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Abstract

Between 1905-1935 the city of Los Angeles bought the water and land rights of the Owens

Valley farmers and build and aqueduct to transfer the water. A map of the farmers plots

sold in any given point in time would look like a checkerboard because the city is intentionally

targeting speci�c farmers, or because the farmers are heterogeneous. We analyze the bargaining

between the city and the farmers and the e�ects that farmers actions have on one another, and

use that evidence to assess the checkerboarding claim. We estimate a dynamic structural model

of the farmers decision on selling to the city. We found that there are large externalities when

farmers sell, and those are larger when the selling farmer is closer to my plot, and when the

selling farmer is closer to the river.
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�The only reason they were 'checkerboarding' was because this fellow wanted to sell out and
the next one didn't.�
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1 Introduction

Between 1905-1935 the city of Los Angeles bought the water and land rights of the Owens

Valley farmers, build and aqueduct to transfer the water, and changed the history of the

Valley and that of water transfers forever. The city grew form 100,000 people in 1900 to 1.2

million in 1930, becoming the largest city in California and the second largest in the U.S.,

a feat that would have been impossible without the water from the Owens river. Despite

this achievement, the transfer has been immersed in controversy, exaggerated in the movie

Chinatown, since its inception. The most onerous accusations made against the city was that

they were checkerboarding their land purchases, i.e., that they were intentionally buying the

land surrounding reluctant sellers, to drive down their demanded price.

In this article, we analyze the bargaining between the city and the farmers and the e�ects

that farmers actions have on one another, and use that evidence to assess the checkerboard-

ing claim. A map of the farmers plots sold in any given point in time would look like a

checkerboard if the city is intentionally targeting speci�c farmers to physically isolate a re-

luctant seller. The problem is that the map would also look like a checkerboard if the city

o�ers a fair price to each farmer, but some sell sooner than others. Moreover, even if the city

is not checkerboarding, and isolated farmer would them have a lower reservation sale price,

which created complicated dynamics due to the negative externalities generated by the sale

of the farmer's neighbors.

There is extensive academic work on the Owens Valley controversy. The historical liter-

ature focuses on the characters of the story, and how their personal beliefs and personality

traits a�ected the outcome (Ho�man, 1981; Kahrl, 1982; Davis, 1990). There has been some

recent work in economics, most prominently by Gary Libecap (2005, 2007, 2009). He focuses

on the prices that farmers received for their lands. He showed that although all farmers were

paid more than their lands were worth, the surplus generated by the transfer was enormous

and the city got most of it. He also shows, con�rming Kahrl (1982) claims, that on average,

farmers that sold later received a higher price.

We model the purchased made by the city as a war of attrition with externalities, which in

practice resembles a Monopsonist strategy in the Coase conjecture (Coase, 1972). If the city

could commit not to o�er a larger price in the future, the city could extract all the surplus

from the farmers. However, if the farmers could bargain as one, they might be able to extract

most of the surplus from the transfer. The situation is complicated by the heterogeneity of

the farmers of the negative externalities they exert on others, e.g., farmers whose plots are

closer to the river, and where the canal that supply other farmers in the same ditch meet

the river would produce a larger negative e�ect on the other farmers on the same ditch, than
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those farmers down the canal.

We use a novel and very detailed dataset, containing the exact date of each sale, the exact

geo-location of each plot, as well as other characteristics: acreage, water rights, sale price,

crops under cultivation. We use this new dataset to estimate the game that the between the

city and the farmers, or more precisely the game between the farmers. We then to assess

whether the city did indeed checkerboard their purchases. Finally, we use the estimated

model to compute counterfactuals on what the prices paid would have been if the farmers

had been able to bargain as one or bargain as one in each ditch.

2 Background and Data

2.1 Historical Background

By 1900 the o�cials of the city of LA realized that the water provided by the Los Angeles

river would not be enough to meet the city's future water demand, given the projected

population growth. Local leaders and business owners were interested in �nding an external

water supply to guarantee the city growth, and to compete with San Francisco for the main

economic hub on California. The solution they devised was to bring the water from the

Owens River, 300 miles north of LA, to the city. For this purpose they would need to build

a large aqueduct, many dams and reservoirs and, more importantly, buy the water rights

from their owners, the farmers at Owen's Valley.

The value of the water would be worth much more once it arrived to the city than at the

valley. In order to keep these rents, the city o�cials devised a plan to get �enough� water

rights from the farmers, before the project was made public. Because the water rights were

tied to the land, the city had to buy the land in order to get the water rights. In 1904-1905,

former mayor of LA Fred Eaton traveled through the valley buying options on the purchases

of the land. At this stage, the intentions of the city were not public, and farmers sold their

land at �normal� prices, that is, the value of the land plus the value of water, if the water

was use for irrigation in the valley.

The Federal Reclamation Service was considering a reclamation project for the Owens

Valley. The chief of the Reclamation Service in California was J.B. Lippincott, resident of

Los Angeles and friend of Fred Eaton. The controversy begun here. Eaton was later accused

of using his association with Lippincott to imply that the options would go to the reclamation

project, not to the city. Although both men denied the accusations, many farmers claim

that they would have ask for a higher price, had they known the land was not going to the

Reclamation Service.
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Fred Eaton returned to the city with all the options needed, and the plan was announced

in the local newspapers. A $1.5 million bond issue is approved by the voters for a wide

margin, to �nance a feasibility study and to purchase the land from Eaton's options. William

Mulholland is then appointed Chief Engineer of the project and in 1907 another bond is put

to the voters, for $23 million, to �nance the construction of the aqueduct. The aqueduct

was completed in 1913. The policy in the city at the time prohibited to sell water for uses

outside its limits. This meant that the nearby towns, which were also growing fast, had

no option if the wanted to continue grow, but to apply for annexation to LA. The area of

Los Angeles grew from 115 to 442 square miles in the following two decades, whereas the

population increased from 533,535 in 1915 to more than 1,300,000 in 1930, and eventually

LA became the second largest city in the US.

Notice that the options bought by Eaton in 1905 were just the beginning. The city's

actual growth surpassed all projections and soon the city had to buy more land and water

rights from the Owens Valley. After the project was announced, the farmers in the valley

knew that the water would be used in LA, and demanded a higher price for their plots. The

aqueduct is completed in 1913 and at the beginning, residual rights on water were enough to

satisfy the City's demand. Due to the increase in population, a new bond is passed on 1922

for $5 million. The drought in 1923 makes the city want to buy more water rights and in

1924 two more bonds passed for $8 million each. Due to the controversy of the massive land

purchase, the city is forced to buy the land and buildings on the towns within the valley,

at pre Great Depression prices. In 1930 a new bond is issued for $38.8 million, to acquire

the town properties and to buy some land in the Mono Basin. Notice that, these purchases

made the bulk of the total expenses although they contained no water rights. Subsequent

bonds votes to buy more water rights happened in the following decades, and by 1934 the

city own virtually all water rights in the valley, and over 90% of the land.

Within each bond, the same situation would arise. The city would have a �x amount of

money to by land. The city would announce a committee that would evaluate the potential

lands to be bought, and will make o�ers to each of the farmers individually. The farmers

would then engage in a �war of attrition� among themselves. They knew that if they hold up,

the city would o�er them more money for their lands. However, when one a farmer sold their

land this would create an externality on the other farmers. After a purchase the city would

have less funds to continue buying up lands and will have less need for water. Moreover,

for neighboring farmers, this externality would be larger. A farmer could get �isolated� from

the river if the city buys all her neighbors. If the city buys most (usually two thirds) of the

farms in a given ditch, it could then dissolve the ditch association and the remaining farmer

would get no access to water. In this article we focus on this game between the farmers.
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Figure 1: Sales over time.

A. Fraction of Total Sales by Month. B. Fraction of Total Sales by Ditch.

Notes: Panel A: Fraction of total sales in the data with monthly frequency. Panel B: Fraction of total sales
in each ditch with quarterly frequency.

These externalities were important are were recognized by all parties involved. Therefore,

the farmers tried initially to negotiate as one, so that they would internalize the externalities

and would get a better price. They form the Owens Valley Irrigation District (OVID). The

city then bought out the main members of the OVID. The remaining farmers then created

three smaller cartels, each with di�erent levels of success. Each pool was a subset of the

farmers owning water rights in the three major ditches. In 1927, following the collapse of

the Watterson Brother's Bank, the Cashbought and the Watterson pool collapsed.

Although the city ended up buying all the land, when they where negotiating with the

farmers, the farmers were unsure about how far they could sustain a hold up. Until the

1930s, there was uncertainty as to how much land and water the city of LA was going to buy

and need. This uncertainty was driven by the recurrence of eventual droughts and by the

increase in population in the city of LA. The ability of buying land was subject to availability

of funds that came through sub sequential bonds. When the city run out of money, it was

unclear whether they were going to be able to issue a new bond.

2.2 Sales Data

We created our main dataset from the transaction cards (deeds) stored at the Los Angeles

Department of Water and Power (LADWP) archive in Bishop, Inyo county. In Figure 2.A
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Figure 2: Sample Pictures from data collection.

A. Transaction Card. B. Survey.

Notes: Panel A: Caption of a transaction between Minnie C. Moser and the city of Los Angeles. Panel B:
Caption of the survey conducted by the city of Los Angeles, where the plot owned by Minnie C. Moser is
seventh from the bottom.

we can see a sample in that transaction card. Each transaction card makes a reference to a

particular Section, in a particular Township and a particular Range, all of them in Mount

Diablo Meridian (M.D.M.). Typically one section correspond to a square of one mile times

one mile, or 640 acres. Thus a quarter of a section correspond to 160 acres; a quarter of a

quarter corresponds to 40 acres; and half of a quarter of a quarter corresponds to 20 acres,

as in Figure 2.A. This particular example is an easy one, but in some cases the same farmer

has several plots, sometimes non-contiguous. In many cases the plots are not rectangular,

and the Geo codi�cation is more cumbersome. However, we were able to Geo code virtually

all the plots. This is important not just to be able to create the maps, but also to create

variables that are relevant to out analysis, as we explain below in subsection 2.3.

Table 1 shows summary statistics for the variables used in the analysis. As shown in

Figure 2.A, we have not only the year of purchase but the exact date of purchase.1 In the

main analysis we only consider transactions between 1905 and 1935. The reason is that, as

explained above in subsection 2.1, before 1905 farmers where unaware of the intentions of the

city, and they sold their land to Fred Eaton. By 1935, the city owned all the water rights and

virtually all the non-federal lands in the Owens Valley. There are some sporadic transactions

in the 1970s and 1980s, but they are very di�erent in nature to the land purchases of the

1For many of the cards, we do see two dates. We know that the later date, or the only date when there
is only one, was the date when the land was sold. We believe that the �rst date is the date when the o�er
was made.
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beginning of the 20th century.

In addition to the date of purchase, we have information regarding the size of the land

and the amount paid for it, which we obtain directly from the cards. The cards do contain

information regarding water rights, but in a format that is not directly comparable across

farmers. In some cards the information is regarding the number of shares, sometimes it says

a percentage of all rights in a particular creek, and some times it mentions �rst or second

rights using miner's inches. All those measures are homogeneous and comparable within a

ditch, but not across ditches. In order to get a comparable measure of water rights across

all farmers, we merge our dataset with the data collected by Gary Libecap.2 Gary Libecap's

work cited above is based on the data available at the LADWP archive in Los Angeles. We

merge our data with his data to obtain uniform measure of water rights.3

Table 1: Summary Statistics.

Variable Mean SD Min Max Obs
Year 1,927 13.4 1,903 1,997 1,390
Acres 209.6 741.9 1 11,918 1,390
Price 26169 104594 1 2,000,000 1,250

Water Acres 257.3 882.45 0 17,850 1,381
Distance to the river 5,128 9,987.184 0 250,957 1,390
Distance to Mono lake 111,920 44,454.43 0 434,895 1,390
Distance to Owens lake 69,446 41,558.31 0 246,874 1,390

Notes: Summary statistics for selected variables. Year is a numeric variable that measures the year where
the plot was sold. ...

In addition to the transaction cards, we complemented the data with the surveys con-

ducted by the surveyors hired by LADWP. Figure 2.B shows a sample picture of the surveys

summary. We merge the dataset created using the transaction cards with the survey data

using the names of the farmers. In the survey we can also see how not only the name but

also the acreage and the water rights data also match with the information in the cards. The

2We are very thankful to Gary Libecap for sharing his data with us.
3In Libecap's dataset there is a measure of annual water acres for each farmer. Hence, for the farmers in

his dataset we have an exact measure of water acres. For reasons that are not clear to us, his dataset contain
fewer farmers than ours. Whereas we were able to �nd merge all farmers in his dataset in our dataset,
there are about 600 farmers in our dataset that do not appear in his dataset. Thus, we do not have an exact
measure of water acres for those farmers. However, most of those farmers have water rights in the same ditch
as another farmer that appears in Libecap's dataset. We make the assumption that all shares and all miner
inches in a given ditch convey the same number of water acres, and we use Libecap's data to extrapolate the
water acres for those farmers.
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survey, however, have an extra piece of information not present in the transaction cards, but

that is an important determinant of the price paid: land use. In the survey, the land for each

farmer is decomposed on how many acres are used for each of the following six categories:

Orchard, Alfalfa, Cultivated, Pasture, Brush and Yards.

2.3 Geo-location data

As mentioned above, the transaction cards provide a detailed description of the exact location

of each plot. We geo-located 2,750 plots. Figure 3.A shows the land holdings from the main

sellers, i.e., those who received over $1 million for their lands.4 Notice that the State of

California was by far the largest seller. Fred Eaton appears as the second largest seller,

despite not being a farmer or a land owner in the valley before 1905. He acted as an

intermediary who bough land from the farmers and sold it to the city. Most of the land in in

the lower part of the valley, close to Owens lake. However, it is worth noticing the large plot

of land sold by Eaton in Mono county. This plot of land correspond to the Rickey ranch,

covering 11,190 acres and purchased for $425,000 after �a week of Italian work� by Eaton

(cited by Reisner, 1986).

In addition to creating the maps, which are very useful to have a better understanding

of the data, the goal of the geo-location is to create more variables. For each polygon geo-

located, we can merge it with data available in GIS (Geographical Information Systems).

After the merge we have important variables such as: altitude, roughness, slope, suitability

and distance to the Owens river. All of which are important determinants of the quality of

the land and thus the price received. We are specially interested on the distance to the river,

because we conjecture that farmers, in a given ditch, whose plots are closer to the Owens

river, thus at the beginning of the ditch, would create a larger externality in the other

farmers, than farmers that farmers that are further away. Finally, geo-locating the plots for

all farmers allow us to compute distances between farmers, and to perform a rigorous spatial

analysis.

3 Preliminary Evidence

Table 2 shows the results for whether a sale will take place in a given month for each ditch

(notice that as we calculated our variables at the ditch level, is as if we were adding a ditch

�xed e�ect). The sale variable would be either zero if no sale took place that month or

4James Birchim received $2 million in 1981 for 646.12 acres. James Cashbaugh received $1.4 million in
1985 for 636.66. Because these sale was so late, they are not included in our analysis.
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Figure 3: Digitized maps in Owens Valley.

A. Main Owners of rights. B. Dollars per acre paid in the North.

C. Land size. D. Dollars per acre paid in the South.

Notes: Panel A: Map with the main water rights owners, i.e., those who received over $1 million. Notice
that Fred Eaton is listed although he was an intermediary. Panel B: Map of the dollars per acre paid for
each plot in the north of the Owens Valley. Panel C: Map of the total area holding of each seller. . Panel
D: Map of the dollars per acre paid for each plot in the south of the Owens Valley.
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Figure 4: Empirical Hazard functions.

Notes: Hazard rates of selling times for all farmers.
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Figure 5: Spatial Correlation.

Notes: Results from a Moran Test of Spatial correlation on the year that each farmer sold their plot. Sample
P/A corresponds to the spatial correlation of price per acre. Sample Trimming corresponds to the spatial
correlation of year of sale, taking all the observations between 1906 and 1935. Timing (X) corresponds to
the spatial correlation of year of sale, taking all the observations included in X.

one if at least one sale happened that month. We build state-level variables, which re�ect

how conditions are changing in time in each ditch. Sales to date represent the percentage

of farmers that have sold to LADWP up to that month. Shares to date, on the other hand,

represents the fraction of total shares that have been sold to the city until that moment in

time. Price per acre represents the average price of the sales that have taken place up to

that moment in time, and acres to date is the percentage of total acres in a given ditch that

has been sold to the city. We control for year-month to absorb any unobserved time-varying

changes.

Our results suggest that there is a signi�cant interaction taking place at the ditch level,

between farmers that have sold their land and farmers that have not. For instance, the

lower the fraction of shares that have been sold and the higher dispersion on the remaining

ownership of the shares, the higher the likelihood that a deal might take place in the future,

which points out towards the city trying to get control of the decision rights in each ditch

(recall that the LADWP needed 2/3 of the shares of a ditch to get the decision power). We

�nd that the higher the average price the city paid in a ditch, the higher the chance it will

buy land in the future (this might just be re�ecting the fact that a particular ditch might

be more attractive to the city). Finally, the higher fraction of land the city already controls,

the lower the chances of observing a sale in the future. All of these results are suggestive of

important co-dependence of sales among members of a given ditch.

In Table 3 we change our unit of analysis to look into the probability that any farmer
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Table 2: Logistic regression at the Ditch Level.

Dependent variable:

sale

(1) (2) (3) (4) (5) (6) (7)

Time 0.0005∗∗∗ 0.0005∗∗∗ 0.0004∗∗∗ 0.0003∗∗∗ 0.0003∗∗∗ 0.0003∗∗ 0.0001
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

Sales to Date −0.157 −0.483 −0.911 −0.680 −0.232 1.107 5.308∗∗∗

(0.437) (1.207) (1.267) (1.223) (1.439) (1.559) (1.876)

Shares to Date 0.307 −1.311 −1.437 −1.781 −2.101 −4.264∗∗∗
(1.061) (1.229) (1.165) (1.302) (1.315) (1.542)

SD of Shares 2.148∗∗∗ 1.638∗∗∗ 1.759∗∗∗ 1.628∗∗∗ 1.234∗

(0.565) (0.553) (0.593) (0.602) (0.693)

Price per Acre 1.178∗∗∗ 1.380∗∗∗ 1.453∗∗∗ 2.234∗∗∗

(0.267) (0.432) (0.432) (0.502)

SD of Price per Acre −0.321 −0.222 −0.785
(0.546) (0.546) (0.625)

Acres to Date −1.049∗∗ −2.502∗∗
(0.409) (1.234)

Water to Date 0.739
(0.996)

Constant 5.598∗∗∗ 5.601∗∗∗ 4.494∗∗ 2.727 2.314 1.717 −1.872
(1.899) (1.901) (1.967) (2.009) (2.128) (2.129) (2.432)

Observations 1,094 1,094 1,094 1,090 1,090 1,090 1,007
Log Likelihood −345.291 −345.249 −338.097 −323.786 −323.613 −320.396 −259.804
Akaike Inf. Crit. 696.581 698.498 686.194 659.572 661.226 656.792 537.608

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes: Results from a Logistic regression computed at the ditch level. The dependent variable is whether any farmer in a given ditch sold in a

given period. All independent variables measure a stock, unlike the dependent variable that is a �ow. All independent variables are normalized

so that they begin at 0 and end at 1. Time is the number of periods since the �rst sale. Sales to Date is the number of farmers that sold up

to that period. Shares to Date is the number of shares in the same ditch that farmers that have sold up to that period. SD of Shares is the

Standard Deviation of the shares in the same ditch that farmers that have sold up to that period. Price per Acre is the average price per acre

paid to farmers in the same ditch. SD of Price per Acre is the Standard Deviation of the price per acre paid to farmers in the same ditch that

have sold up to that period. Acres to Date is the total number of acres sold in that Ditch up to that period. Water to Date is the total number

of water acres sold in that Ditch up to that period.
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would sell to LADWP any given quarter. We do this analysis at the individual level to

compute how the actions of the four spatially closer neighbors a�ect the probability of a

farmer selling in the future. We control for ditch level, time-varying characteristics. From

the table below we see that the higher the fraction of neighbors that have sold their land

around a farmer, the lower the probability that the farmer will sell in the future. .

Table 3 is suggestive of the LADWP buying strategy. First, it could re�ect the fact that

LADWP was buying plots of lands around farmers that were either unwilling to sell or were

aggressively bargaining (selection). It could also capture the fact that once the city bought

the property around a given farmer, that farmers' land is less valuable to it, showing the

presence of negative externalities (treatment). To separate selection from treatment e�ects,

we will require a structural model.

4 Econometric Model

This section introduces the theoretical model. We model the game between the farmers as a

game of perfect information, unlike Takahashi (2015), which estimates a model of imperfect

information. Using the arguments in Harsanyi (1973), as we explain in more detail below in

subsection 4.3, one can see that the two games are observationally equivalent. In other words,

the data can be rationalize either by a game of perfect information, or by a game of imperfect

information.5 We choose to model the interaction as a game of perfect information because

we think that it is realistic in the empirical setting studied here. The historical literature has

pointed out how all farmers were informed both about the actions of other farmers selling

their plots to the city, the amount they got o�ered and the characteristics of each plot.6

4.1 Theoretical Model

We model the interaction between the farmers as a War of Attrition (WoA) based on the

results in Catepillan and Espín-Sánchez (2018), when they take as given the o�er made by

the city, and the contingent o�ers that the city would make over time. One can think of

each game presented here as the game between farmers in the same ditch. There are N

farmers with each farmer (he) indexed by i = 1, ..., N and the city of LA (she) as i = 0. The

game begins a t = 0 and time is continuous. There t = 0 the city makes an o�er to each

5Typically the game of imperfect information has a unique equilibrium, while the game of perfect infor-
mation have many. We focus on the equilibria of the perfect information game where all farmers use mixed
strategies, as this is the one that rationalized the data and the one that is observationally equivalent to the
game of imperfect information.

6Pearce (2013) documents how close the community was in the small towns in the valley and how everyone
knew even when their neighbor took the train to LA to sign the sale.
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farmer. The o�er consists on a price Vi· (0) that the farmer would receive for their plot if

she sold at t = 0. There is perfect information and we assume that the city can commit to

a stream of future o�ers to each farmer. Future o�ers are then common knowledge and may

depend on the time since the game began, denoted by the scalar t; the number of farmers

that have sold at a given point denoted by the scalar k; and in general in the identity of

each of the farmers that have sold at a given point, denoted by the set K. At each instant

in time, a farmer decides whether to stay in the market or to sell his farm to the city. While

staying, each farmer pays a monetary unitary instantaneous cost. The interpretation of this

instantaneous cost in continuous time is that of discounting.

It is important to make a distinction between the whole game, that involves all the

farmers in a ditch and their exit times, and each stage game, that involves only the subset

of farmers that have not sold up to that point. We can focus on each stage game, when

farmers take the continuation value after another farmer sells as given. In a stage game with

n remaining farmers, the value of a given farmer of selling is just the o�er made by the city

for that case ViK (t). Notice that the o�er depends on the time, the identity of the farmer

and the set of farmers that have sold already. If a farmer does not sell, his continuation

value, that is the value of being active in the next stage game, would depend on the identity

of the farmer who sold. The continuation value of the farmer is then W j
iK (t) when farmer j

sold his plot at time t. Because the farmer is deciding whether to sell or not, the important

element is the di�erence between selling at time t, which involves and immediate reward

ViK (t), and not selling at time t, which involves a continuation value W j
iK (t). We denote

this di�erence by ∆j
iK (t) ≡ W j

iK (t)− ViK (t).

In order to solve the equilibrium, we make one assumption regarding the evolution of

∆j
iK (t) over time.

Assumption A1: The difference in valuation between selling or not

for each farmer is separable in time and all farmers have a common time

component:

∆j
iK (t) = ∆j

iK · v (t)

Assumption A1 implies that the �shape� of ∆j
iK (t) over time is the same for all farmers.

The intuition is that although the value is di�erent for each farmer, and is changing over

time, the �shape� of the change is common to all farmers. It is worth noticing that in the

classical WoA models, the value of the �prizes� that the players get do not change over time,

i.e., in the classical WoA v (t) = 1. This means that both the values of exiting and the

continuation values are constant over time. A constant ∆j
iK (t), as we show below, implies

a constant probability of exiting over time, which means that the distribution of exit times
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will have a constant hazard rate. Therefore, the assumption of constant values is equivalent

to assuming that the distribution of exit times is exponential. Below we show how there is a

direct relation between the shape of the valuations over time and the shape of the distribution

of exit times, i.e., given a function of valuations over time, there is a unique distribution of

exit times in equilibrium and given a distribution of exit times in the data, the is a unique

function of valuations over time that rationalizes it. In Subsection 4.3 we show how our data

allow us to non-parametrically identify the distribution of valuations. For simplicity and we

chose a �exible parametric form for the estimation.

4.2 Equilibria

We now show how to solve for the unique equilibria where all farmers are using mixed

strategies. See Catepillan and Espín-Sánchez (2018) for details and a broader discussion

of equilibria. As de�ned above the value of staying until the next stage for farmer i when

farmer j exits at time t in a stage game when the set K of farmers have already sold is

∆j
iK (t) = ∆j

iK · v (t). Since the cost of staying is unitary, the cost function over time is

C (t) = t. We assume that v (t) is di�erentiable. The utility for farmer i of staying until

time t, given that farmer j is leaving at time s with probability fjK (s) is:

U j
iK (t) ≡

∑
j 6=i

t∫
0

[
∆j
iK · v (s)− s

]
fjK (s)

∏
k 6=i,k 6=j

[1− Fk (s)] ds− t

{∏
j 6=i

[1− FjK (t)]

}
(1)

That is, farmer i gets
[
∆j
iK · v (s)− s

]
if farmer j is the �rst to sold, and does so at time

s < t; and farmer i gets −t if nobody sells before t. The derivative of the utility exists and

we get the following expression

dUj
iK(t)

dt
≡

∑
j 6=i

[
∆j
iK · v (t)− t

]
fjK (t)

∏
k 6=i,k 6=j

[1− FkK (t)]−

{∏
j 6=i

[1− FjK (t)]

}
+ t

∑
j 6=i
fjK (t)

∏
k 6=i,k 6=j

[1− FkK (t)]

=

{∏
j 6=i

[1− FjK (t)]

}
·
∑
j 6=i

[
∆j
iK · v (t) · fjK (t)− 1

] (2)

In equilibrium the expected utility of not selling for any farmer that is using a mixed

strategy need to be constant. Otherwise the farmer would just sell (if his expected utility is

negative) of not sell (if his expected utility is positive). Thus, in equilibrium,
dUj

iK(t)

dt
= 0 and
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the probability that farmer j sells at time t, fjK (t), is the strategy followed by farmer j that

makes all other farmers indi�erent between selling or not, that is, λjK (t). This produces the

following equilibrium condition for farmer i:

∑
j 6=i

[
∆j
iK · v (t) · λjK (t)

]
= 1, ∀i (3)

Notice that we have one equilibrium condition for each remaining farmer, n equations in

total. The system of n equations will solve the strategies for each farmer λiK (t). We do so

in two steps. The �rst step is to solve for φiK, such that

∑
j 6=i

∆j
iK · φjK = 1, ∀i

This is a linear system of equations and it is easy to solve. Subsection ?? in the appendix

solves the case for three farmers to show the intuition behind the role of the values and the

externalities on the probabilities of selling. The intuition extends to more than three farmers

but the algebra is cumbersome. Then, the strategy for farmer i, that is the probability

distribution of selling over time, must follow a hazard rate that satisfy equilibrium condition

3:

λiK (t) = 1/ [φiK · v (t)] (4)

Therefore, the distribution of exit times for farmer i in game K is

FiK (t) = 1− c · exp

− t∫
0

φiK
v (s)

ds

 (5)

where c is the constant of integration that makes FiK (t) a probability distribution. Notice

that equation 8 is key to identify the shape of v (t). In the model, using equation 5, for each

v (t) we can compute the exact shape of the distribution of selling times for each farmer

in each game. When we look at the data, we can see the empirical distribution of selling

times for each farmer for a given game, ̂FiK (t). With that distribution, we can compute

the empirical hazard rate of selling times for each farmer for a given game, ̂λiK (t). Then,

using equation 8 we can compute the shape of v (t) and estimate the externalities using the

estimates on φiK.
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4.3 Identi�cation

The distributions of selling times are determined by the value of selling. Remember that the

object of interest ∆j
iK (t) was de�ned as the di�erence between the continuation value when

another farmer sells W j
iK (t) and the value of selling ViK (t). In the empirical application we

only observe each farmer exiting once, so we will not be able to estimate all φiK. However, we

can classify farmers depending on their observable characteristics, such that we will observe

several selling times for a given con�guration of the game. Therefore we can identify the

function v(t) non-parametrically. We will also observe all realizations of ViK (t), which are the

prices at which the farmers sold their plot. Therefore we are able to independently identify

the functions WiK (t) and ViK (t). This means we could identify asymmetric values for each

farmer, but not externalities. Finally, because we have information regarding the locations of

the farmers' plots and their characteristics, we will be able to identify and estimate di�erent

functions WiK (t), for di�erent pairs of farmers i and j.

In other words, if we only have information on exit times, as is usually the case (see

Takahashi, 2015), then we could only identify v(t), that is the probability of selling for a

farmer in a particular game, and we would have to restrict attention to symmetric games,

estimating a single φ for a given number of farmers, identi�ed up to a constant. In this case

the function ∆(t) is just equal to the hazard rate of the distribution of selling times for each

game with the same number of farmers. That is, we could estimate a function for games

with two farmers, another function for games with three farmers and so on.

If we also have information on the size of land and the value of the land for each farmer,

then we could estimate an asymmetric WoA game and estimate ∆i(t), thus identifying v (t)

and φi, up to a constant. If in addition, we have information on the prices received by the

farmers, we could also estimate Wi(t) from Vi(t), thus identifying v (t) and φi exactly. This

is not trivial, and it is key in this case for both the estimation of the game and the counter-

factuals. Moreover, it is rare to have such detailed data in an empirical estimation. Finally,

if we have information regarding the locations of the farmers' plots and their characteristics,

as well as the prices, we will be able to identify and estimate di�erent functions W j
i (t), for

di�erent pairs of farmers, thus identifying v (t) and φiK exactly. Notice that this is the main

innovation of the paper. We are estimating the externalities that a farmer exert on another

farmer when she sells her land. Depending on the variability of the data, and how we de�ne

a market (game) we could be more or less �exible on the structure of W j
i (t). Summarizing,

we can identify

• Symmetric Game � Data on exit times: ∆(t).

• Asymmetric Game � Data on exit times and individual characteristics: ∆i(t).
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• Asymmetric Game � Data on exit times, individual characteristics and sale prices:

Wi(t) and Vi(t).

• Asymmetric Game with Externalities � Data on exit times, individual charac-

teristics, sale prices and pair-speci�c information: W j
i (t) and Vi(t).

5 Estimation Strategy

In the data there are events that would a�ect all farmers, not only farmers in the same ditch.

The implicit assumption here is that we assume that sales by farmers outside the ditch a�ect

all farmers in a given ditch in the same way. In particular, we will use the cumulative sales

as a state variable in each game. In contrast, we believe that sales by farmers in the same

ditch, will a�ect more farmers within the same ditch. Moreover, we think they could a�ect

each farmer di�erently. Each stage game, as explained in Section 4, provides an exit time,

which is the key variable. Each stage game also provides us with information regarding the

farmer that sold, the farmers that were active but were not the �rst to sold, and the set of

farmers that belonged to the same ditch, but have sold already.

The estimation consists on two steps. In the �rst step (Inner Loop), we get one pseudo

parameter, θn from each game with a given number of farmers. In the second step (Outer

Loop), we use hedonic regressions to get a set of parameters β from the pseudo-parameters

in the �rst step. One contribution of this article is that we assume that the distribution of

exit times follows an Exponentiated Gamma distribution. This allows us to estimate directly

the �rst step, without having to use simulations.

5.1 Exponentiated Gamma

For the estimation, we assume that the �shape� of ∆i(t) is that of the hazard function of a

standard Exponentiated Gamma: EG ∼ (θ).7 Figure 4 shows the empirical hazard functions

for exit times. Because the empirical hazard functions are not constant over time, we know

that the distribution of exit times is not exponential. Thus we need to use a parametric

form that is �exible enough to produce non-constant hazard functions, such as the EG. In

addition to produce non-constant hazard functions, the EG is useful because, unlike most

7We could relax this assumption by generalizing if to be that of a Beta-Exponentiated Gamma (BEG ∼
(θ, λ, a, b)), if we restrict attention to the cases where the parameters λ, a and b are the same for all farmers
and all games. That is, we could allow the �scale parameter� θ to vary across farmers and games, but �x the
�shape� parameters to be the same across farmers and games. This way we can have a parametric function
that is tractable at the same time that is very �exible in terms of variance, asymmetry and �thickness of the
tails.�
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distributions, the order statistics of random variables generated by an EG have a closed form

solution.8 In particular, the density function of any order statistic from an EG is a weighted

average of density function of EG, where the weights do not depend on the parameters to

be estimated but only on the size of the sample n and the order statistic r.

A standard Exponentiated Gamma (EG) distribution (EG (θ)) is characterized by a

density function

f (x; θ) = θxe−x
[
1− e−x (x+ 1)

]θ−1
(6)

and a cumulative distribution function

F (x; θ) =
[
1− e−x (x+ 1)

]θ
(7)

When the shape parameters θ = 1 then the distribution is equivalent to a gamma distri-

bution with shape parameter α = 2 and scale parameter β = 1, i.e., Γ (2, 1).

The hazard function is

h (x; θ) =
f (x; θ)

1− F (x; θ)
=
θxe−x [1− e−x (x+ 1)]

θ−1

1− [1− e−x (x+ 1)]θ
(8)

For the estimation, we are interested on the distribution of the minimum of this random

variable. For the homogeneous case, and following Shawky and Bakoban (2009) we get that

the rth order statistic is given by

fr:n(x; θ) =
n−r∑
i=0

di(n, r)f(x; θ(r + i))

where

di(n, r) = (−1)in

(
n− 1

r − 1

)(
n− r
i

)
r + i

Let X1, ..., Xn be a random sample of size n from an EG ∼ (θ). If we are interested on

the �rst order statistic (minimum) we get

8One exception is the Uniform distribution. Any order statistic from a Uniform distribution follows a
Beta distribution. There are, however, two problems with using a Uniform distribution in this case. First,
empirically, the distribution of exit times does not resemble a Uniform distribution. Second, in terms of
estimation, estimating a Uniform or a Beta distribution is challenging because the support of the distribution
depends on the parameters to be estimated.
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f1:n(x; θ) =
n−1∑
i=0

di(n, r)f(x; θ(1 + i))

where

di(n, 1) = (−1)in

(
n− 1

i

)
1 + i

= (−1)i
(n− 1)!(n)

(n− 1− i)!(i!)(1 + i)

This means

f1:n(x; θ) = nf(x; θ)−
(
n(n− 1)

2

)
f(x; 2θ)+

(
n(n− 1)(n− 2)

6

)
f(x; 3θ)−...+(−1)n−1f(x;nθ)

(9)

Building on the work by Shawky and Bakoban (2009) we have also developed the distri-

bution of order statistics for a sample from heterogeneous distributions. Let X1, ..., Xn be a

random sample of size n where each realization comes from an EG with di�erent parameters

belonging to the set Θ ≡ (θ1, ..., θn). In particular, Xi ∼ EG(θi) for i = 1, 2, ..., n, that

is X1 ∼ EG(θ1), X2 ∼ EG(θn),..., Xn ∼ EG(θn). In this case we can compute the order

statistics of the heterogeneous random sample. In particular, we are interested in the �rst

heterogeneous order statistic (minimum) which has the form

f1:n(x; Θ) =
n∑
i=1

f (x; θi)−
1

2

n∑
i=1

∑
j 6=i

f (x; θi + θj) + ...+ (−1)n−1f

(
x;

n∑
i=1

θi

)
(10)

where f(x; θ) is the density function of an EG(θ). Notice that in the homogeneous case we

have θi = θ, ∀i, equation 10 becomes equal to equation 9. In particular, the �rst term in equa-

tion 10 is just a sum of n identical terms. The second term is more complicated since it is the

sum of all possible pairs. For example, when n = 3 the second term is made up of six terms:

f (x; θ1 + θ2)+ f (x; θ1 + θ3)+f (x; θ2 + θ1)+ f (x; θ2 + θ3)+f (x; θ3 + θ1)+ f (x; θ3 + θ2), but

notice that it can be simpli�ed as 2 [f (x; θ1 + θ2) + f (x; θ1 + θ3) + f (x; θ2 + θ3)], for the ho-

mogeneous case. Therefore when we divide by two, the term just include each density once.

In the homogeneous case all three densities are identical, therefore the scalar multiplying

the density is just 3, and the scalar inside the density is 2. The same logic applies to all

terms, with alternating signs. The last term is again simple. Since it only includes one

�permutation� that includes all densities. It is easy to check that the parameter inside the

density is made up of the sum of n identical terms, so the scalar multiplying the density is

A-21



1 and the scalar inside the density is n.

5.2 First Step

In the �rst step of the estimation we need to recover a vector of θ for each exiting farmer.

We will have heterogeneity as a function of the number of remaining farmers in a given ditch.

To do so, we pool data from di�erent ditches. We consider that each ditch is an independent

game. We have twelve ditches that feature at least �ve exits (sells) or farmers in a ditch. For

each ditch, we order farmers as a function of their exit time and we calculate the number of

days (as a fraction of a year) between farmers' exits.

Next we pool data from games. For this part of the estimation, we only need to use data

on the exit times of each game with n farmers. We calculate the probability that a given

farmers exit in x days, when there are n remaining farmers in a game. In such game the

strategy for each farmer is to exit at each point in time using an instantaneous probability of

exiting of ηn(t). This instantaneous probability of exiting correspond to the hazard function

of an underlying distribution of exit times Φn(x; θn). We are interested in Φn(x; θn) because

that is what we would use to create counterfactuals.

However, we do not observe all the realizations of exit times. We only observe the lowest

among all realizations, that is the minimum or the �rst order statistic.9 Therefore, the

distribution of exit times would just follow the distribution of the exit times of the �rst

order statistic. We can also de�ne Ψn(x; θn), with density ψn(x; θn), as the distribution of

the �rst order statistic (minimum) or n draws from of Φn(t; θn). In other words, each farmer

will draw a time of exiting ti from an EG(θn) but we will only observe the exit of the farmer

with the lowest realization.

Based on the results above, in order to estimate a symmetric game with n farmers, we

can use the following likelihood function

l (T ni , θ
n) =

∏
i=1

ψn(xni ; θn) =
∏
i=1

{f1:n(xni ; θn)} (11)

where xi is the realization of number of days until exit, since the beginning of the game,

in a game with n remaining farmers, and f1:n(xni ; θn) is the density of the minimum as de�ned

in equation.

Notice that this likelihood will give us an estimate for θn but we are interested on ∆n(tn).

9Remember that a War of Attrition can be modeled as a particular all pay auction, where all n farmers
pay the lowest bid, and the n− 1 farmers with the highest bids get the prize, that is, they get to stay in the
game. In that analog, the waiting time is the War of Attrition game is equivalent to the bid in the all pay
auction.
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For easy of estimation, we are restricting the shape that it can take. In particular, the

assumption here is that h (xn, θn) = ηn(xn) = 1
(n−1)∆n(xn)

, for all games. Therefore, ∆n(xn) =
1

(n−1)h(xn,θn)
. The logic of the estimation is as follows. We observe a vector of exit times for

each game with n farmers. Given this vector we estimate the parameter θn using the ML

equation 11. With the estimated value θ̂nwe can compute the estimated hazard function

h
(
x, θ̂n

)
. Finally, with the estimated hazard function h

(
x, θ̂n

)
and using the equilibrium

equation we can recover the distribution of valuations for each game ∆n(x), which is then

equal to

∆n(x) =
1

(n− 1)h
(
x, θ̂n

)
For example, for all games that had three remaining farmers, we pool the data from

the twelve ditches, and we calculate what would be the probability of jointly see their exit

times, when there are three farmers in a game. The advantage of using an Exponentiated

Gamma distribution, is that we can compute what would be the probability of the minimum

for di�erent games. Thus, it is computationally feasible to represent the above likelihood

function analytically. Although we do not have a close form solution for what the maximum

likelihood estimator would look like, we can look for a vector of thetas, numerically. To do

so, we partition the parameter space and we follow a grid search procedure. We compute the

probability of all joint events, and we pick the combination of parameters that maximizes

such probability.

From our estimated vector of parameters, we can now project what would be the contin-

uation value for each farmer in a given ditch.

5.3 Second Step

We have recovered from exit times ∆n
i (x, n; θ̂) ≡< ∆1

i (x1, 1; θ̂),∆2
i (x2, 2; θ̂)...∆n

i (xn, n; θ̂) > ,

a vector of exit times for each farmer on a given ditch. Where xj is the interval of time for

farmer j to exit, when there are n farmers in the game. Thus, for each jε{1, 2..n} farmer in

a ditch i we can estimate this �value-cost� of waiting. Given that we assume that the value

cost of waiting was equal to one, we will re-escalate this value. We assume that the cost of

waiting for a year, can be approximated for each farmer as the annual interest rate it would

receive by selling its plot of land. Thus Ci = r ∗ Pi. This is true for the symmetric and

asymmetric games. We can use these costs allow us to recover externalities. This is it is key

to have data on �nal sales, not just the timing of the sales.

First, note that
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Figure 6: Continuation Values.

Notes: Continuation values predicted by the model for each ditch, as a function of the number of remaining
farmers in that ditch.
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V 1
i (x)− V 2

i (x) = Ci2∆2
i (x, 2 : θ̂) (12)

V 1
i (x)− Ci2∆2

i (x, 2 : θ̂) = V 2
i (x)

Since V 1
i (x) is the continuation value of the last farmer to exit, then it has to be the case

that V 1
i (x) = P 1

i , thus

P 1
i − Ci2∆2

i (x, 2 : θ̂) = V 2
i (x2)

Now we can use this relation recursively:

V 2
i (x2)− Ci3∆3

i (x3, 3 : θ̂) = V 3
i (x3)⇔ V 3

i (x3) = P 1
i − Ci2∆2

i (x2, 2 : θ̂)− Ci3∆3
i (x3, 3 : θ̂)

Therefore

V̂ n
i (xn) = P 1

i −
n∑
j=2

Cij∆
j
i (xj, j : θ̂) (13)

Lets denote V̂i ≡< V̂ 1
i , ...V̂

n
i > as the vector of all continuation values we can recover

from exit times for ditch i.

On the other hand, recall that

∑
j 6=i

p̂ij(xi : θ̂)W i
j (xi) = V̂ i(xi)

where p̂ij(xi : θ̂) denotes the probability that farmer j exits the game at time xi when

there are i farmers remaining in the game. Note that from the asymmetric game, we can

compute a probability of exiting that is di�erent for each farmer in a given game. Finally,

W i
j is the continuation value of the game, where farmer j to exit.

Hedonic Assumption Given that the number of parameters we need to estimate is

very big, and the fact that we only observe certain exits as each game is played only once,

then we will need to assume a parametric function for the counterfactual estimation values.

We will assume that we can decompose such value as the linear combination of relative

observable characteristics between i and j.

W i
j = β1X

1
ij(xi) + β2X

2
ij(xi) + ..+ βKX

K
ij (xi) = β1×KX

ij
K×1
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Where we have K hedonic characteristics we will use, and < X1
ij = g(X1

i , X
1
j , xi).. X

K
ij =

g(XK
i , X

K
j , xi) > is some function of time-varying attributes J (or the attribute in time xi)

for i and j (this could be the di�erence, yet we could also use a more �exible speci�cation).

We are interested in recovering β1×K ≡< β1...βK >. We can write the system of equations

that we need as:

∑
j<2 p̂

2
j(x2 : θ̂)W 2

j (x2) = V̂ 2(x2)∑
j<3 p̂

3
j(x3 : θ̂)W 3

j (x3) = V̂ 3(x3)

....∑
j<N p̂

N
j (xN : θ̂)WN

j (xN) = V̂ N(xN)

Where N is the maximum number of farmers in a given ditch (or as many as we need to

use).

Note that this system can be r-written as:

∑
j<2 p̂

2
j(x2 : θ̂)β1×KX

2j
K×1 = V̂ 2(x2)∑

j<3 p̂
3
j(x3 : θ̂)β1×KX

3j
K×1 = V̂ 3(x3)

....∑
j<N p̂

n
j (xN : θ̂)β1×KX

nj
K×1 = V̂ n(xn)

Notice that we can re arrange terms here. Rearranging we get:

∑
j<2

p̂2
j(x2 : θ̂)β1×KX

2j
K×1 = p̂2

1(x2 : θ̂)
[
β1X

1
2j(x2) + β2X

2
2j(x2) + ..+ βKX

K
2j (x2)

]

= β1×K ·
[
p̂2

1(x2 : θ̂)X1
2j(x2), .., p̂2

1(x2 : θ̂)XK
2j (x2)

]
K×1

∑
j<3

p̂3
j(x3 : θ̂)β1×KX

3j
K×1 =

p̂3
1(x3 : θ̂)[β1X

1
3j(x3)+β2X

2
3j(x3)+..+βKX

K
3j (x3)]+p̂3

2(x3 : θ̂)
[
β1X

1
3j(x3) + β2X

2
3j(x3) + ..+ βKX

K
3j (x3)

]

= β1×K ·

[∑
j<3

p̂3
jX

1
3j(x3), ..,

∑
j<3

p̂3
jX

K
3j (x3)

]
K×1

In general we will have that
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∑
j<N

p̂Nj (xN : θ̂)β1×KX
Nj
K×1 = β1×K ·

[∑
j<N

p̂Nj X
1
Nj(xN), ..,

∑
j<N

p̂Nj X
K
Nj(xN)

]
K×1

Therefore we can re-write the system as:

β1×K ·

[
p̂2

1(x2 : θ̂)X1
2j(x2), .., p̂2

1(x2 : θ̂)XK
2j (x2)

]
K×1

[...]

β1×K ·
[∑

j<N p̂
N
j (xN : θ̂)X1

Nj(xN), ..,
∑

j<N p̂
N
j (xN : θ̂)XK

Nj(xN)
]
K×1

= V̂N×1

Let denote

M̂K×N =

[
p̂2

1(x2 : θ̂)X1
2j(x2), .., p̂2

1(x2 : θ̂)XK
2j (x2)

]
K×1

[...]

β1×K ·
[∑

j<N p̂
N
j (xN : θ̂)X1

Nj(xN), ..,
∑

j<N p̂
N
j (xN : θ̂)XK

Nj(xN)
]
K × 1

MK×N is a matrix that has as many columns as hedonic characteristics, and as many rows

as farmers in a ditch. This matrix represents the weighted average (weighting by probability)

of relative hedonic characteristics. What is crucial, is that we can compute this matrix, since

we can compute the probabilities, and we observe relative characteristics. Then we have the

following linear system:

β1×KM̂K×N = V̂N×1

Hence, as long as we have as many characteristics as observations (or farmers in a game),

we can recover β̂. The main restriction that this part of the estimation imposes, is that the

Matrix of weighted characteristics, must be invertible. For that to be the case it is crucial that

we have the same number of hedonic features, as farmers in a game. We will then estimate,

the hedonic parameters for each ditch. We will compute the following characteristics. First,

what is the bilateral distance between farmers. Then, we will compute a time distance

between farmers' sales. Finally, we compute what percentage of total ditch area, shares and

crops a farmer has in each ditch. We do this in percentage to normalize across ditches.

Table ?? reports the estimated value, as the matrix we invert using the last six farmers

in a given ditch. In order to have a sense of the sensibility of our point estimates, we perform

a bootstrapping method where we calculate our parameters, changing one farmer randomly
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Table 4: Structural Results.

Dependent variable:

Distance Days Area Shares Crops+Water

Manzanar −3.223584e-04 −9.381279e-02 1.055789e+03 5.339839e+02 1.121949e+02
(1.244922e-03) (3.913213e-02) (1.599250e+03) (2.474765e+03) (3.378295e+03)

Chandler −2.724007e-01 −8.838188e-01 5.579362e+03 1.047035e+05 1.412057e+06
(2.323421) (3.983956) (6.801470e+04) (4.567618e+05) (5.942558e+06)

Baker −9.955914e-02 −2.007032e-01 1.708856e+03 2.565922e+03 1.097686e+03
(0.3331052) (0.9408778) (9432.15) (4329.12) (2936.54)

Inyo −7.596677e-03 −1.008741e-01 4.856670e+02 1.992594e+03 5.338233e+02
(0.01346477) (0.08179139) (723.83) (827.86) (559.74)

Pine −1.677243e-03 −1.756256e-02 6.734066e+03 1.982493e+04 8.913564e+03
(5.126984e-02) (1.305122e-01) (5.085023e+03) (2.139731e+04) (1.385493e+04)

Mcnally −4.172011e-02 −1.946022e-01 8.000062e+03 4.319828e+03 1.629090e+04
(1.324503e-01) (4.713139e-01) (1.597603e+04) (7.317147e+03) (3.938971e+04)

Rawson −9.991557e-03 −2.897122e-01 4.142184e+02 1.085068e+03 1.203814e+03
(4.793053e-04) (1.478321e-02) (1.562292e+01) (4.743587e+01) (5.316033e+01)

Farmers −1.339126e-02 −1.379332e-02 1.412972e+04 1.056362e+04 7.988343e+02
(0.1065179) (0.0987675) (5184.468) (5291.69) (5.428533e+02)

Collins −3.343431e-02 −1.338889 1.666359e+03 1.122440e+02
(1.675754e-01) (3.602116) (1.771236e+03) (2.716665e+03)

Fish −1.357456e-02 −1.620848 1.197909e+03
(2.040101e-02) (1.118644) (1.438405e+03)

Notes: Results from the structural estimation
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1000 times.

First we observe that there is a general consistency of the estimates across ditches. We

�nd that the closer you are in space and in time, the higher the externality it would generate

on a sell. On the pother hand, big sales, tend to be more important than small sales, yet

this varies by ditch.

6 Conclusions

[TO COME]
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