main part of the variation

of regional fixed effects in a log linear wage regression. Apperently, spillovers do not stem from

better educated workers, but from the more complex occupations that these workers have. As

documented in Table 1, both variables are highly correlated (79%). Nevertheless, we are able to

separately estimate their effect with reasonable precision.

Finally, column (5) repeats the same regression with a dummy for the South, as is a standard

practice in many empirical studies. Its coefficient is significant but small. The lower wages in the

South are largely explained by the five variables in column (4).

Figure 1 shows the region fixed ωr for each region. Three observations catch the eye. First,

there exist large interregional wage differentials. Second, cities have higher fixed effects than the

surrounding regions. Most cities are concentrated in small number of regions, usually close to

navigable water: the Northeast and the West coast, the Mississippi River basin, and the Lake

region. We experimented a bit by adding a dummy for the proximity to navigable waters, but

after controlling for our four main variables, this did not have a significant effect on the region

fixed effects ωr. Third, the spillover effects between neighboring regions are substantial. The rural

area of states with one or more cities tend to benefit from their presence.

A feature that is deeply wired into the theoretical structure of the hedonic ”kissing curves”

models of Rosen (1974), Sattinger (1975), and Teulings (1995) is that the market return to the hu-

man capital index h is a function of the assignment of workers to jobs: the higher the complexity

of the occupation o to which a worker with human capital h is assigned in a particular region, the

higher the return to human capital in that region. This feature is derived from the first order con-

dition for optimal assignment: the return to human capital for a particular level of human capital

must be equal to its marginal productivity in the occupation to which a worker with that human

capital is assigned in that region. Hence, if the assignment of h-type workers to o-type occupations

6Let P be anR×Rmatrix, whereR is the number of regions. If region r and s are neighbors, then the corresponding
elements in matrix P is equal to 1, otherwise it is zero. Then, the matrix is normalized by dividing each row by its row-
total.
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(a) Average Regional Wage, 1979-2015

(b) Average Human Capital Index, 1979-2015

(c) Average Occupation Index, 1979-2015

Figure 1: Average Regional Differentials in Key Variables I
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is the same in two regions, so must be the return to human capital.

In the next section, we present a version of this model where the return dw/dh in region r

is a decreasing linear function of the difference between a worker’s human capital index h and

complexity index o of the job to which she is assigned in the market equilibrium in this region

dw

dh
= 1− γ (h− o) , (12)

where γ is a positive parameter. The sign of this parameter is the second order condition for

optimal assignment. Taking expectations over all individuals in region r yields

E
[

dw

dh
|r
]

= 1− γ (Hr −Or) . (13)

Equation (8) reveals that for the assignment of h to o to be constant between two regions, both re-

gions must have the same value for Hr − Or; hence the coefficient for both variables should have

the same magnitude, but opposite sign. Note that equation (13) is consistent with the normaliza-

tions that we have applied: E[ρr] = 1 and E[Hr] =E[Or] = 0, see equation (4) and (6).

Equation (13) specifies a negative interregional relation between the return to human capital ρr
and the net supply of human capital Hr−Or. Table 4 presents estimation results for this equation.

In column (1), we enter Hr and Or separately. Both variable have the right sign. Though the

coefficients for Or and Hr are similar in magnitude, the equality restriction on both coefficients

is strongly rejected; see column (2).7 The estimation results imply γ = 0.60, which is lower than

the inverse elasticity of substitution between high and low skilled workers estimated by Katz and

Murphy (1992) and Teulings and Van Rens (2008), see the latter for a discussion. Keeping the

mean occupational complexity constant, an increase of the average human capital by 1% reduces

the return to human capital by 0.6%.

Equation (13) implies that full interregional equalization of relative wages would require the

regional supply and demand for human capital to move in tandem, Hr = Or for all regions.

As documented in Table 2 and Figure 2, supply and demand are strongly correlated, but not

perfectly. More importantly, we have document that there is sufficient interregional variation in

Hr − Or to separately identify the effect of both variables in the regressions for both ωr and ρr.

This paper addresses the question what explains these interregional differences inHr−Or and, by

implication, what explains the interregional variation in the return to human capital ρr. Column

(3) and (4) of Table 3 provide some first provisional answers. We regress Hr − Or and ρr on a

city dummy, log city size, and the mean occupational complexity in the region. As the theory

predicts, the coefficients in column (3) and (4) have opposite sign, see equation (13): a factor that

raises Hr − Or reduces ρr. However, the coefficients are weakly significant at best. Cities and

7The F (2, 79) test statistic is 29.3.
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(a) Average Return to Human Capital, 1979-2015

(b) Average Difference Hr −Or, 1979-2015

(c) Average ln January Temperature, 1979-2015

Figure 2: Average Regional Differentials in Key Variables II
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in particular large cities have a higher return to human capital than other regions. The same

applies to regions with an high mean occupational complexity. This implies that an increase in the

demand for human capital Or is not entirely offset by a corresponding increase in its supply Hr.

Obviously, the regression results in column (3) and (4) should be interpreted with caution, as Or
is endogenous. For Hr −Or, the negative sign can just be an artifact of regression to the mean.

Table 4: Return to Education
(1) (2) (3) (4)

VARIABLES ρr ρr ρr Hr −Or

Hr -0.478
(-4.47)

Or 0.733 0.191 -0.150
(6.78) (1.87) (-1.57)

Hr −Or -0.601
(-5.00)

City Dummy -0.216 0.0655
(-2.24) (0.48)

City x ln Population 0.0171 -0.00530
(2.57) (-0.56)

Constant 0.986 0.986 0.974 0.00470
(223.89) (211.85) (135.13) (0.79)

R-squared 0.340 0.248 0.267 0.113
R-MSE 0.0395 0.0419 0.0419 0.0382

Note: Columns (1)-(4) present the determinates of the return to human capital using OLS regression.
Dependent variable is the average returns to human capital w′r. Human Capital index measures the
average human capital in a region. Occupation index measures the occupation complexity of local labour
market. Detailed definitions in section 2. Robust t-statistics in parentheses.

These remarks on the regression results in Table 3 can be extended to all results presented in

Table 2. They have to be taken with a grain of salt, since both Hr and Or are endogenous. They

only provide a point of reference for the model to be developed in next section. Four conclusions

are relevant from this perspective. First, our results suggest that there are positive agglomeration

externalities in the upper tier of the labour market, for workers with either high human capital

or complex jobs. Second, these agglomeration benefits go hand in hand with the location of high

end activities in cities. Third, the evidence suggests that these externalities are more likely to be

related to the regional mean of occupational complexity than of human capital. Finally, we have

documented that there is substantial interregional variation in the return to human capital.
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2.6 Agglomeration and house prices

In a world where interregional labour mobility is free, house prices differentials are the prime rea-

son why wage differentials can persist. Table 5 presents the estimation results of two regressions.

Column (1) reports the results when regressing the log housing value regional characteristics. The

higher temperature leads to a higher housing value. A similar effect shows in human capital but

is comparatively stronger. City have higher housing price which is positively correlated with the

size of city. Larger cities have even higher price. Column (2) reports a regression without regional

temperature and the city effect is persistent. The occupational structure has a positive but less

significant effect.

Table 5: Housing Value
(1) (2)

VARIABLES avg. ln Housing Value

ln Jan Temp 0.304
(2.96)

ln City Population 0.221 0.245
(2.77) (2.89)

Metro Dummy -3.287 -3.550
(-2.97) (-3.03)

Occ Index 0.965 1.966
(0.86) (1.66)

HC Index 2.813 1.269
(3.22) (1.74)

Constant 9.882 11.60
(17.22) (283.39)

Observations 81 81
R-squared 0.456 0.377
R-MSE 0.254 0.270

Note: Columns (1)-(2) present the determinates of the log housing value using OLS regression. Dependent
variable is the average returns to human capital w′r. Human Capital index measures the average human
capital in a region. Occupation index measures the occupation complexity of local labour market. Detailed
definitions in section 2. Robust t-statistics in parentheses.

The next section will provide a formal model that brings together the various pieces that have

been discussed till sofar, based on the assumption that agglomeration externalities are driven by

mean occupational complexity. The structure of the model will suggest a number of instruments,

which allows us to estimate the model and to test this assumption.
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3 Spatial Equilibrium Model

3.1 General structure

We consider an economy consisting of regions indexed r. For simplicity, there is no physical

capital in this economy. All land rents are earned by a class of absentee landlords. Each region

has three exogenous characteristics: its mean occupational rank Or, an exogenous consumption

amenity, the January temperature Tr, and whether the region is organized as an urban or a rural

area. Workers are endowed with a level of human capital h. Each worker supplies one unit of

labour. Her wage is her only source of income. In equilibrium, the log wage wr (h) of a worker

with human capital h living in region r is a linear function of her human capital,

wr (h) = ωr + ρrh. (14)

The coefficients ωr and ρr differ between regions and are endogenously determined. We assume

that there is perfect competition on all labour, product, and land markets. The model consist of

four building blocks:

1. workers’ utility function: costless interregional labour mobility sets the utility of a worker

with human capital h equal to some exogenous benchmark for that level of human capital

in all regions.

2. regional labour markets: workers with human capital h are assigned to jobs in occupation o;

regional relative wages adjust to make this assignment a profit maximizing choice of firms,

depending on the regional supply and demand of human capital, Hr and Or. Free entry of

firms drives their profits down to zero.

3. agglomeration externalities: depending on the regional mean level of occupational com-

plexity, on the average lot size chosen by the workers in the region, and on spatial form of a

region (urban versus rural), a region benefits from agglomeration externalities.

4. regional housing markets: workers choose the lot size of their house as to maximize their

utility. Regional log land prices pr adjust to clear the land market. The sum of the log land

price and the log average lot size yields the log average regional house price vr. Competition

between regions drives land prices down to the point where workers are indifferent between

regions.

Each of these four blocks will be discussed in the next subsections. The equilibrium to this

economy can be described by relations that are largely linear in h and in the exogenous aggregate

variables Or and Tr and in the endogenous aggregate variables Hr, ωr, ρr, and pr. At some points,

21



we apply a first order Taylor expansion of the equilibrium; details are discussed in the Appendix.

Like in Section 2, the nation wide means of these aggregate variables are normalized to zero

E [Or] = E [Hr] = E [ωr] = E [ρr − 1] = E [pr] = E [vr] = E [Tr] = 0. (15)

Since their variances are small, this justifies the application of a first order approximation; see the

Appendix for details.

3.2 Workers’ utility

Workers choose in which region r to live and work at the beginning of their career. They do so as to

maximize their utility. Regional mobility at the beginning of the career is costless. Worker mobility

will therefore equalize the utility of each h-type worker across all regions. In equilibrium, this

utility is equal to some nation-wide exogenous benchmark u (h). This benchmark utility depends

on the human capital of a worker since her human capital enhances her earning capacity. Without

loss of generality, this outside benchmark is normalized to the human capital index h,

u (h) = h. (16)

Workers derive utility from the private consumption of tradeables and non-tradeables and

from the availability of amenities/public goods. Tradeables are traded across regions at a constant

nation-wide log price p, which is normalized to zero without loss of generality, p = 0. The non-

tradeable consumption good is land, either directly, land that is used for residential purposes, or

indirectly, land that is used e.g. for shopping malls, where the price of the merchandise reflects

cost differentials due to variation in the price of land, or the land that is used by workers providing

non-tradeable services and who get compensated for the higher land prices by higher wages.

The private benefits of amenities cannot be priced. We consider two type of amenities: the

January temperature Tr and the regional fixed effect in wages ωr. People prefer to live in regions

where January temperature is more agreeable, see e.g. Glaeser (2009). Ahlfeldt, Redding, Sturm

and Wolf (2015) show in their study of Berlin that there are strong and highly localized agglomer-

ation externalities in residential areas. A high local density allows a dense network of services like

shops, restaurants, and cultural performances to be sustained. For the sake of convenience, we ap-

ply a reduce form model for this agglomeration externality on the consumption side by assuming

that this externality is proportional to the applomeration externality on the production side ωr.

The equilibrium condition for market for interregional migration can be derived most easily

in the form of a cost function. We allow the utility function of workers to be non-homothetic, so

that land can be a normal good. We use the expenditure function proposed by Hanoch (1975) and

Comin et al. (2015). As we show in the appendix, a first order Taylor expansion of the log of this
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expenditure function reads

ωr + ρrh︸ ︷︷ ︸
income = cost

= h︸︷︷︸+

benchmark u

(1− εh)λpr︸ ︷︷ ︸
price index

− (α− hξ)′ xr︸ ︷︷ ︸,
public goods

(17)

where xr ≡ [Tr, ωr]
′ is the vector of public goods, where pr is the price of land in region r, and

where λ is the average land share in expenditure. Equation (17) holds exactly when utility function

is homothetic and takes the Cobb Douglas form (ε = 0, η = 1), where the land share λ does not

depend on either the price of land pr or the benchmark level of utility h; when the elasticity of

substitution η between land and other consumption is different from unity, deviations of the land

share from the nation wide mean have only a second order effect on the cost function. Hence, this

effect drops out in this first order approximation of the cost function.

The left hand side is log income (= cost from the perspective of a cost function) of obtaining

a utility level h. The first term on the right hand side is the benchmark utility level. The second

term is the price index in region r. The log price of tradeables is normalized to zero. Hence, it

drops out. The log price of land enters the equation pre-multiplied by the average land share

in the economy, λ. We apply a non-homothetic utility function, where the income elasticity of the

demand for land is less then one; ε is one minus the income elasticity of land. If the utility function

were homothetic, ε = 0, the land share is independent of the benchmark utility level h; the term

λεhpr drops out in that case. When ε > 0, land is a normal good in consumption; the price index

is less sensitive to price of land for high human capital workers in that case. Albouy, Ehrlich and

Liu (2016) provide evidence that land is indeed a normal good.

The final term measures the compensating differentials for regional amenities. Other things

equal, regions with high amenities will have lower cost. Like the term for the price of land, this

term is comprised of two sub-terms. The parameter vector α ≡ [αT , αω]′ measures the compensat-

ing differential for one unit of the amenity as a share of disposable income. The parameter vector

ξ ≡ [ξT , ξω]′ measures the income effect. If the utility function were homothetic in the benefits of

amenities, the compensating differentials would be independent of the benchmark utility level h;

hence, ξ = 0. For ξ > 0, the amenities are normal goods.

Equation (17) must hold identically for all h. This yields two conditions

ωr = λpr − α′xr, (18)

ρr = 1− ελpr + ξ′xr.

The first condition states the level of log wages in region r must compensate for the level of log

land prices multiplied by the value share of housing and for the availability of amenities. When

land and amenities are normal goods (ε > 0, ξ > 0), the second condition states that the return
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to human capital is lower in regions with high land prices, since workers with a high benchmark

level of utility need less compensation for high land prices, since land has a smaller share in

their consumption basket, while the return to human capital is higher in regions with a large

endowment of public goods, since the compensating differential rises less than proportional to

the benchmark utility level. Note that for pr = xr = 0, ρr is equal to unity, which is the slope of

the benchmark utility with respect to the worker’s human capital, see equation (16).

3.3 Regional labour markets

The production structure is similar to that in Rosen (1974), Sattinger (1975), Teulings (1995), and

Teulings and Van Rens (2008). A region produces a tradeable commodity that is sold on the na-

tion wide market for tradeable commodities. This commodity is characterized by the mean level

of occupational complexity of the inputs of occupational effort that is required to produce this

commodity. For example, the region San Jose produces new IT applications. The mean level oc-

cupational complexity needed to produce these applications is very high. For another example,

Oregon is mainly engaged in forestry. Lumberjacks is a relatively simple occupation. Regions

need some mixture of occupations to produce their commodity, but the mean of the distribution

of occupational complexity differs; the mean is assumed to be a sufficient statistic for the charac-

terization of the interregional differences. The consumption of tradeables in each region consist

of an appropriate mix of the commodities produced in all regions. This mix is the same across

regions.

Firms producing the occupational input for the production of this regional composite com-

modity operate a constant returns to scale technology which is common to all regions. Let y (h, o)

be the log output of a worker with human capital h in occupation o. We make two assumptions:

1. yh (h, o) > 0 : high human capital workers are more productive in any occupation; hence

wages will be increasing in human capital in any market equilibrium.

2. yho (h, o) > 0 : high human capital workers have a Ricardian comparative advantage in

complex jobs (log supermodularity); as in equation (7), within each region r, high human

capital workers are assigned to more complex jobs.

These assumptions are the same as those for the strawman model in Section 2.1. For γ (h− o) <
1, the following specification of y (h, o) satisfies these assumptions

y (h, o) = y0 + h− o− 1

2
γ (h− o)2 . (19)

Firms in region r offering jobs of occupational complexity o hire workers of human capital type h

in order to minimize their cost of production subject to the regional wage function wr (h). Hence,

24



the optimal level of human capital hr (o) satisfies

hr (o) = arg min
h

[wr (h)− y (h, o)] .

Substitution of equation (14) forwr (h) and equation (19) for y (h, o) and solving the problem yields

w′r (h) = ρr = 1− γ [hr (o)− o] . (20)

The linearity of wr (h), and hence the return to human capital being the same for all levels of

human capital in region r implies that hr (o) − o must be a constant. Taking expectations within

region r yields

ρr = 1− γ (Hr −Or) . (21)

which is identical to equation (13): an excess supply of human capital reduces its return. The

parameter γ measures the curvature of the output function y (h, o); its sign is the second order

condition of the cost minimization problem. We estimated γ = 0.60, see Table 3. Though the

market assignment hr (o) is increasing within region r, this relation is not necessarily increasing

across regions. When Hr − Or is higher than average in a region, workers in that region are

assigned to less complex jobs. Hence, the return to their human capital will be lower. Since

hr (o)− o is a constant, the optimal assignment must satisfy

hr (o) = o−Or +Hr, (22)

which is identical to equation (8). As we documented in Section 2.4, this relation is based on the

Equal Return Assumption, which is roughly consistent with the data. It is interesting to consider

what would happen if this assumption were not satisfied. Then, hr (o) − o would vary by o by

equation (7). Hence, w′r (h) would not be constant within a region and wr (h) would therefore be

non-linear. Consider the case that hr (o) − o is decreasing in r. Then, the variance is larger for

occupational complexity than for human capital: there are many complex and simple jobs, but

few intermediates.8 Hence, w′r (h) is increasing in h; see equation (20). This is the polarization

phenomenon discussed by Autor and Dorn (2013). Polarization is therefore consistent with the

Extended Single Index Model. Polarization is ruled out only when we introduce the Equal Return

Assumption. Autor and Dorn (2013) provide a more complicated model of polarization, which

involves three rather than one human capital index. Occam’s razor suggests that one should use

the more parsimonious model. Our empirical evidence shows that polarization does not play an

8Equation (7) implies

Var [oi|r] =
(
ρr
χor

)2

Var [hi|r] .

Hence, ρr > χor implies Var[oi|r] >Var[hi|r].
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important role in our cross-section of regions. This is likely to be different when evaluating the

evolution of wr (h) over time, as Autor and Dorn have shown.

Substitution of equation (21) in equation (18) yields

1− ρr = γ (Hr −Or) = εωr + (εα− ξ)′ xr. (23)

Since the return to human capital and its net supply move in opposite direction, they are driven by

the same variables, which should enter both equations in the same proportions and with opposite

sign. These implications can be tested.

The return to human capital is decreasing in the fixed effect, ωr. A higher fixed effect leads to

higher land prices, which are less harmful for high human capital workers since land is a normal

good. The same reasoning applies for compensating differentials for regional amenities, α′xr;

again, amenities increase land prices, which is less detrimental for high human capital workers.

The term ξ′xr measures the income effect of amenities. When amenities are normal goods, ξ > 0,

they are relatively less attractive for higher income types. Their presence requires therefore an

increase in the return to education.

As we have documented in Section 2.4, the return to human capital is higher in urban than in

rural regions. Cities have higher house prices, which other things equal would lead to the opposite

result: a lower return to human capital. The only force that yields a higher return to human capital

in cities is the income effect of amenities, ξ′xr. Hence, amenities in cities must be normal goods,

which runs counter to the evidence by Diamond (2016).

3.4 Regional land markets

A first order Taylor expansion of the log demand for land lr (h) of an individual with benchmark

utility h in region r yields

lr (h) = lnλ+ εh− ηλpr − α′xr, (24)

see the Appendix, where η is the price-elasticity of land, and where a bar on top of a parameter

denotes its complement with respect to one, so: ε = 1 − ε. For pr = xr = h = 0, the log demand

for land is equal to the land share in total expenditure lnλ (since pr = 0 implies that the price of

land is equal to unity). The demand for land depends negatively on regional land prices (due to

the substitution effect) and on amenities (due to the negative income effect of the compensating

differential for these amenities). Since land is a normal good, the demand for land increases less

than proportional to the benchmark utility.

For the evaluation of our data on house prices, we use the log price of a plot of land for an
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average worker type Hr in region r

vr ≡ lr (Hr) + pr = lnλ+ εHr +
(
1− λη

)
pr − α′xr.

Regional amenities push house prices up. For the Cobb Douglas case (ε = 0, η = 1), the value of a

house is proportional to the log income of the workerHr+λpr (the term λpr is price compensation

in wages for house prices, see equation (18))

vr = lnλ+Hr + λpr − α′xr.

3.5 Agglomeration externalities

Intraregional agglomeration externalities or knowledge spillovers are modelled similar to Gen-

naioli, La Porta, Silanes and Shleifer (2013). Where Gennaioli et.al (2013) assume that knowledge

spillovers depend on supply of human capital, we assume these externalities depend on its de-

mand. Hence, rather than the mean of human capital, Hr, we enter on the mean of occupational

complexity, Or. Hence, our specification reads

ωr = ψ (nr + θOr) , (25)

where nr is the number of workers that contribute to the externalities, and where ψ and θ are

weakly positive parameters. For ψ = 0, there are no knowledge spillovers. For θ = 0, knowledge

spillovers depend only on the number of workers, not on the occupational structure. Due to our

normalization of the average return to human capital to unity, θ = 1 would imply that knowledge

spillovers are proportional to the total wage bill. Gennaioli et.al. (2013) reported evidence that

knowledge spillovers increase more than proportional to the average level of human capital of the

regional workforce. This is the case if θ > 1.

Our modeling of the intraregional spatial structure combines ideas from Lucas and Rossi-

Hansberg (2002), Rossi-Hansberg and Wright (2007), and Ahlfeldt, Redding, Sturm and Wolf

(2015). In the cities considered in Lucas and Rossi-Hansberg and Ahlfeldt et.al. workers have

to commute between their home and job location and ideas have to travel between the locations

of different jobs. We consider two archetypical spatial structures: rural areas and cities. In a ru-

ral area, people work at their home location. Hence, workers do not commute and ideas have

to travel. In a city, it is exactly the opposite: jobs are concentrated in a Central Business District

(CBD). Hence, ideas don’t travel, but then workers have to commute. We discuss both archetypes

below.

27



3.5.1 Rural areas

In rural areas, workers work at the same location as they live and all h-type workers are spread

homogeneously across space. Like Lucas and Rossi Hansberg (2002) and Ahlfeldt et.al. (2015),

the travel of knowledge spills across space comes at a cost: at distance s, only a fraction 1 − δs of

the spillover survives. The maximum distance knowledge spillovers can travel is therefore δ−1.

Only workers working within a distance δ−1 contribute to the knowledge spillover for a particular

worker. Hence, the knowledge spillover ωrr in region r (the superfix r denotes rural areas) reads

ωrr = ψ ln

(∫ δ−1

0
2πs (1− δs) eθOr−lrds

)
(26)

= ψ
(

ln
π

3
− 2 ln δ + θOr − lr

)
,

see equation (25). In the first line, 2πs is the circumference of the circle at distance s of the own

location, 1− δs is the fraction of the spillovers that survives at that distance, and e−lr is the popu-

lation density. Substitution of equation (24) for lr, see Appendix, yields

ωrr = Ψr [ψ0 + (θ − ε)Or + ψTTr] , (27)

Ψr ≡ ψ

1− ψ · ψω
,

The parameter Ψr has to be positive for a bounded solution to exist. Hence

1− ψ · ψω < 1⇒ Ψr > ψ. (28)

We assume this condition to hold. Hence, the elasticity of the knowledge spillover ωrr with respect

to occupational complexity is Ψr (θ − ε): a higher complexity yields more spillovers, which raises

house prices and therefore reduces land use, which allows a further increase in spillovers by a

higher population density. Our composite parameter Ψr (θ − ε) corresponds to the parameter θ

reported by Gennaioli et.al. (2013). Gennaioli et.al. (2013) report a value of θ = 6. January

temperature increases knowledge spillovers, since it raises house prices and therefore increases

the population density.

For ε = 0 (homothetic utility) and α = ξ = 0 (no amenities), ψω is equal to λ
λη. Empirical

estimates of ψ vary between 0.05 and 0.20 (for the latter, see Ahlfeldt et.al. 2015), depending on

the precise context.9 With a land share λ of about 0.15− 0.20 and a Cobb Douglas utility function

(η = 1), condition (28) is critical. If land and other consumption were more easily substitutable,

η > 1, agglomeration benefits would be unbounded since workers would reduce their land use

9When ψ is analyzed at the level of the city, its value is much lower than in studies like Ahlfeldt et.al., who evaluate
the spill-over a one point in space and where contributions of workers at some distance are discounted at a rate δ.
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in response to the high price for land, which enables them to co-locate in ever higher densities.

Teulings, Ossokina, and Groot (2018) and Albouy, Ehrlich and Liu (2016) report evidence that the

elasticity of substitution is less than unity.

3.5.2 Cities

Like Lucas and Rossi-Hansberg (2002) and Rossi-Hansberg and Wright (2007), cities are assumed

to have a circular shape. Like Rossi-Hansberg and Wright (2007), all employment is localized in

the CBD at the city-center, which does not use any land at all; all jobs are therefore concentrated

at a single point in space and hence, there is no loss in the transmission of ideas. Workers live

in the area around the CBD. The cost of commuting to the CBD is a share κ per unit of distance.

Hence, somebody living at a distance s from the CBD works only a fraction 1−κs of her time. The

worker’s output and the knowledge spillovers she creates are similarly affected. Let Sr denote the

edge of the city (the maximum distance from the CBD). By construction, Sr < κ−1: commuting

beyond that distance is useless as it leaves no time for working.

ωcr

Sr

In Lucas and Rossi-Hansberg (2002) and Ahlfeldt et.al. (2015), land use varies within a city,

depending on the price of land at a each location within the city. This is a more difficult structure

than we can handle in our setting with heterogeneous workers. We therefore introduce a city

council that equalizes the private cost of commuting as a share of the wage rate wr (h) of the

inhabitants living within city boundary Sr by imposing a balance budget system of taxes and

subsidies. Inhabitants living close to the CBD pay a tax, while those living at the edge of the city

receive a subsidy. These taxes and subsidies balance all commuting cost differentials within the

city. The merit of this assumption is that it makes each location equally attractive, irrespective of

the worker’s human capital. Hence, land prices and the consumption of land are flat within the

city.

The city council sets the boundary Sr such that a worker living just outside the city is indiffer-

ent between commuting to the CBD to benefit from agglomeration externalities and working at

his home location. Hence, ωcr (the superfix c denotes cities) satisfies

ωcr = − ln (1− κSr) (29)

Where people commute in cities, so that ideas don’t have to travel and hence, δ is irrelevant,
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ideas travel in rural areas, so that people don’t have to commute and hence, κ is irrelevant. Define

∆ to be

∆ ≡ ln
δ

κ
> 0. (30)

Ahlfeldt et.al. (2015) report δ > κ and hence ∆ > 0, see their Table V.

Cities can only be an efficient spatial organization if the cost of commuting is smaller than

the spatial decay of knowledge spillovers. If not, it is cheaper to let ideas rather than workers

travel, since commuting reduces the time available for knowledge sharing and production, while

the travel of idea only reduces the former. Hence, if κ > δ (or: ∆ < 0), it is always more efficient

to let ideas travel and not people.10 In rural areas, the radius of the area around a location that

contributes to the agglomeration benefits is fixed at δ−1. In an urban area, that radius is deter-

mined endogenously, by equation (29). Hence, an increase in e.g. Or raises not only the spillovers

generated within a fixed area. It also increases the area involved.

Log city size is about twice as sensitive to a change in Or than the agglomeration effect. The

reason is that an increase in the agglomeration effect raises the radius of the city, but that increase

translates quadratically into the size of the population, since land is a two-dimensional space.

This paper takes the spatial form and the mean occupational complexity of a region as ex-

ogenous, as a tribute to our lack of understanding of their causal relationship. Both are highly

persistent. However, our model suggests that highly complex activities can be expected to locate

in cities in the long run, either because a region transforms into a city when it hosts complex ac-

tivities, or because complex activities relocate to cities. Table A3 provides some evidence on this.

Regions are ranked by their mean occupational complexity. Urban regions rank high, rural re-

gions rank low. The separation is almost perfect. Whatever the direction of causation, the long

run outcome fits our prediction. The spill-over effect in cities ωcr and their log population size nr
satisfy

ωcr = G−1(2Ψr∆ + ωrr) ' Ψc [ψ0 + 2∆ + (θ − ε)Or + ψTTr] (31)

nr = H (ωr) ,

where G (·) is a function with G′ (·) > 1. The derivation of these relation is relegated to the Ap-

pendix. The spill-over effect is more sensitive to Or and Tr in cities than in rural areas. The

intuition is that the area that contributes to knowledge spill-overs is fixed at δ−1 in rural areas,

while Sr varies with ωcr in cities; see equation (29).

10This can be see immediately by realizing that equation (29) implies that Sr < κ−1. If κ > δ, then the radius of area
for which a rural region extracts knowledge spill-overs exceeds that for which a city can do.
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3.6 Overview of the equilibrium

An equilibrium to this multi-region economy is a set of supplies of human capital Hr, fixed effects

in the wage function ωr, returns to capital ρr, log house prices vr (for all regions), and the log

population size nr (for cities), conditional on their occupational structureOr, January temperature

Tr, and their spatial organization (urban versus rural). These variables must satisfy equations (18),

(23), (35), (38) and (31). These equations can solved for the endogenous variables.

1− ρr = εωωr + εTTr,

Hr −Or = γ−1 (εωωr + εTTr) ,

vr = lnλ+ λωωr + λTTr + εOr,

ωrr = Ψr [ψ0 + (θ − ε)Or − ψTTr] ,

ωcr = Ψc [ψ0 + 2∆ + (θ − ε)Or − ψTTr] ,

where

εω ≡ ε+ εαω − ξω,

εT ≡ εαT − ξT ,

λω ≡ 1 +
λ

λ
η (1 + αω) +

ε

γ
εω,

λT ≡
λ

λ
ηαT +

ε

γ
εT ,

ψω ≡
1 + αω
λ

− λω =
1− λη
λ

(1 + αω)− ε

γ
εω − 1,

ψT ≡
αT
λ
− λT =

1− λη
λ

αT −
ε

γ
εT .

These equation are not fully reduced form, since ωr appears on the right hand side of the first three

equations, to facilitate the interpretation of the results.

3.7 Identification and testing

Table 6 provides an overview of the (composite) parameters that can be established from the vari-

ous equations.

The model yields a number of testable implications. First, the coefficients in the equations for

the return to human capital, 1 − ρr, and the net supply of human capital, Hr − Or, should have
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Table 6: Overview of the (composite) Parameters
(composite) parameters value derived parameters equation/source
η 0.75 − Albouy et al. (2016) Table 1, Teulings et.al.
ε 0.50 − Albouy et al. (2016) Table 1
λ 0.30 − Glaeser et al (2008)
γ 1.00 −
εω −0.6 ζO, ωO
εT −0.01 ωT , εω, ζT
λω 4.8 vO, ε, wω
αω 6.1 λ, η, λω, ε, γ, εω
λT −0.04 vT , ωT , λω
αT −0.06 λ, η, λT , ε, γ, εT
ψω 18.8 λω, αω, λ
ψT −0.16 λT , αT , λ
Ψc 0.24 ωcT , ψT
Ψr 0.13 ωcO,Ψ

c, ωrO
θ 3.33 ωcO,Ψ

c, ε
ψ 0.04 ψω,Ψ

r

equal sign and should vary proportionally. Second, the impact of Or and λT on ωr should vary

proportionally between rural and urban regions and the impact should be larger for cities. Next,

the impact of ω̃r should be the same for rural and urban regions. The testable implication from the

equation on ncr will be weak.

4 Empirical analysis

We calculate the value of agglomeration in an open system, which keeps the outside option of

workers constant. The regional mean occupational complexity and January temperature are held

constant. Since the outside utility level is constant, worker will migrate between the regions and

land prices will adjust, such that workers’ utility in each region is equal to outside option.

We then calculate the value of land for each region and for the nation as a whole. For this

exercise, we have to treat rural and urban regions differently. For rural regions, we keep the total

land surface constant. The total land surface is set equal to the number of workers in our sample

times the calculated land use in the initial equilibrium. For urban regions, we take a different

approach. We calculate the new optimal city size Sr. From there, it is a standard exercise to

calculate the total land value of the city. This approach implies that we allow cities to vary in size

without accounting for what happens to the land if a city shrinks or where the land comes from

when the city grows. The only issue that matters is how far away a plot of land is from the city

center. We shall evaluate ex post how much distortion this approach yield by pricing changes in

land use of the city according to the rural region in the corresponding state.
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Table 7: Bartik IV Regression Results with 34 MSAs
(1) (2) (3) (4) (5) (6)

VARIABLES Or 1− ρr Hr −Or vr wr nr
Panel A: City and Non-City Sample (81 Observations)

ln Jan Temp -0.00585 -0.0284 -0.0539 0.161 0.0424
(-1.03) (-2.36) (-5.59) (1.78) (2.93)

Bartik IV 1.524
(19.41)

Bartik IV sq. 3.698
(3.40)

Occ IV -0.390 -0.290 3.110 0.542
(-3.64) (-3.37) (3.86) (4.19)

Metro Dummy 0.0246 -0.00620 0.0128 -0.0943 0.0269
(4.63) (-0.48) (1.24) (-0.98) (1.73)

Constant 0.0217 0.181 0.305 10.70 -0.321
(0.67) (2.66) (5.59) (20.96) (-3.91)

R-squared 0.911 0.356 0.394 0.251 0.513
R-MSE 0.0185 0.0393 0.0315 0.295 0.0474

Panel B: City Sample (34 Observations)
ln Jan Temp 0.00400 -0.0343 0.476 0.0392 0.397

(0.23) (-2.04) (3.12) (1.84) (1.19)
Occ IV -0.185 -0.195 5.016 0.684 2.311

(-1.43) (-1.60) (4.54) (4.41) (0.96)
Constant -0.0261 0.198 8.659 -0.282 11.87

(-0.25) (1.98) (9.55) (-2.22) (5.99)

R-squared 0.068 0.160 0.463 0.403 0.062
R-MSE 0.0349 0.0330 0.300 0.0420 0.655

Panel C: Non-city Sample (47 Observations)
ln Jan Temp -0.0452 -0.0644 -0.00426 0.0456

(-2.95) (-5.60) (-0.04) (2.33)
Occ IV -0.608 -0.386 1.107 0.360

(-3.73) (-3.15) (1.05) (1.72)
Constant 0.269 0.361 11.57 -0.345

(3.09) (5.53) (20.63) (-3.10)

R-squared 0.335 0.480 0.025 0.158
R-MSE 0.0399 0.0300 0.257 0.0510

Note: Columns (1)-(6) present the Bartik IV regression results with 34 Cities and 47 non-city areas.
Dependent variables are the average occupation index, local average log wage, housing value normalised
by land share and the local wage level, returns to human capital, difference between average human
capital index and the occupation index, and the log local population. Log Jan Temp is the average log local
January temperature. Bartik IV and Bartik IV sq are defined in section 5. Occ IV is the estimated average
occupation index using IV correction in first stage. Metro Dummy equals one if an observation is city area,
zero if it is non-city area. Detailed definitions of equations are in section 2. Robust t-statistics in
parentheses.
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The equilibrium without agglomeration can be conveniently summarized as follows:

1− ρr = (εαT − ξT )Tr,

Hr −Or = γ−1 (εαT − ξT )Tr,

pr = λ−1αTTr,

vr = lnλ+
λ

λ
ηαTTr,

lr = lnλ+
1

2
σ2ε2 + εOr − λTTr

ωr = 0,

ncr = ψ0 + 2∆− εOr + λTTr.

The equilibrium is inefficient, since workers do not take into account the benefit to other work-

ers of them moving to the city. We can calculate that welfare improvement from the equilibrium

allocation to the optimal one.

5 Conclusion

This paper estimates the knowledge spillover effect, using within country variation with US CPS

data. The first founding is human capital spillover effect is strong, and cannot fully addressed by

unobservable abilities. Agglomeration effect is significant, with faster development in cities and

more population flow into cities. We add two important element into the standard model, first

is the regional occupation structures, reflecting the complexity of tasks of different regions, and

the second is the different knowledge spillover channel in city and non-city regions. Hence, we

considered three distance components, the decay of knowledge spillover in distance, the commut-

ing cost and the transportation cost. All these distance concepts play key roles in considering the

spatial equilibrium.

Our conclusion are education spillover effect is strong but also the occupation structure. Take

different transmission channel into consideration, we estimate the loss of welfare, measured by

housing wealth, is at least 15 percent is not higher. Using the spatial equilibrium model, we also

point out that the loss of welfare may partly compensated by the less crowed effect. Hence, the

amenity increase can be a reason that we see less welfare loss.

The shortcoming of the paper is that the empirical part relies heavily on the city dummy, which

make the explanatory power less strong. Definition of regions also matters. In some of our sample,

non-city and city region have very small difference, in term of land area and population.
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Appendix

Price index and the demand for land

Let E (P, Pr, U) be expenditure as a function of the prices P and Pr and the utility level U . Fol-

lowing Hanoch (1975) and Comin et al. (2015), the expenditure function can be defined as

E (P, Pr, U) =
(
λP η + λU−ε/λP ηr

)η−1

U1+λε/(λη),

where a bar on top of a variable denotes its complement with respect to 1, hence: λ = 1−λ. Define

e (p, pr, h) ≡ lnE
(
ep, epr , eh

)
, z ≡ ηpr − εh/λ, and U ≡ eh. Taking logs and using ln

(
λ+ λez

)
=

λz + 1
2λλz

2 +O
(
z3
)

and P = 1 yields

e (0, pr, h) = η−1 ln
(
λ+ λez

)
+
[
1 + λε/

(
λη
)]
h (32)

= η−1
(
λz +

1

2
λλz2

)
+
[
1 + λε/

(
λη
)]
h+O

(
z2
)

= (1− εh)λpr + h+O
(
h2
)

+O
(
p2r
)
,

where e (p, pr, h) ≡ lnE
(
ep, epr , eh

)
, which proves equation (17). Differentiating the first line in

equation (32) with respect to pr yields

ln e2 (0, pr, h) = lnλ+ z − ln
(
λ+ λez

)
= lnλ+ λz +O

(
z2
)

(33)

= lnλ− εh+ ληpr +O
(
z2
)
.

By Shephard’s Lemma, the partial derivative with respect to Pr is the demand land Lr

E2 (P, Pr, U) = Lr.

By its definition e2 (p, pr, h) satisfies

e2 (0, pr, h) =
E2

(
1, epr , eh

)
E (1, epr , eh)

epr =
LrPr
E

, (34)

ln e2 (0, pr, h) = lr (h) + pr − wr (h) ,

where we use e (p, pr, h) = wr (h) in the final line. Substitution of this expression in equation (33)

yields

lr (h) = lnλ+ εh−
(
1− λη

)
pr + wr (h) +O

(
z2
)

using equation (17) for wr(h) and rearranging terms yields equation (24). Substitution of equation

35



(18) and (23) yields the average log value of a house in region r11

vr = lr (Hr) + pr = lnλ+ εHr + (1− ηλ)pr − α′xr (35)

= lnλ+ λωωr + λTTr + εOr,

λω ≡ 1 +
λ

λ
η (1 + αω) +

ε

γ
εω,

λT ≡
λ

λ
ηαT +

ε

γ
εT ,

εω ≡ ε+ εαω − ξω,

εT ≡ εαT − ξT

(36)

Regional labour markets

A region produces a composite commodity, characterized by the mean occupational complexity

Or. This composite commodity is produced by a CRS Leontieff technology with requires as inputs

the output of each occupation o in fixed proportions. The required input of occupation o for one

unit of the composite commodity is characterized by the normal density function with mean Or

and standard deviation σ

input of occupation o = φ

(
o−Or
σ

)
, (37)

where φ (·) is the density function of the standard normal distribution. Let fr (h) be the density

function of h among labour supply in region r. Then, the market equilibrium for the output of

occupation o in region r is characterized by

y∗r + lnφ

(
o−Or
σ

)
︸ ︷︷ ︸

Leontieff for type o

= ln fr [hr (o)]︸ ︷︷ ︸
labour supply type hr(o)

+ ln
dhr (o)

do︸ ︷︷ ︸
Jacobian

+ y [hr (o) , o]︸ ︷︷ ︸
productivity

,

where y∗r is log output per worker of the composite commodity of region r. The left hand side is

log demand for the output of occupation o, the right hand side is log supply. Demand is equal to

the log output of the composite commodity plus the log input of occupation o per unit of output.

Supply is equal to log supply of human capital type hr (o) (which is equal to the log density plus

the log Jacobian) times log productivity of hr (o) in occupation o. Equation (19) specifies a relation

for y (h, o). It is convenient to define

y0 = ωr +Or.

11We use the average log value and the log average value of a house interchangebly. The difference between both is
1
2
σ2ρ−2

r . We treat these terms as a normalizing, thereby ignoring variation in ρr .
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The term ωr is the agglomeration spill over in region r, the term Or reflects the log price level for

commodities of complexity level Or. As we have shown in Section 2.2, the specification of y (h, o)

and the linearity of the wage function (14) yields a linear expression for the optimal assignment

hr (o), see equation (22),

hr (o)−Hr = o−Or.

This expression implies that dhr (o) /do = 1 and

y [hr (o) , o] = ωr +Hr −
1

2
γ (Hr −Or) .

Hence,

y∗r = ωr +Hr,

ln fr (h) = lnφ

(
h−Hr

σ

)
⇒ h|r ∼ N

(
Hr, σ

2
)
.

We drop the second order terms in Hr and Or in the first line.

Agglomeration in rural areas

Substitution in equation (26) of equation (24) for lr yields

ωrr = ψ
(

ln
π

3
− 2 ln δ + θOr − lr

)
= ψ

(
ln
π

3
− 2 ln δ + θOr − vr + pr

)
(38)

= ψ [ψ0 + (θ − ε)Or + ψωωr + ψTTr]

= Ψr [ψ0 + (θ − ε)Or + ψTTr] ,

Ψr ≡ ψ

1− ψ · ψω
,

ψω ≡
1 + αω
λ

− λω =
1− λη
λ

(1 + αω)− ε

γ
εω − 1,

ψT ≡
αT
λ
− λT =

1− λη
λ

αT −
ε

γ
εT ,

ψ0 ≡ ln
π

3
− 2 ln δ − lnλ.
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Agglomeration in urban areas

The population of a city satisfies

nr = ln

[∫ Sr

0
2πse−lrds

]
(39)

= lnπ − 2 lnκ+ 2 ln (κSr)− vr + pr

= ψ0 + ln 3 + 2∆ + 2 ln (κSr) + ψωωr + ψTTr − εOr,

where we substitute equation (29) for κSr, equation (30) for ln δ
κ and equation (24) for lr in the

second line. Average commuting cost as a share of labour supply satisfy

fr = ln

[∫ Sr

0
2πs (1− κs) ds

]
− ln

[∫ Sr

0
2πsds

]
= ln

(
1− 2

3
κSr

)
Hence,

ωcr = ψ (nr + fr + θOr)

= ψ (ψ0 + 2∆ + (θ − ε̄)Or + 2 ln (κSr) + ln (3− 2κSr) + ψωωr + ψTTr)

= Ψr (ψ0 + 2∆ + (θ − ε̄)Or + 2 ln (1− exp(−ωr)) + ln (1 + 2 exp(−ωr))− ψTTr)

G(ωcr) = ωcr − 2Ψr ln (1− exp(−ωr))−Ψr ln (1 + 2 exp(−ωr))

= 2Ψr∆ + ωrr

ωcr = G−1(2Ψr∆ + ωrr)

Identification

Define Qzx to be the estimated coefficients

Q ∈ {ζr, vr, ωr} , ζr ≡ Hr −Or, γ (1− ρr), we drop the subscript r in the following

z ∈ {r, c, blank}: rural, cities, all

x ∈ {O, T, ω}
γ = 1

Then we have the following relations:
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Figure A1: G(a) function with model parameters

Note: The plot shows ωc
r = G−1(2Ψr∆ + ωr

r) and ωr
r = Ψr [ψ0 + (θ − ε)Or + ψTTr], with model parameter

estimates in Table ??. The red curve is the city agglomeration effect ωc
r of area r. The blue line ωr

r is the
non-city agglomeration effect of area r.

εω =
ζO
ωO

= −0.34

0.54
= −0.6

εT = ζT − εωωT = −0.04 + 0.63× 0.04 = −0.01

λω =
vO − ε
ωO

=
3.11− 0.50

0.54
= 4.8

αω =
λ

λη

(
λω − 1− ε

γ
εω

)
− 1 =

0.30

0.70× 0.25
(4.82− 1 + 0.50× 0.63)− 1 = 6.1

λT = vT − λωωT = 0.16− 4.82× 0.04 = −0.04

αT =
λ

λη

(
λT −

ε

γ
εT

)
=

0.30

0.70× 0.25
(−0.042 + 0.5× 0.015) = −0.06

ψω =
1 + αω
λ

− λω =
1 + 6.08

0.30
− 4.82 = 18.78

ψT =
αT
λ
− λT =

−0.06

0.3
+ 0.042 = −0.16

Ψc = −
ωcT
ψT

=
0.039

0.16
= 0.24

θ =
ωcO
Ψc

+ ε =
0.68

0.24
+ 0.5 = 3.33

Ψr =
ωrO
ωcO

Ψc =
0.36

0.684
× 0.24 = 0.13

ψ =
Ψr

1 + ψωΨr
=

0.13

1 + 18.78× 0.13
= 0.04

39



Ta
bl

e
A

1:
C

BS
A

O
bs

er
va

ti
on

s
D

is
tr

ib
ut

io
n

A
m

on
g

St
at

es
C

BS
A

St
at

e
I

St
at

e
II

St
at

e
II

I
St

at
e

IV
Pc

tS
I

Pc
tS

II
Pc

tS
II

I
Pc

tS
IV

N
A

M
E

31
10

0
C

A
10

0.
00

%
Lo

s
A

ng
el

es
-L

on
g

Be
ac

h-
A

na
he

im
,C

A
40

14
0

C
A

10
0.

00
%

R
iv

er
si

de
-S

an
Be

rn
ar

di
no

-O
nt

ar
io

,C
A

41
74

0
C

A
10

0.
00

%
Sa

n
D

ie
go

-C
ar

ls
ba

d,
C

A
41

86
0

C
A

10
0.

00
%

Sa
n

Fr
an

ci
sc

o-
O

ak
la

nd
-H

ay
w

ar
d,

C
A

41
94

0
C

A
10

0.
00

%
Sa

n
Jo

se
-S

un
ny

va
le

-S
an

ta
C

la
ra

,C
A

19
74

0
C

O
10

0.
00

%
D

en
ve

r-
A

ur
or

a-
La

ke
w

oo
d,

C
O

47
90

0
D

C
VA

M
D

45
.9

1%
25

.9
0%

28
.1

9%
W

as
hi

ng
to

n-
A

rl
in

gt
on

-A
le

xa
nd

ri
a,

D
C

-V
A

-M
D

-W
V

33
10

0
FL

10
0.

00
%

M
ia

m
i-

Fo
rt

La
ud

er
da

le
-W

es
tP

al
m

Be
ac

h,
FL

45
30

0
FL

10
0.

00
%

Ta
m

pa
-S

t.
Pe

te
rs

bu
rg

-C
le

ar
w

at
er

,F
L

12
06

0
G

A
10

0.
00

%
A

tl
an

ta
-S

an
dy

Sp
ri

ng
s-

R
os

w
el

l,
G

A
16

98
0

IL
IN

W
I

98
.2

3%
1.

77
%

0.
00

%
C

hi
ca

go
-N

ap
er

vi
lle

-E
lg

in
,I

L-
IN

-W
I

26
90

0
IN

10
0.

00
%

In
di

an
ap

ol
is

-C
ar

m
el

-A
nd

er
so

n,
IN

35
38

0
LA

10
0.

00
%

N
ew

O
rl

ea
ns

-M
et

ai
ri

e,
LA

14
46

0
M

A
N

H
86

.7
5%

13
.2

5%
Bo

st
on

-C
am

br
id

ge
-N

ew
to

n,
M

A
-N

H
12

58
0

M
D

10
0.

00
%

Ba
lt

im
or

e-
C

ol
um

bi
a-

To
w

so
n,

M
D

19
82

0
M

I
10

0.
00

%
D

et
ro

it
-W

ar
re

n-
D

ea
rb

or
n,

M
I

33
46

0
M

N
W

I
99

.9
9%

0.
01

%
M

in
ne

ap
ol

is
-S

t.
Pa

ul
-B

lo
om

in
gt

on
,M

N
-W

I
28

14
0

M
O

K
S

45
.3

6%
54

.6
4%

K
an

sa
s

C
it

y,
M

O
-K

S
41

18
0

M
O

IL
80

.9
8%

19
.0

2%
St

.L
ou

is
,M

O
-I

L
24

66
0

N
C

10
0.

00
%

G
re

en
sb

or
o-

H
ig

h
Po

in
t,

N
C

15
38

0
N

Y
10

0.
00

%
Bu

ff
al

o-
C

he
ek

to
w

ag
a-

N
ia

ga
ra

Fa
lls

,N
Y

35
62

0
N

Y
N

J
69

.2
4%

30
.7

6%
N

ew
Yo

rk
-N

ew
ar

k-
Je

rs
ey

C
it

y,
N

Y-
N

J
40

38
0

N
Y

10
0.

00
%

R
oc

he
st

er
,N

Y
17

14
0

O
H

K
Y

77
.7

0%
C

in
ci

nn
at

i,
O

H
-K

Y-
IN

17
46

0
O

H
10

0.
00

%
C

le
ve

la
nd

-E
ly

ri
a,

O
H

18
14

0
O

H
10

0.
00

%
C

ol
um

bu
s,

O
H

38
90

0
O

R
W

A
91

.5
7%

8.
43

%
Po

rt
la

nd
-V

an
co

uv
er

-H
ill

sb
or

o,
O

R
-W

A
37

98
0

PA
N

J
D

E
M

D
62

.0
6%

23
.3

2%
14

.6
2%

0.
00

%
Ph

ila
de

lp
hi

a-
C

am
de

n-
W

ilm
in

gt
on

,P
A

-N
J-

D
E-

M
D

38
30

0
PA

10
0.

00
%

Pi
tt

sb
ur

gh
,P

A
19

10
0

TX
10

0.
00

%
D

al
la

s-
Fo

rt
W

or
th

-A
rl

in
gt

on
,T

X
26

42
0

TX
10

0.
00

%
H

ou
st

on
-T

he
W

oo
dl

an
ds

-S
ug

ar
La

nd
,T

X
47

26
0

VA
10

0.
00

%
V

ir
gi

ni
a

Be
ac

h-
N

or
fo

lk
-N

ew
po

rt
N

ew
s,

VA
-N

C
42

66
0

W
A

10
0.

00
%

Se
at

tl
e-

Ta
co

m
a-

Be
lle

vu
e,

W
A

33
34

0
W

I
10

0.
00

%
M

ilw
au

ke
e-

W
au

ke
sh

a-
W

es
tA

lli
s,

W
I

N
ot

e:
In

fo
rm

at
io

n
fo

r
34

ci
ty

ar
ea

s:
C

BS
A

co
de

in
20

13
,c

it
y

be
lo

ng
to

w
hi

ch
st

at
e(

s)
an

d
th

e
pe

rc
en

ta
ge

of
sa

m
pl

e
ob

se
rv

at
io

ns
in

th
e

C
PS

19
79

-2
01

5,
na

m
e

of
ci

ti
es

.D
at

a
so

ur
ce

s:
th

e
C

ur
re

nt
Po

pu
la

ti
on

Su
rv

ey
M

O
R

G
an

d
th

e
U

S
C

en
su

s
Bu

re
au

.

40



Table A2: Individual Mincerian Wage Regression
Variables Coefficient t-stat Variables Coefficient t-stat
Male 0.306 (639.4) Edu = 0 -0.535 (-104.7)
Single 0.0200 (20.95) Edu = 1 -0.480 (-38.08)
Male × Single -0.202 (-253.7) Edu = 2 -0.503 (-81.41)
Single × Time Trend -0.000648 (-16.77) Edu = 3 -0.491 (-91.94)
Divorced -0.00696 (-5.693) Edu = 4 -0.422 (-76.86)
Male × Divorced -0.0792 (-66.45) Edu = 5 -0.456 (-121.1)
Divorced × Time Trend -1.09e-05 (-0.196) Edu = 6 -0.404 (-136.1)
Black -0.0969 (-100.7) Edu = 7 -0.330 (-119.7)
Black × South -0.0377 (-29.65) Edu = 8 -0.243 (-131.4)
Other Race -0.0808 (-71.86) Edu = 9 -0.235 (-187.4)
Other × South -0.00518 (-2.189) Edu = 10 -0.171 (-191.3)
Year of Experience 0.0261 (52.50) Edu = 11 -0.140 (-170.4)
Exp × Edu 0.00177 (45.78) Edu = 13 0.0750 (100.9)
Exp2 / 100 -0.0248 (-10.77) Edu = 14 0.153 (206.9)
Exp2 / 100 × Edu -0.0100 (-55.07) Edu = 15 0.184 (150.8)
Exp3 / 100000 -0.0820 (-2.738) Edu = 16 0.382 (380.4)
Exp3 / 100000 × Edu 0.125 (50.98) Edu = 17 0.436 (250.6)
Edu in y9297 0.00704 (36.87) Edu = 18 0.527 (343.1)
Constant 1.194 (516.9)

Observations 5,316,676
R-squared 0.597
R-MSE 0.414

Note: Table presents the estimated β using OLS regression. Dependent variable is the log hourly wage.
Mincer wage regression includes individual characteristics x, gender, year of education, year of
experience, race, marital status, and the interaction of these factors. All the regressions include time x
region dummies. Robust t-statistics in parentheses.
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Table A3: Ranking of Regions in Occupational Structure
Region Occ Index Type Region Occ Index Type
Washington, DC 0.093 City Virginia -0.004 Non-City
San Jose, CA 0.093 City Greensboro, NC -0.007 City
Boston, MA 0.070 City Los Angeles, CA -0.008 City
San Francisco, CA 0.056 City Wyoming -0.009 Non-City
Seattle, WA 0.056 City Kansas -0.012 Non-City
Denver, CO 0.053 City North Carolina -0.012 Non-City
Baltimore, MD 0.050 City Florida -0.013 Non-City
Connecticut 0.047 Non-City Alabama -0.014 Non-City
Minneapolis, MN 0.041 City Louisiana -0.014 Non-City
Atlanta, GA 0.039 City West Virginia -0.015 Non-City
Philadelphia, PA 0.037 City Maine -0.016 Non-City
Kansas City, MO 0.032 City Buffalo, NY -0.016 City
Indianapolis, IN 0.029 City Ohio -0.017 Non-City
New Hampshire 0.029 Non-City Nebraska -0.017 Non-City
Dallas, TX 0.029 City South Carolina -0.017 Non-City
Chicago, IL 0.027 City Michigan -0.018 Non-City
Portland, OR 0.026 City Illinois -0.018 Non-City
Houston, TX 0.024 City Riverside, CA -0.019 City
Milwaukee, WI 0.024 City Maryland -0.019 Non-City
Pittsburgh, PA 0.020 City Iowa -0.020 Non-City
Detroit, MI 0.020 City Miami, FL -0.020 City
Rochester, NY 0.019 City Tennessee -0.021 Non-City
Cleveland, OH 0.019 City Kentucky -0.023 Non-City
New York, NY 0.018 City Pennsylvania -0.025 Non-City
St Louis, MO 0.017 City North Dakota -0.025 Non-City
Columbus, OH 0.017 City Wisconsin -0.027 Non-City
San Diego, CA 0.016 City Mississippi -0.029 Non-City
Virginia Beach, VA 0.013 City Washington -0.029 Non-City
Cincinnati, OH 0.012 City Texas -0.030 Non-City
Massachusetts 0.011 Non-City Montana -0.031 Non-City
New Orleans, LA 0.011 City California -0.031 Non-City
Utah 0.008 Non-City Indiana -0.031 Non-City
Colorado 0.008 Non-City Idaho -0.033 Non-City
Rhode Island 0.007 Non-City South Dakota -0.037 Non-City
Tampa, FL 0.006 City Georgia -0.037 Non-City
Vermont 0.004 Non-City Arkansas -0.038 Non-City
Arizona 0.002 Non-City Missouri -0.040 Non-City
New Mexico 0.001 Non-City Oregon -0.044 Non-City
New York 0.000 Non-City Minnesota -0.049 Non-City
Oklahoma -0.003 Non-City Nevada -0.074 Non-City
Delaware -0.003 Non-City

Note: Average local occupation index and region type. 34 cities are denoted by the name of largest city
with the abbreviation of the state. 47 non-city areas are denoted by the name of the states. Detailed
definitions of occupation index in section 2. Data sources: Current Population Survey MORG and author’s
own calculations.
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Table A5: Bartik IV Regression Results with 222 MSAs
(1) (2) (3) (4) (5) (6) (7)

VARIABLES Or Or 1− whr Hr −Or vr w0r nr
Panel A: City and Non-City Sample (267 Observations)

ln Jan Temp -0.0135 -0.0202 -0.0727 0.0691 0.0439
(-1.70) (-1.51) (-8.36) (0.55) (4.05)

Bartik IV 1.661 1.739
(22.42) (23.88)

Bartik IV sq. 3.993 4.412
(4.75) (5.26)

Occ IV -0.255 -0.160 0.617 -0.00168
(-3.72) (-3.57) (0.95) (-0.03)

Metro Dummy 0.0295 -0.0498 0.00716 0.0703 0.0111
(3.62) (-3.64) (0.80) (0.54) (1.00)

Constant 0.0372 -0.0165 0.179 0.410 11.43 -0.243
(0.83) (-4.84) (2.36) (8.31) (15.97) (-3.95)

R-squared 0.719 0.704 0.131 0.229 0.007 0.071
R-MSE 0.0471 0.0482 0.0798 0.0520 0.753 0.0647

Panel B: City Sample (222 Observations)
ln Jan Temp -0.0165 -0.0680 0.142 0.0424 0.649

(-1.07) (-6.81) (1.21) (3.41) (3.59)
Occ IV -0.255 -0.144 0.864 -0.0207 3.371

(-3.49) (-3.04) (1.56) (-0.35) (3.93)
Constant 0.107 0.390 11.08 -0.224 9.537

(1.20) (6.72) (16.29) (-3.09) (9.06)

R-squared 0.054 0.189 0.015 0.053 0.102
R-MSE 0.0833 0.0538 0.631 0.0672 0.976

Panel C: Non-City Sample (45 Observations)
ln Jan Temp -0.0360 -0.0983 -0.324 0.0562

(-1.51) (-6.31) (-0.69) (2.93)
Occ IV -0.229 -0.511 -4.779 0.438

(-0.89) (-3.05) (-0.94) (2.13)
Constant 0.270 0.530 13.28 -0.282

(2.04) (6.14) (5.09) (-2.65)

R-squared 0.059 0.506 0.027 0.208
R-MSE 0.0604 0.0395 1.193 0.0486

t-statistics in parentheses

Note: Columns (1)-(7) present the Bartik IV regression results with 222 Cities and 45 non-city areas.
Dependent variables are the average occupation index, local average log wage, housing value normalised
by land share and the local wage level, returns to human capital, difference between average human
capital index and the occupation index, and the log local population. Log Jan Temp is the average log local
January temperature. Bartik IV and Bartik IV sq are defined in section 5. Occ IV is the average occupation
index after IV correction. Metro Dummy equals one if an observation is city area, zero if it is non-city area.
Detailed definitions of equations are in section 2. Robust t-statistics in parentheses.
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