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Abstract

In this paper, we introduce the concept of “self-justified equilibrium” as a tractable alterna-

tive to rational expectations equilibrium in stochastic general equilibrium models with a large

number of heterogeneous agents. A self-justified equilibrium is a temporary equilibrium where

agents trade in assets and commodities to maximize the sum of current utility and expected

future utilities that are forecasted on the basis of current endogenous variables and the current

exogenous shock. The crucial assumption is that forecasting functions lie within a given class of

simple functions and that they minimize long-run average forecasting errors among all functions

in the class. We provide sufficient conditions for the existence of self-justified equilibria, and

we develop a computational method to approximate them numerically. For this, we focus on a

convenient special case where agents project current endogenous variables into a lower dimen-

sional subspace and where the dimension of this subspace can be viewed as optimally trading

off the accuracy of the forecast and its complexity. Using Gaussian process regression coupled

with active subspaces as in Scheidegger and Bilonis (2017), we can solve models with hundreds

to thousands of heterogeneous agents.

∗We thank Victor Rios-Rull, Tom Sargent as well as seminar participants at Toulouse and at Louvain-La-Neuve

for useful conversations and comments, and gratefully acknowledge financial support from PASC and the SFI.
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1 Introduction

The assumption of rational expectations and the use of recursive methods to analyze dynamic

economic models has revolutionized financial economics, macroeconomics, and public finance (see,

e.g., Ljungqvist and Sargent (2012)). Unfortunately, for stochastic general equilibrium models with

a large number of heterogeneous agents rational expectations equilibria are generally not tractable,

computational methods to approximate these equilibria numerically are often ad hoc, and a rigorous

error analysis seems impossible. In this paper, we develop an alternative to rational expectations

equilibria and consider temporary equilibria with forecasting functions that are optimal within

a given class, but that might lead to incorrect forecasts at any given time. We derive simple

sufficient conditions that ensure the existence of these “self-justified” equilibria, and we show that

by restricting the complexity of agents’ forecasts one can numerically approximate them for models

with very many agents.

The basic idea of the approach is as follows. In a temporary equilibrium, agents use current

endogenous variables and the shock to forecast future marginal utilities for assets; prices for com-

modities and assets in the current period ensure that markets clear. The forecasts are assumed

to be functions that lie in a pre-specified class (a simple example are semi-algebraic functions of

fixed description complexity) - the agent chooses a function to minimize a loss function of average

realizations of marginal utilities along the equilibrium path and the forecasts. In the temporary

equilibrium, these expectations might be far from correct and agents might make significant mis-

takes. However, their forecasts are optimal given the agents’ constraints. The concept does not

require identical expectations or identical forecasts across agents. Different types of agents can have

different expectations and different forecasting functions.

To prove the existence of self-justified equilibrium we make the simplifying assumption that

accounting is finite. That is to say, we assume that beginning-of-period portfolios across agents

lie on some finite (arbitrarily fine) grid and that agents’ portfolio-choices in the current period

induce a probability distribution over this grid. This assumption can be viewed as a technical

approximation to a continuous model, but one can also think of bounded rationality justifications.

For example, one might want to assume that at the beginning of a period an agent cannot measure

his financial wealth with arbitrary precision and makes small errors in rounding. In any case, while

the assumption is necessary for the technical argument is does not affect the computed solutions

since all computations are necessarily using finite precision arithmetics.

In our application, we consider a specific form for the forecasting function in that we assume that

each agent projects the current endogenous variables into a relatively low dimensional subspace and

approximates forecasts over this subspace globally.1 Following Scheidegger and Bilionis (2017), we
1We use the term “global solution” for a solution that is computed using equilibrium conditions at many points in

the state space of a dynamic model—in contrast to a “local solution”, which rests on a local approximation around a
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achieve this by combining Gaussian process regression (see, e.g., Rasmussen and Williams (2005))—

a tool from supervised machine learning that can be used to approximate functions with prominent

local features—with with the exploitation of so-called active subspaces (see, e.g., Constantine et al.

(2014)). Using this combination allows us to construct a method that determines an economically

intuitive linear projection for a fixed dimension of the subspace. This combination directly gives

rise to a simple algorithm that trades off complexity and simplicity of the forecasting function and

allows us to approximate self-justified equilibria numerically.

We demonstrate that our computational method can be applied to large-scale heterogeneous

agents models by applying it to an economy with 120 agents and segmented financial markets. We

first consider the simplest case where an agent only uses his own asset-holding (together with the

shock) to forecast future utilities (i.e. the asset holdings across all agents are projected into own

asset holdings). This turns out to work very well in standard calibrations of the model. However,

once we assume sufficient heterogeneity in tastes across generations, this simple method leads to

large forecasting errors. We then use active subspace methods from Constantine et al. (2014) to

show that adding one additional explanatory variable, that consists of a weighted mean of asset

holdings across agents, reduces forcasting errors to almost zero. It is subject to further research to

explore models where the dimension of the active subspace is larger.

There is a large and diverse body of work exploring deviations from rational expectation (see,

e.g., Sargent (1993), Kurz (1994), Woodford (2013), Gabaix (2014), Adam et al. (2016)). Much

of this work is motivated by insights from behavioral economics about agents’ behavior or by the

search for simple economic mechanisms that enrich the observable implications of standard models.

The motivation of this paper is rather different in that we want to develop a simple alternative to

rational expectations that allows researchers to rigorously analyze stochastic dynamic models with

a very large number of heterogeneous agents.

As Sargent (1993) points out, “when implemented numerically ... rational expectations models

impute more knowledge to the agent within the model ... than is possessed by an econometrician”,

and a sensible approach to relax rational expectations is “expelling rational agents from our model

environment and replacing them with ‘artificially intelligent’ agents who behave like econometri-

cians.” This quote embodies the idea underlying self-justified equilibria – to construct a tractable

model of the macro-economy that takes into account substantial heterogeneity across agents one

needs to assume that agents’ expectations can be computed by the modeler.

Applied dynamic general equilibrium modeling has been criticized for its failure to take into

account the considerable heterogeneity in tastes and technologies across agents. Farmer and Foley

(2009) make this point forcefully and strongly advocate the use of so called agent-based models

to understand macro-economy dynamics. An agent-based model is a computerized simulation of a

steady state of the model.
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number of decision-makers and institutions, which interact through prescribed rules. The agents

can be as diverse as needed but in these agent-based models, behavioral rules are often arbitrary.

Up to now, it seemed too complicated to incorporate substantial heterogeneity into large-scale

dynamic general equilibrium models because existing solution methods are not able to handle this

amount of heterogeneity. Using the concept of self-justified equilibria, one can incorporate large-

scale heterogeneity into general equilibrium models, potentially improve their usefulness for applied

work and bridge the gap between agent-based modeling and applied general equilibrium.

The rest of the paper is organized as follows. In Section 2, the general economy is introduced,

and a self-justified equilibrium is defined. In Section 3, we prove existence. In Section 4 we consider

a special case which has the attractive features that it is tractable and that forecasts can be viewed as

a trade-off between complexity and accuracy. In Section 5 we describe our computational strategy.

In Section 6 we give a simple example to illustrate both the concept of self-justified equilibria and

our computational method.

2 A general dynamic Markovian economy

We consider a Bewley-style overlapping generations model (see Bewley (1984)) with incomplete

financial markets and a continuum of agents. Time is indexed by t P N0. Exogenous shocks

zt realize in a finite set Z “ t1, . . . , Zu, and follow a first-order Markov process with transition

probability πpz1|zq. A history of shocks up to some date t is denoted by zt “ pz0, z1, . . . , ztq and

called a date event. Whenever convenient, we use t instead of zt.

At each date event, a continuum of ex-ante identical agents enter the economy, live for A periods,

and differ ex-post by the realization of their idiosyncratic shocks. Each agent faces idiosyncratic

shocks, y1, ..., yA, that have support in a finite set YA. We denote by ηyapya`1q the (conditional)

probability of idiosyncratic shock ya`1 for an agent with shock history ya, η0py1q to denote the

probability of idiosyncratic shock y1 at the beginning of life, and, ηpyaq to denote the probability of

a history of idiosyncratic shocks. We assume that the idiosyncratic shocks are independent of the

aggregate shock, that they are identically distributed across agents within each type and age and,

as in the construction in Proposition 2 in Feldman and Gilles (1985), that they “cancel out” in the

aggregate, that is, the joint distribution of idiosyncratic shocks within a type ensures that at each

history of aggregate shocks, zt, for any ya P Ya the fraction of agents with history ya “ py1, ..., yaq

is ηpyaq. This allows the focus on equilibria for which prices and aggregate quantities only depend

on the history of aggregate shocks, zt. We denote the set of all date events at time t by Zt and,

taking z0 as fixed, we write zt P Zt for any t P N0 (including t “ 0). At each zt there are finitely

many different agents actively trading (distinguishing themselves by age and history of shocks), who

are collected in a set I “ YAa“1Y
a. A specific agent at a given node zt is denoted by ya P I.

At each date event, there is a single perishable commodity, the individual endowments are
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denoted by eyapztq P R` and assumed to be time-invariant and measurable functions of the current

aggregate shock.2 Each agent who can be identified by his date-event of birth, zt, has a time-

separable expected utility function

Uztppxt`aq
A´1
a“0 q “

A
ÿ

a“1

ÿ

zt`a´1ľzt

ÿ

ya
ηpyaqπpzt`a´1|ztquya

`

xyapz
t`a´1q

˘

,

where xyapzt`a´1q P R` denotes the agent ya’s (stochastic) consumption at date t` a´ 1.

There are J assets, j P J “ t1, . . . , Ju traded at each date event. Assets can be infinitely lived

Lucas trees in unit net supply or one-period financial assets in zero net supply. The net supply of

an asset j is denoted by θ̄j P t0, 1u. Assets are traded at prices q and their (non-negative) payoffs

depend on the aggregate shock and possibly on the current prices of the assets fj : RJ` ˆ Z Ñ R`.

If asset j is a Lucas tree (i.e., an asset in positive net supply), then fjpq, zq “ qj ` djpzq for some

dividends dj : Z Ñ R`. Asset j could also be a collateralized loan whose payoff depends on the

value of the underlying collateral, or an option, or simply a risk-free asset. The aggregate dividends

of the trees are defined as dpztq “ θ̄ ¨ fpqpztq, ztq ´ θ̄ ¨ qpztq. An agent ya faces trading constraints

θ P Θya Ă RJ , where ΘyA “ t0u for all yA P YA. To simplify notation we write ~θ “ pθyaqyaPI,
~θ´ “ pθ´yaqyaPI and ~x “ pxyaqyaPI.

It is useful to define the set of possible portfolio holdings with market-clearing built-in as

Θ “ t~θ :
ÿ

yaPI

ηpyaqθya “ θ̄, θya P Θya for all ya´1 P Iu.

Similarly, let the set of all beginning-of-period portfolio holdings be

Θ´ “ t~θ´ : θ´
y1 “ 0,

ÿ

ya´1PI

ηpya´1qθ´ya “ θ̄ and θ´ya P Θya´1 for all yau.

We define the state space to be S “ ZˆΘ´ with Borel σ-algebra S. The law of motion of the

exogenous shock, π, and current choices ~θ determine a probability distribution over next period’s

state - we write Qp.|z, ~θq. We will make assumptions on this probability distribution below which

turn out to simplify the analysis but which are not standard.

2.1 Self justified equilibria

In a competitive environment, agents choose asset-holdings in the current period to maximize ex-

pected lifetime utility and current prices ensure that markets clear. To understand how today’s

asset choices affect future utilities the agent needs to form some expectations about future prices

and compute his optimal life-cycle asset-holdings under these prices. As already mentioned, it turns
2As opposed to the standard formulation where an agent’s fundamentals are functions of his current idiosyncratic

shock, y, we assume that they are functions of the history of all shocks - clearly these formulations are equivalent if

one allows for a sufficiently rich set Y.
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out to be useful to model the forecasting of prices and the recursive solution of the agents’ problem

in one step and assume that the agent makes a current decision given expectations over the next

period’s marginal utility of asset holdings. These expectations are based on current endogenous

variables and the shock. While in rational expectations these expectations are always correct, the

definition of a self-justified equilibrium simply requires them to be optimal within a restricted class

of forecasting functions, given an agent’s approximation to the invariant distribution. We, therefore,

allow these forecasts to be imperfect and heterogeneous across agents.

In a temporary equilibrium each agent, ya P I, is characterized by a function

Mya : Sˆ RI` ˆΘˆ RJ` Ñ RJ`,

that predicts marginal utilities of assets in the next period on the basis of the current state, current

prices and current consumptions and portfolio-holdings across agents. In our formulation, the agent

forecasts marginal utilities from asset holdings. It might seem more standard to assume that the

agent forecasts prices and then solves his life-cycle optimization problem on the basis of forecasted

prices. However, this turns out to be much more complicated because he has to forecast prices

over his entire life-cycle and not just one-period ahead. Moreover, we illustrate in a simple example

below that forecasting prices might be more complicated then forecasting marginal utilities from

asset-holdings. Finally one could argue that the agent might forecast his value function in the next

period to solve the maximization problem. This turns out to be too complicated since he has to

forecast an entire function.

We denote by ~M “ pMyaqyaPI the forecasting functions across all agents. Throughout we assume

that MyAp.q “ 0 for all yA P YA, forecasts of agents of age A are irrelevant. Assuming concavity of

utility, the first order conditions are necessary and sufficient for agents’ optimality and, given prices

q and beginning-of-period asset-holdings θ´ya we can write an agent ya’s maximization problem as

max
xPR`,θPΘya

uyapxq `Myaps, ~x, ~θ, qq ¨ θ s.t. (1)

x` θ ¨ q ´ eyapzq ´ θ
´
ya ¨ fpq, zq ď 0.

The agent takes as given current average portfolio- and consumption choices across all agents, ~θ, ~x

and current prices q. For now, the function Myap.q is given – we endogenize this for our definition

of self-justified equilibrium below.

Given forecasting functions across agents, ~M , we define the temporary equilibrium correspon-

dence

N ~M : S Ñ RI` ˆΘˆ RJ

as a map from the current state to current prices and choices that clear markets and that are optimal
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for the agents, given their forecasting functions, i.e.,

N ~M psq “ tp~x, ~θ, qq P RI` ˆΘˆ RJ` : (2)

pxya , θyaq P arg max
xPR`,θPΘya

uyapxq `Myaps, ~x, ~θ, qq ¨ θ s.t.

x` θ ¨ q ´ eyapzq ´ θ
´
ya ¨ fpq, zq ď 0 for all ya P Iu.

Assuming that for a given ~M the set N ~M psq is non-empty for all s P S and that there exists a

single-valued selection Npsq, we write

Npsq “
`

N~xpsq, N~θ
psq, Nqpsq

˘

.

It should be kept in mind that the function Npsq also depends on ~M . However, to simplify notation,

we do not make this explicit.

The crucial innovation of this paper is to allow for heterogeneous and possibly incorrect forecasts

across agents while still maintaining the assumption that agents are rational. For this, we assume

that the agents deviate from rational expectations with respect to one crucial aspect: They cannot

evaluate (or store) arbitrarily complicated functions, but instead approximate the equilibrium fore-

casts by “simple” functions. These functions could be relatively simple because they aggregate ~θ into

a lower dimensional vector (cf. Section 4 below), or because they belong to some convenient class

of functions - a simple example would be semi-algebraic functions of fixed description complexity.

For the definition of a self-justified equilibrium we therefore assume that agents are characterized

by sets of admissible forecasting functions, Mya , ya P I, and we write M “ ˆyaPIMya .

To make optimal current choices, agents need to know the marginal utility of their asset holdings

in the next period. This is an equilibrium object since it depends on all future prices over the agent’s

life-cycle. Given a selection Npsq of the equilibrium correspondence, it is given by

myapz, ~θq “

ż

s1PS
fpNqps

1q, z1q
ÿ

ya`1PY

ηyapya`1qu
1
ya`1pNxya`1 ps

1qqdQps1|z, ~θq (3)

Each agents ya’s forecast, Mya , is chosen from a (exogenously given) set of functions Mya to

minimize the average of the squared difference between the forecasted marginal utility and realized

marginal utility, mya , along an invariant distribution.

We then have the following definition.

Definition 1 A self-justified equilibrium consists of forecasts ~M P M, a selectionNp.q of the temporary

equilibrium correspondence, N ~M p.q, and measure Q˚ on pS,Sq, such that

1. Q˚ is invariant given the law of motion induced by Np.q and by Qp., .q. That is to say for all B P S

Q˚pBq “
ż

sPS
QpB|z,N~θ

psqqdQ˚psq
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2. For each ya, a ă A, Mya provides the best average approximation under this measure, i.e.

Mya P arg min
MPMya

ż

sPS
pMps,Npsqq ´mpz,Nθpsqqq

2 dQ˚psq

Similarly to the concept of “self-confirming” equilibrium (see e.g. Fudenberg and Levine (1993) or

Cho and Sargent (2009)) a self-justified equilibrium can be interpreted as the outcome of a learning

process which itself is not modeled in the theory. The crucial difference is that in a self-justified

equilibrium, an agent’s forecasts can be incorrect in every step, as long as they are the best forecasts

the agent can choose.

For the special case where

myapz,N~θ
psqq “Myaps,Npsqq for all s P S

we obtain a standard rational expectations equilibrium. The main contribution of this paper is to

explore what happens if the agent is unable to approximate mya perfectly.

3 Existence

To prove the existence of simple equilibria in heterogeneous agents models with incomplete markets,

one needs to impose strong assumptions on fundamentals. Brumm et al. (2017) argue that without

strong assumptions, simple equilibria might fail to exist (Kubler and Polemarchakis (2004) provide

simple counterexamples).

3.1 Assumptions

We first make a number of fairly standard assumptions on fundamentals:

Assumption 1

1. For each ya P I the Bernoulli-utility function uyap¨q is continuously differentiable, strictly increasing,

strictly concave, and satisfies an Inada conditions

u1yapxq Ñ 8 as xÑ 0,

individual endowments are positive, i.e.,

eyapzq ą 0 for all z P Z.

2. The set Θ is compact, and for each ya P I, the set Θya is a closed convex cone containing RJ`.

3. The payoff functions, f : RJ` ˆ Z Ñ RJ , are non-negative valued and continuous. Moreover, for

any i, j “ 1, . . . , J the payoff fjpq, zq only depends on qi if θ̄i ą 0.
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4. For all ya P I and all θ´ya P Θya

θ´ya ¨ fpq, zq ě 0 for all q P RJ`, z P Z.

Assumptions 1.1-1.3 are standard (see, e.g., Kubler and Schmedders (2003)). Assumption 1.4 is

motivated by collateral and default. These constraints ensure that agents cannot borrow against

future endowments. In our formulation, this is true independently of prices and could be justified if

we allow for default (see again Kubler and Schmedders (2003) for a detailed motivation) or if agents

face appropriate borrowing constraints.

The crucial and non-standard assumption of the paper is that accounting is finite, i.e. , that

beginning of period portfolios lie in a finite set (or at least that agents perceive them to lie in a finite

set). This simplifies the analysis dramatically, and we will argue below that it has few practical

disadvantages. Formally, we make the following assumptions:

Assumption 2

1. There is a finite set pS Ă S such that the support of the transition function Qp.|z, ~θq is a subset of
pS for all z P Z and all ~θ P Θ.

2. The measure Qp.|z, ~θq is continuous in ~θ for all z P Z, ~θ P Θ.

Assuming that pS contains ZG elements, we then can take Qp.|s, ~θq to be a vector in the ZG´ 1

dimensional unit simplex, ∆ZG´1. Assumption 2.2 then simply states that this vector changes

continuously in ~θ.

From a practical point of view, the assumption seems innocuous. Because of finite precision

arithmetic in scientific computations, almost any numerical method will lead to ~θ´ lying on a

(possibly very fine) grid. Assumption 2.2 then states that there is some randomness in the rounding

error. However, from a technical point, the assumption turns out to be crucial. It is not clear which

of our results hold true in the limit as the grid becomes dense in Θ´. The assumption will allow us

to obtain simple existence results below, but it comes at the cost of some opaqueness.

Assuming finite accounting has several economic justifications. One interpretation is that actual

portfolios lie in Θ´ but that agent cannot measure portfolios arbitrarily finely and make their

decisions based on rounded values, exhibiting some degree of bounded rationality. Our preferred

interpretation is that agents take the fact that beginning-of-period portfolios always lie on a finite

grid as a technological constraint. This viewpoint seems natural when one thinks of the grid to be

extremely fine. For this interpretation, let pΘ´ Ă Θ´ be a finite set, and assume that given ~θpztq,

we have
~θ´pzt`1q P arg min

~θ´P pΘ´
}θ̄ ` εt`1 ´ ~θ

´}2,

with θ̄ya “ θya´1 for all a “ 2, . . . A, ya P Ya and θ̄y1 “ 0 for all y1 P Y. In this formulation

εt should be interpreted as a (small) rounding error, and it is assumed that the support of εp¨q is
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centered around zero, convex, and sufficiently small. We assume that εt is i.i.d. and that it only

affects the current rounding error. In this formulation, it is easy to verify that Assumption 2.2 holds

whenever εt has a continuous density function. Of course, the formulation of the agent’s problem

in (1) now potentially (depending on the set of admissible forecasting functions, Mya) builds in

another layer of bounded rationality, since the correct dynamic programming problem of an agent

is no longer a standard convex program.

Since we assumed pS to be finite and to contain GZ elements, for fixed ~M P M a selection of

the temporary equilibrium correspondence can be viewed as a vector N P
`

RI` ˆΘˆ RJ`
˘GZ . We

make the following reduced-form assumption on forecasting and loss functions:

Assumption 3

1. For all µ P ∆ZG´1 and all N P
`

RI` ˆΘˆ RJ`
˘GZ , the following

ĂMyapN,µq “ arg min
MPMya

ÿ

sPS

µpsq pMps,Npsqq ´mpz,Nθpsqqq
2 ,

mpz, ~θq “
ÿ

s1PS

Qps1|z, ~θqfpNqps
1q, z1q

ÿ

ya`1PY

ηyapy
a`1qu1ya`1pNxya`1 ps

1qq,

is well defined (i.e., the arg min exists and is unique). ĂMyapN,µq is a function of ps,Npsqq and is

assumed to be jointly continuous in pN,µ, ~θ´, q, ~θ, ~xq for all z P Z.

2. For each agent ya P I, all functions in Mya are uniformly bounded above, i.e., there is some m̄

such that

Mjpz, ~θ
´, q, ~θ, ~xq ă m̄ for all z P Z, ~θ´, q, ~θ, ~x, j P J and all M P Mya

.

Assumption 3.1 is relatively standard and very likely to be satisfied in applied settings. As-

sumption 3.2 is a bit more problematic. However, with enough structure on the sets Mya , and with

a more concrete description of the economy, one can typically find these bounds in an overlapping-

generations setting. Clearly, with strictly positive endowments and borrowing constraints all func-

tions in MyA´1 are bounded. A backward induction argument can then be used to justify As-

sumption 3.2. It is clear that in a framework with infinitely lived agents this becomes much more

difficult.

3.2 The main theoretical result

With these assumptions, the existence of a self-justified equilibrium reduces to the existence of a

finite-dimensional fixed point. The main result of this section thus reads as follows:
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Theorem 1 Under Assumptions 1-3 there exists a self-justified equilibrium.

Proof. We decompose the economy into sub-economies for each s P S and construct a map from a

compact and convex set of all agents’ choices, prices, probabilities, µ, and forecasts, Ms, into itself.

Using Kakutani’s theorem, we can show that this map has a fixed point, and we finish the proof by

demonstrating that this is a self-justified equilibrium.

First, we need to find a suitable, convex and compact domain for the map. Assumption 1.3

implies that there exist l, r such that whenever ~θ P Θ,

l ď θya,j ď r for all ya P I, j P J.

Let the set of admissible asset holdings be T “ rl, rsJ , and let the set of admissible consumptions

be

X “ r0, max
zPZyaPI

eyapzq ` dpzq

ηpyaq
s.

We construct a upper-hemi-continuous, non-empty and convex-valued correspondence, Φ, map-

ping choices and prices at each element in pS as well as a probability measure over pS, pXI ˆ TI ˆ

∆JqGZ ˆ∆GZ to itself, which has a fixed point. For all ya P I and all s P pS, let

Φya,sppxs, ps, qsqsPpSq “ arg max
xPX,θPΘyaXT

uyapxq ` ĂMyapz, ~θ
´
s , ~qs,

~θs, ~xsq ¨ θ s.t.

pxya ´ eyapzqq ` θya ¨
1

ps
qs ´ θ

´
ya ¨ fp

1

ps
qs, zq ď 0

where
ĂMya “ arg min

MPMya

ÿ

sPS

µpsq
´

Mpz, ~θ´s , ~qs,
~θs, ~xsq ´mpsq

¯2
, (4)

with

mpsq “
ÿ

s1PS

Qps1|z, ~θsqfp
1

ps1
qs1 , z

1q
ÿ

ya`1PY

ηyapy
a`1qu1ya`1pxya`1ps1qq.

Define the price-players best response as

Φ0,sp~θs, ~xsq “ arg max
pp,qqP∆J

pp
ÿ

yaPI

ηpyaqpxya,s ´ eyapzq ´ dpzqqq ` q ¨ p
ÿ

yaPI

ηpyaqpθya,s ´ θ̄qq,

and let

Φµpp~θsqsPS, µq “ pµpsq
ÿ

s1PS

Qps1|z, ~θsqps1qqsPS.

Assumptions 1 - 3 guarantee that the mapping Φ “ ˆsPS ppˆyaPIΦya,sq ˆΦ0,sq ˆΦµ,

Φ : pXˆTˆ∆JqGZ ˆ∆GZ´1 Ñ pXˆTˆ∆JqGZ ˆ∆GZ´1

is non-empty, convex valued, and upper hemi-continuous. By Kakutani’s fixed point theorem, there

exists a fixed point. Assumption 1 guarantees that the additional constraints imposed by forcing

choices to lie in T ˆX are not binding, and hence the forecasting functions defined by (4) at the
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fixed point, together with Q˚ “ µ and the equilibrium values constitute a self-justified equilibrium.

l

The discretization of the state-space enables us to prove a very simple result. Without this,

strong assumptions would be needed to ensure the existence of a recursive rational expectations

equilibrium (see Brumm et al. (2017)), and the existence of a self-justified equilibrium thus would

remain an open problem.

4 A tractable version of the model

To make the concept of self-justified equilibrium tractable, it is essential to find a simple domain for

agents’ forecasts. The structure of the equilibrium suggests that this might consist of new portfolio-

choices across agents. As we will argue in the examples below, this often yields excellent results and

is well suited for computational purposes. However, note that in principle it is also possible to use

other variables for computations. However, this is beyond the scope of the present work.

For the rest of the paper we assume that agents forecasts do not depend on the current endoge-

nous state, on prices, or on consumption choices and we write

Mya : ZˆΘ Ñ RJ`.

In many applications, the set of current asset holdings Θ will be very high dimensional. Both as

a matter of realism and for tractability, it seems advantageous to assume that the agents only take

a low dimensional part of the actual state-space and use this for their forecasts. In our tractable

version of the model, we assume that agents take a linear projection of ~θ into a lower dimensional

subspace and use the latter for the forecasts. That is to say, Mya is actually not defined on Θ, but

instead on a subset of Rd`, with d typically being much smaller than IJ . The agents use so-called

ridge functions (see Pinkus (2015)) to approximate future marginal utilities.

4.1 Discovering the relevant dimensions of the state space

Given a dˆ IJ projection matrix Wya,z for a given agent ya and shock z, we define

Mya,zpdq “ tf : ΘW
ya,z Ñ RJu,

where

ΘW
ya,z “ tφ P Rd : φ “W T

ya,zθ, θ P Θyau.

For each z̄ P Z, the agent’s forecasting function solves

min
MPMya,z̄pdq

ż

~θPΘ

´

Mpz̄,W T
ya,z̄N~θ

pz̄, ~θqq ´mpz̄, N~θ
pz̄, ~θqq

¯2
dQ˚p~θ|z̄q. (5)
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At this point, we impose no restrictions on the set Mya (as we will explain below, this implies that

the solution to (5) is simply the conditional expectation) but focus on the question of a sensible

choice of d and the matrices Wya,z.

Without loss of generality we assume that Wya,z is an element of the d-dimensional Stiefel-

manifold, i.e.,

Wya,z P VdpRIJq “
!

A P RIJˆd : ATA “ Idˆd

)

,

where Idˆd is the d ˆ d identity matrix. In choosing Wya,z , two extremes are conceivable. First,

one could view the projection matrices, Wya,z, ya P I, z P Z, as fundamentals–agents have certain

technologies that allow them to observe projections of the state into lower dimensional subspaces

(for example, they observe the mean wealth distribution as well as conditional means). Second,

one could take d as given and require that the matrices Wya,z are optimal in the sense that they

minimize some mean squared error. In the following, we take the approach that lies between the

two extremes, and we believe that it has an elegant micro-foundation. In that approach, agents are

“satisfied” with a given projection matrix Wya,z if there are not apparent improvements possible. In

the Appendix, we describe some of the difficulties that arise if one requires the matrix to be chosen

optimally. While the problem is in principle well-posed, its solution is so complicated that it is not

consistent with the whole idea of boundedly rational agents.

To this end, we assume that each agent ya uses his own portfolio as the primary factor that

influences next period’s marginal utilities. This is a natural assumption, and if asset prices would

only depend on the current and lagged shock, this would yield an optimal solution. However, in our

model asset prices vary with the distribution of assets in the economy. We therefore write θ´ya to

denote the portfolio of all other agents in the economy besides agent ya, and we write ~θ “ pθya , θ´yaq.

Clearly, θ´ya influences the agent’s marginal utility for assets because it influences all future prices.

We assume that the agent assesses the variability of future prices by the mean squared gradient,

and chooses an “active subspace” (see Section 5.1 below) to ensure that the unexplained part of

fluctuations is at most a ε-fraction of total fluctuations.

Formally, given a candidate n ˆ pIJ ´ Jq projection matrix V1 P VnpRIJ´Jq, there is a V2 P

VIJ´J´npRIJ´Jq such that

rV1, V2s

»

–

V T
1

V T
2

fi

fl “ IpIJ´JqˆpIJ´Jq,

and we can write

myapz, ~θq “ mya

¨

˝z,

¨

˝θya , rV1V2s

»

–

V T
1

V T
2

fi

fl θ´ya

˛

‚

˛

‚“ mya
`

z, θya , V1V
T

1 θ´ya ` V2V
T

2 θ´ya
˘

.

Defining φ1 “ V T
1 θ´ya and φ2 “ V T

2 θ´ya we obtain a function

pmyapz, θya , φ1, φ2q “ mya pz, θya , V1φ1 ` V2φ2q .
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Strengthening Assumption 2.2, we assume that pmya is continuously differentiable in θ´ya . Given

our justification for finite accounting, this simply amounts to assuming that the transition proba-

bility Qp.|z, ~θq is continuously differentiable in θ and therefore does not seem substantially stronger

than the original assumption.

We assume that the agent approximates the function pmya using only pθya , φ1q, i.e.,

Myapz, θya , φ1q “

ż

φ2

m̂pz, φ1, φ2qdQ˚pφ2|z, θya , φ1q,

where pQ˚pz, pθya , φ1, φ2qq denotes the invariant distribution over

pz, pθyaφ1, φ2qq “ pz,Nθya psq, V1Nθ´ya psq, V2Nθ´ya psqq,

which is induced by Q˚, and pQ˚pφ2|θya , φ1, zq denotes the invariant distribution of φ2 conditional

on z, θya , and φ1.

This approximation is justified if the impact of φ2 on the function pmya is relatively small. How

do agents decide that the effect of φ2 on next period’s marginal utility is small? We assume in

this paper that they use the squared derivative with respect to φ2, averaged along the stationary

distribution, to measure the variability with respect to φ2. Sobol and Kucherenko (2009) discuss

several different approaches to estimate the influence of individual factors and groups of factors and

show that many of them can be effectively bounded by the average squared gradient of the function.

We assume that the agent is satisfied with a pIJ ´Jqˆn matrix V1 if it explains a fraction 1´ ε

of the total variation of future marginal utilities, i.e.,
ş

pθya ,φ1,φ2q
p∇φ2 pmya pz, θya , φ1, φ2qq

T
p∇φ2 pmya pz, θya , φ1, φ2qq dpQ˚pz, θya , φ1, φ2q

ş

pθya ,φ1,φ2q
p∇φ1 pmya pz, θya , φ1, φ2qq

T
p∇φ1 pmya pz, θya , φ1, φ2qq dpQ˚pz, θya , φ1, φ2q

ă ε, (6)

where for x P Rk,

∇xfpx, yq “

¨

˚

˚

˚

˝

Bf
Bx1

...
Bf
Bxk

˛

‹

‹

‹

‚

,

and the partial derivatives are taken to be one-sided derivatives at the boundary of the domain.

In some of the numerical examples below, the agent will be satisfied with V1 “ 0, i.e., only take

his own asset-position to forecast future marginal utilities. In this case, we have that φ2 is of full

dimension and
ş

pθya ,φ2q
p∇φ2 pmya pz, θya , φ2qq

T
p∇φ2 pmya pz, θya , φ2qq dpQ˚pz, θya , φ2q

ş

pθya ,φ2q

`

∇θya pmya pz, θya , φ2q
˘T `∇θya pmya pz, θya , φ2q

˘

dpQ˚pz, θya , φ2q
ă ε.

4.2 Self-justified equilibrium in a tractable economy

With this, an economy is described by assets, trading constraints, preferences and endowments, but

also εyapdq, d “ J, . . . , IJ for all (active) agents ya P I. We allow ε to depend on the dimension d to
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incorporate the possibility that an agent prefers to explain little with a low dimensional projection

than explaining a lot using a very high-dimensional function. We also allow ε to depend on the

agent to incorporate heterogeneity in forecasts into the model.

A self-justified equilibrium with satisficing projections then consists of pIJ ´ Jq ˆ dya matrices

Wya,z for each agent, ya, and each shock, z, such that for each agent and each shock, inequality

(12) holds with V1 “Wya,z and ε “ εyapdq as well as a selection Np¨q of the temporary equilibrium

correspondence, N ~M p¨q, and a measure Q˚ on pS,Sq, such that

• Q˚ is invariant given the law of motion induced by Np¨q and by Qp., .q. That is to say, for all

B P S

Q˚pBq “
ż

sPS
QpB|z,N~θ

psqqdQ˚psq

• For each ya a ă A and each z P Z, Mya,zpz,Wya,z
~θq is equal to the conditional expectation of

m̂, given φ2, i.e.,

Myapz, θya , φ1q “

ż

φ2

m̂pz, φ1, φ2qdpQ˚pφ2|z, θya , φ1q,

where φ1, φ2, and m̂ are as defined above, and pQ˚pφ2|z, θya , φ1q denotes the invariant distri-

bution of φ2 conditional on z, θya and φ1.

We make use of the well-known fact that the conditional expectation solves the least-squares

problem (5).

In the next part of the paper, we will describe computational methods to solve for this self-

justified equilibrium efficiently. For this, is it important to first note that we impose “too much”

rationality on the agent to be able to solve his problem exactly. The fact that forecasts minimize

the least-squared error under the (a priori unknown) invariant distribution makes it impossible

to compute the forecast exactly. Instead, we will have to resort to Monte-Carlo simulations and

approximate the invariant distribution by finitely many draws. At the same time, we are apparently

also unable to compute the conditional expectation exactly. Hence, we will need to approximate

this using a numerical method. To this end, we choose Gaussian process regressions. The latter has

been proven to be very useful in other contexts (see Scheidegger and Bilonis (2017)).

5 Computation

To numerically approximate a self-justified equilibrium in a model where agents use satisficing

projections to form their forecasts the main computational issues are (i) how to find satisficing

projections, (ii) how to approximate the (low) dimensional forecasting functions well, and (iii) how

to solve for them.
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5.1 Finding Wya,z

In order to compute satisficing projections, we use so-called active subspace methods developed by

Constantine et al. (2014) (see also Scheidegger and Bilonis (2017)).

We first review the basics of the approach: to approximate a very high dimensional function

f : RD Ñ R, we assume that it can be reasonably well approximated by the following form:

fpxq « h
`

W Tx
˘

, (7)

where the matrix W P RDˆd projects the high-dimensional input space, RD, into a low-dimensional

active subspace, Rd, d ! D. h : Rd Ñ R is a d-dimensional function that is commonly termed link

function. Note that the representation of Eq. 7 is not unique. All matrices W whose columns span

the same subspace of Rd yield identical approximations. Thus, without loss of generality, we restrict

our attention to matrices in the Stiefel manifold, W P Vd

`

RD
˘

.

Constantine et al. (2014) give a simple method to choose W which we briefly review. Let ρpxq

be the probability density function of the relevant invariant distribution. Define a matrix

C :“

ż

p∇fpxqqp∇fpxqqTρpxqdx, (8)

where

∇fp¨q “
ˆ

Bfp¨q

Bx1
, . . . ,

Bfp¨q

BxD

˙

.

Since C is symmetric positive definite, it admits the form

C “ V ΛV T , (9)

where Λ “ diagpλ1, ¨ ¨ ¨ , λDq is a diagonal matrix containing the eigenvalues of C in decreasing

order, λ1 ě ¨ ¨ ¨ ě λD ě 0, and V P RDˆD is an orthonormal matrix whose columns correspond to

the eigenvectors of C. The classical active subspace approach in Constantine et al. (2014) suggests

separating the d largest eigenvalues from the rest,

Λ “

»

–

Λ1 0

0 Λ2

fi

fl , V “
”

V1 V2

ı

,

(here Λ1 “ diagpλ1, . . . , λdq, V1 “ rv11 . . . v1ds, and Λ2, V2 are defined analogously), and setting the

projection matrix to

W “ V1. (10)

Intuitively, W rotates the input space in such a manner that the directions associated with the

largest eigenvalues correspond to directions of maximal function variability (Constantine (2015)).

We can then write y “ V T
1 x and z “ V T

2 x and

fpxq “ fpV V Txq “ fpV1V
T

1 x` V2V
T

2 xq “ fpV1y ` V2zq.
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It is impossible to evaluate Eq. 8 exactly. Instead, the usual practice is to approximate the

integral in Eq. 8 via Monte Carlo, that is, assuming that the observed inputs are drawn from ρpxq,

one approximates C using the observed gradients by

CN “
1

N

N
ÿ

i“1

gpiq
´

gpiq
¯T

. (11)

In practice, the eigenvalues and eigenvectors of CN are found using the singular value decomposition

of CN . Clearly in our framework, the gradient, Gi cannot be evaluated analytically (in fact they

are not guaranteed to exist), so we generally approximate (11) by finite differences.3

Active subspace methods are attractive in practice because it turns out that for many multivari-

ate functions that occur for example in engineering models and the natural sciences, one observes

sharp drops in the spectrum of C at relatively small values of d (see Constantine (2015) and the

references therein).

Constantine et al. (2014) prove the following theoretical result which makes the active subspace

method very attractive for our model.

Lemma 1 The mean squared gradients of f with respect to y and z satisfy
ż

p∇yfqT p∇yfqρpxqdx “ λ1 ` . . .` λn

and
ż

p∇zfqT p∇zfqρpxqdx “ λn`1 ` . . .` λd.

This Lemma now allows us to construct the desired projection matrices Wya,z for a self-justified

equilibrium in the tractable economy. Lemma 1 states that in order to find the desired projection

matrices for a given agent ya and a given shock z, we simply have to find a d such that

λd`1 ` . . .` λIJ
λ1 ` . . .` λd

ă εyapdq, (12)

where the λi are the eigenvalues of Cn as defined in p11q, where gi is the finite difference gradient

of mpzi, Nθpsiqq with respect to θ´ya , and where psiqNi“1 denotes a simulated path of equilibrium

realizations of the state.

In our iterative computational strategy described below, we start with a simple guess for Wya,z

and update along the iterations.

To make the algorithm operable, we first need to understand how to conveniently approximate

functions on arbitrary domains. For this, we use so-called Gaussian process (GP) regression, which

is a method from supervised machine learning (see, e.g, Rasmussen and Williams (2005)) There

are many examples in the literature where the combination of GP-regression and active subspaces

proves very fruitful (see, e.g., Tripathy et al. (2016), or Scheidegger and Bilonis (2017)).
3Alternatively, one may use the Bayesian information criterion to discover the active subspace. For the latter, see

Tripathy et al. (2016).
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5.2 Gaussian process regression

Given a data set t
`

xpiq, ypiq
˘

|i “ 1, ..., nu consisting of n vectors xpiq P Rd and corresponding,

potentially noisy, observations,

ypiq “ fpxpiqq ` εi, (13)

we want to construct a function f̂ that trades of smoothness and approximation in an optimal

way. Given a reproducing kernel Hilbert space, H with a positive definite kernel Kpx, yq, classical

regularization theory (see, e.g., Evgeniou et al. (2000) and there references therein) solves the

following problem:

min
fPH

1

n

n
ÿ

i“1

pyi ´ fpx
piqqq2 ` λ}f}2K , (14)

where }.}K is the norm defined by Kp¨q. It can be shown that the solution to Eq. 14 can be written

as

f̂pxq “
n
ÿ

i“1

αiKpx, xiq, (15)

where α solves

pK ` λIqα “ y, pKqij “ Kpxi, xjq, y “ py
p1q, . . . , ypnqqT .

As Rasmussen and Williams (2005) point out, the representation of f can also be obtained as

the posterior mean of a Gaussian process. The advantages of that formulation are that it naturally

leads to systematic ways for choosing Kp¨q and λ and that the standard deviation of the Gaussian

process can be used as an indication of goodness of fit. We provide a very brief introduction to

Gaussian process regression based on Rasmussen and Williams (2005) (see also Scheidegger and

Bilonis (2017) for a more detailed introduction).

A Gaussian process is a collection of random variables, any finite number of which have a joint

Gaussian distribution. We say that fp¨q is a GP with mean function mp¨q and covariance function

kp¨, ¨q, and write

fp¨q „ GP pmp¨q, kp¨, ¨qq (16)

The covariance function can be chosen, but must be positive semi-definite and symmetric. Through-

out our work, we either use the so-called square exponential (SE)

kSEpx, x
1q “ σ2 exp

#

´
1

2

r
ÿ

i“1

pxi ´ x
1
iq

2

`2i

+

, (17)

or the Matern-3{2 covariance kernel:

kmatpx, x
1q “ σ2

˜

1`
?

3
l
ÿ

i“1

pxi ´ x
1
iq

2

`2i

¸

exp

˜

´
?

3
l
ÿ

i“1

pxi ´ x
1
iq

2

`2i

¸

, (18)

where `i ą 0 and σ ą 0 in both kernels denotes the characteristic length-scale of the i-th input,

and the signal strength. The “hyper-parameters” of the covariance function are typically estimated
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by maximum-likelihood (see Scheidegger and Bilonis (2017)). In our implementation we use the

software package Limbo (see Cully et al. (2018)), which provides several options for this step.

The specification of the mean function mp¨q is similar to the specification of a prior in Bayesian

statistics. In our implementation below we take mp¨q “ 0. Note that this does not imply the

posterior mean (which we use as our approximating function) is zero. Rasmussen and Williams

(2005, Chapter 2.7) discuss several ways to model a mean function.

Let us define the matrix

X “

!

xp1q, . . . , xpnq
)

. (19)

Given X, we have a Gaussian prior on the corresponding response outputs,

~f “
!

f
´

xp1q
¯

, . . . , f
´

xpnq
¯)

.

In particular,
~f |X „ N pm,Kq , (20)

where m :“ mpXq P Rn being the mean function evaluated at all points in X, and K P Rnˆn is the

covariance matrix with

Kij “ kpxpiq, xpjqq, (21)

and kpxpiq, xpjqq given by Eqs. 17 or 18.

In order to derive an explicit expression for the likelihood, we assume that the noise-terms εi

in Equation (13) are i.i.d. normal with mean zero and variance s2. Clearly, this assumption is not

going to be satisfied in our application. However, it turns out that the method works well even if

the noise is not i.i.d. normal. Using the independence of the observations, we obtain

y|~f, s „ N
´

y
ˇ

ˇ

ˇ

~f, s2In

¯

. (22)

The likelihood -function of the observations is then given by

y|X, s „ N
`

y
ˇ

ˇm,K ` s2In
˘

. (23)

Bayes’ rule combines the prior GP (see Eq. 16) with the likelihood (see Eq. 23) and yields the

posterior GP

fp¨q|X, y, s „ GP
´

fp¨q
ˇ

ˇ

ˇ
m̃p¨q, k̃p¨, ¨q

¯

, (24)

where the posterior mean and covariance functions are given by

m̃pxq “ mpxq `Kpx,Xq
`

K ` s2In
˘´1

py ´mq (25)

and
k̃px, x1q :“ k̃px, x1; , sq

“ kpx, x1q ´Kpx,Xq
`

K ` s2In
˘´1

KpX,xq,
(26)
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respectively.

To carry out interpolation tasks when iterating on policies, one has to work with the predictive

(marginal) distribution of the function value fpx˚q for a single test input x˚. That is, given our

posterior for the GP fp¨q, we can derive the marginal distribution of fp¨q at any point. We obtain,

fpx˚q|X, y, s „ N pm̃px˚q, σ̃px˚qq , (27)

where m̃px˚q “ m̃px˚q is the predictive mean given by Eq. 25, and σ̃2px˚q :“ k̃px˚, x˚; sq is the

predictive variance.

Throughout our computations, we use the predictive mean as the value of the unknown function.

Hence, we derive the same formula as in Equation (15). The advantage of this procedure is that

we can use maximum likelihood to estimate the hyper-parameters and s2 from our training data.

In principle, it would be useful also to make use of the variance-covariance term that indicates how

accurate the forecast is at that point. Incorporating this into our economic model is subject to

further research.

Standard GPs are not able to deal with very high input dimensions because they rely on the

Euclidean distance to define input-space correlations. Since the Euclidean distance becomes unin-

formative as the dimensionality of the input space increases, the number of observations required

to learn the function grows enormously. To this end, following Scheidegger and Bilonis (2017), we

couple GPs to active subspaces, which is consistent with our economic modeling.

5.3 The basic computational strategy

In our setup, the computation of self-justified equilibria is straightforward and reduces to Gaussian

regression and the repeated solution of non-linear systems of equations. In particular, we employ

an iterative scheme to solve for the optimal forecasting functions.

The basic details of the algorithm are then as follows:

1. Initial guess for each agent’s forecasting:

Initially, we assume that agents only use own asset holdings to forecast, i.e., d “ J and each

IJ ˆ d projection matrix Wya,z project on agent ya’s asset holdings. Next, construct the

Gaussian processes whose posterior means approximate

M0
ya,z1 : Zˆ Rd Ñ R`.

Then, choose an approximation accuracy ξ and choose an initial condition z0, ~θpz
´1q.

2. Iteration step:

Simulate a temporary equilibrium path for given forecasts ~M0.

For i “ 1, N
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(a) Solve numerically for a temporary equilibrium, set ~xi, ~θi, qi to the equilibrium values and

set zi “ z.

(b) Using pseudo random numbers draw a new z1 and set θ´ya “ θya´1 for all agents ya.

3. For each ya regress the equilibrium values of fpqi, ziqu1pxya`1,iq on Wya,zi´1
~θi´1 and zi´1 to

obtain a new Gaussian process whose posterior mean gives a new forecasting function M1
ya

4. If

}M1 ´M0} ă η

then set M˚ “M1. Else set M0 “M1 and repeat time iteration step 2.

5. Compute CN as defined in Equation 11 and its eigenvalues, λ. If all agents’ satisficing criteria

(12) are satisfied, terminate. Else include one more eigenvector of CN into the projective

matrix Wya , make a new initial guess for Gaussian processes and go to time iteration step 2.

The computation of the temporary equilibrium is done using a simple Newton-method, the

derivatives needed for the computation of CN are approximated using one-sided finite differences.

6 A simple example

In order to illustrate the concept of self-justified equilibria our general computational strategy, it is

useful to focus on a specific simple example. In the simplest example, we assume that agents live

for A periods and that there are two types of agents per generation and no idiosyncratic shocks. An

agent is then characterized by py, aq, where y “ 1, 2 denotes the initial shock. The agents distinguish

themselves by trading constraints and preferences. Type 1 agents can trade in a single Lucas-tree

and in Arrow securities. In our framework, it is useful to assume that the Arrow-securities pay in

the Lucas-tree (as in Gottardi and Kubler (2015) or Chien and Lustig (2011)). Type 2 agents can

only trade in the Lucas tree. Both agents face borrowing constraints.

For concreteness, it is useful to define the temporary equilibrium system of inequalities as the

system of all agents’ KKT-conditions together with the market clearing conditions, i.e.,

´u11,ape1,apzq ` θ
´

p1,a´1q,zp
ÿ

z1PZ

qz1 ` dpzqq ´ q ¨ θ1,aq ` βM1,apz, z
1,W1,a

~θq ` κ1,a, for all a, z1

κ1,a ¨ θ1,a

´u12,ape2,apzq ` θ
´
2,a´1p

ÿ

z1PZ

qz1 ` dpzqq ´
ÿ

z1PZ

qz1θ2,aq ` βMyapz, z
1,W1,a

~θq ` κ2,a for all a, z1

κ2,aθ2,a
ÿ

a

pθp1,aq,z ` θ2,aq ´ 1, for all z P Z.
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We can combine κi,a and θi,a into one variable and obtain a system with pA ´ 1qZ ` pA ´ 1q ` Z

equations and unknowns. This system has to be solved at every simulation step 2 (a) in our

algorithm and is the most time-consuming part of the computation.

6.1 A simple self-justified equilibrium with accurate forecasts

For the simplest example, assume that A “ 60, Z “ 2. All agent have CRRA utility functions with

uy,apcq “ βay
c1´γy

1´γy
. We take βy “ 0.96 for y “ 1, 2, and γ1 “ 2, γ2 “ 0.5. Individual endowments

are

ey,ap1q “ 0.4` a{500, ey,ap2q “ 0.9 ˚ p0.4` a{500q for a ă 50,

eap1q “ eap2q “ 0.3 for a ě 50.

Moreover, we also assume that dpzq “ 2 for both z “ 1, 2, and that πp1q “ πp2q “ 1
2 .

We start off by assuming that agents only use their own asset holdings to forecast future marginal

utilities. It is natural to assume that agent 1 (who can trade in two assets) assumes that his holdings

in asset 1 (that pays if shock 1 realizes) only affects marginal utility in shock 1 and asset 2 only

affect marginal utility in shock 2.

In the computed self-justified equilibrium, forecasting errors, as measured by the maximal rel-

ative deviation between forecasted marginal utilities and realized marginal utilities, are tiny. In

particular, they are the smallest for young agents (around 0.001) and the largest for old agents

(around 0.01). Average errors across agents are about 0.001. Moreover, forecasts are almost linear.

In Figure 1a, we show the forecast of agent of age 5 and type 1 for the next period as a function of

his asset holding is asset 1.

This result is, of course, consistent with many examples in the literature, where one finds

pseudo aggregation (most notably Krusell and Smith (1996)) and Chien and Lustig (2011), but also

Storesletten et al. (2007)). The main reason why the simple forecasts are well in this example is

that there is almost no variation in asset holdings and that asset prices are mostly a function of the

current and past exogenous shock. In Figure 1b, we show the asset prices for the 2 exogenous shock

and confirm that there is indeed very little variation.

-FIGURE 1 ABOUT HERE-

Clearly the linearity of forecasts is an artifact of this particular example. Within our simple

model we need to introduce more heterogenity in tastes in order to obtain larger price-volatility.

As it turns out, the result that linear forecasts are quite accurate holds true for a wide variety

of parameter specifications. To go beyond this simple model, we, therefore construct an example

where forecasts that do not take into account the wealth distribution across agents do not do a very

good job.
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6.2 Moving away from the simple example

One particular case where the simplicity of forecasts breaks down can be obtained by assuming that

agents across generations have different subjective beliefs over the aggregate shocks. While this does

not completely fit our model and does not fit the idea that the agents know invariant distributions,

it gives us a modeling testbed to compare different algorithms. In particular, it can be incorporated

into our model if we assume that the Bernoulli utility also depends on a history of shocks. In this

case, all formal results in this paper go through (but the notation becomes more cumbersome).

In the concrete case, we modify the simple example above by assuming that agents of type 1

and ages 55-59 have incorrect probabilities in that

πap1q “ 0.8, πap2q “ 0.8 for a “ 50, . . . 59

All other agents have the correct beliefs. While this does not exactly fit our model description

where we assumed that all agents have identical beliefs, it is easy to modify the model for this

specification.

With this specification, forecasts are systematically misspecified–not only because they are lin-

ear, but mainly because future marginal utilities for asset holding do not only depend on own

choices. Figure 2 depicts the same forecasting function as Figure 1, but for this specification with

heterogeneous beliefs. We can see that linear functions do not do a good job. Moreover, it seems

that other variables have to be added to make forecasts accurate.

[Figure 2 about here]

Surprisingly, the active subspace is two-dimensional. In addition to an agent’s own asset holding,

as single one dimensional variable is needed to obtain accurate forecasts. The additional variable

turns out to be a weighted sum of asset holdings across all agents, weighted (roughly) by the

agents marginal propopensity to consume. Employing a higher dimensional space to forecast future

marginal utilities turns out to add very little. We compute the matrix CN (11) by Monte-Carlo

draws and finite differences and find that one single Eigenvalue (in addition to the ones associated

with own asset holdings) dominates all others. Increasing the dimension of the projective space

from 2 to 3 hence has thus has almost effect on the forecasting pwoer

[Figure 3 about here]

In Figure 3, we plot all Eigenvalues on a log-scale. The figure confirms that all other Eigenvalues

are negligibly small compared to the one that corresponds to the agent’s own asset holdings and

the weighted sum of asset holdings across agents.

Adding the additional variable then turns out to reduce forecasting errors to almost zero, com-

parable to the case in the Section above.

In principle GP-regressions scale up to 7-10 dimensions. The simple example in this section

illustrates that this is likely to be enough to obtain very accurate forecasts even in much more
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complicated models.

7 Conclusion

This paper makes three contributions. First, we define the concept of self-justified equilibrium as

a natural generalization of rational expectations equilibrium, and we provide sufficient conditions

for existence. Second, we argue that active subspace methods provide a natural way to formalize

bounded rationality in very high dimensional models. Third, we provide an implementation to

approximate self-justified equilibria numerically. In a relatively small model with 120 agents, we

show that the method can potentially be used for large-scale applications.

We allow for the possibility of idiosyncratic shocks and a continuum of agents. However, in our

current implementation, when solving for the temporary equilibrium we compute optimal demand

for each agent in the economy. If a continuum of agents, one needs to aggregate agents with similar

wealth levels into one type of agent to make this step feasible. This adds another layer of approxi-

mation to our method, but is very simple in practice.

Future research includes production economies as well as economies with several consumption

goods.

Appendix A: Optimal ridge approximation and active subspaces

In our economic model, agents do not search for the optimal projection but are satisfied with

finding an active subspace that reduces most of the “noise” from the forecasts. It turns out that

the problem of finding an optimal projection is a difficult non-convex problem, but that the active

subspace methods our agents use often provide reasonable approximations to an optimal projection.

Constantine et al. (2014) have the following theoretical result which makes concrete how well

active subspace methods lead to a good approximation. Let ρ̃py, zq “ ρpV1y ` V2zq and define the

conditional expectation of the function value, given y as

Gpyq “

ż

z
fpV1y ` V2zqρ̃pz|yqdz

Theorem 3.1 in Constantine et al. (2014) now states
ż

x
pfpxq ´GpV T

1 xqq
2ρpxqdx ď Cpλd`1 ` . . .` λDq,

where C is the Poincaré constant that depends on the pdf ρ.

Unfortunately, in this framework, Poincaré bounds are known to be far away from tight up-

per bounds (the exception being the standard normal distribution). Therefore, Theorem 3.1 in

Constantine et al. (2014) does not tell us much about how far we are from an optimal projection.
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The situation is slightly different if ρ is standard normal. In this case, the Poincaré constant is

known to be 1, and it is easy to see that it can be obtained in a worse case scenario. As Zahm et

al. (2018) point out, this can be extended to non-standard normal densities. Assuming that the

normal densitiy has covariance matrix Σ, they show that If one takes as projection matrix

P “ p
ÿ

i

viv
T
i qΣ

´1,

where pλi, viq solves

Cvi “ λiΣ
´1vi,

one can obtain to following upper bound:
ż

x
pfpxq ´GpP Txqq2ρpxqdx ď pλd`1 ` . . .` λDq.

While our ergodic distributions are unlikely to be normal, the result is useful, since mixture of

normal distributions typically can describe the distributions in our model. It is subject to further

research to explore this in more detail. In any case, even this is not the optimal projection.

An optimal projection can easily be defined, but hardly ever computed in higher dimensions.

Suppose that for a given function f : Rd Ñ R and a given n ! d, one wants to find a a nˆ d matrix

V1 P VnpRdq that allows for an “optimal ”approximation of fp¨q by a function g : Rn Ñ R, setting

fpxq » gpV1xq.

We want to define optimality as minimizing the L2 norm with respect to a probability density over

Rd, ρpxq. For given V1, we can define V2 “ I ´ V1V
T

1 and write x “ V T
1 y ` V T

2 z for y “ V T
1 x,

z “ V T
2 y. We can define rρpy, zq “ ρpV1x ` V2yq and marginal and conditional densities by the

standard equations. The conditional expectation is

E pfpxq|yq “
ż

fpV1y ` V2zqrρpz|yqdz.

The optimal V1 solves the following optimization problem:

min
V1PVnpRdq

ż

x
pfpxq ´ Epfpxq|V T

1 xqq
2ρpxqdx. (28)

Unfortunately, this is a very complicated, non-convex optimization problem, and even the search

for a stationary point turns out to be very costly in high dimensions (see e.g. Cohen et al. (2012)).

Constantine et al. (2017) propose to use active subspace methods to obtain an approximation for

a stationary point. Since the problem is non-convex, there is, unfortunately, no guarantee that the

stationary point is, in fact, a minimum. However, Constantine et al. (2017) also provide various

examples to illustrate that one can sometimes expect to obtain a good approximation from active

subspaces.
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