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Abstract

We propose a framework for unbiased estimation of quadratic forms in the pa-

rameters of linear models with many regressors and unrestricted heteroscedasticity.

Applications include variance component estimation and tests of linear restrictions in

hierarchical and panel models. We study the large sample properties of our estimator

allowing the number of regressors to grow in proportion to the number of observations.

Consistency is established in a variety of settings where jackknife bias corrections ex-

hibit first-order biases. The estimator’s limiting distribution can be represented by a

linear combination of normal and non-central χ2 random variables. Consistent vari-

ance estimators are proposed along with a procedure for constructing uniformly valid

confidence intervals. Applying a two-way fixed effects model of wage determination

to Italian social security records, we find that ignoring heteroscedasticity substantially

biases conclusions regarding the relative contribution of workers, firms, and worker-

firm sorting to wage inequality. Monte Carlo exercises corroborate the accuracy of

our asymptotic approximations, with clear evidence of non-normality emerging when

worker mobility between groups of firms is limited.

Keywords: variance components, heteroscedasticity, fixed effects, leave-out estimation, many

regressors, weak identification
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As economic datasets have grown large, so has the number of parameters employed in econo-

metric models. Typically, researchers are interested in certain low dimensional summaries of these

parameters that communicate the relative influence of the various economic phenomena under

study. An important benchmark comes from Fisher (1925)’s foundational work on analysis of vari-

ance (ANOVA) which he proposed as a means of achieving a “separation of the variance ascribable

to one group of causes, from the variance ascribable to other groups.”1

A large experimental literature (Sacerdote, 2001; Graham, 2008; Chetty et al., 2011; Angrist,

2014) employs variants of Fisher’s ANOVA approach to infer the degree of variability attributable

to peer or classroom effects. Related methods are often used to study heterogeneity across firms,

workers, and schools in their responsiveness to exogenous regressors with continuous variation

(Raudenbush and Bryk, 1986; Bryk and Raudenbush, 1992; Arellano and Bonhomme, 2011; Graham

and Powell, 2012). In labor economics, log-additive models of worker and firm fixed effects are

increasingly used to study worker-firm sorting and the dispersion of firm specific pay premia (Abowd

et al., 1999; Card et al., 2013, 2018; Song et al., 2017; Sorkin, 2017) and analogous methods have

been applied to settings in health (Finkelstein et al., 2016; Silver, 2016) and education (Arcidiacono

et al., 2012) economics.

This paper considers estimation of and inference on variance components, which we define

broadly as quadratic forms in the parameters of a linear model. Traditional variance component

estimators are predicated on the assumption that the errors are identically distributed draws from

a normal distribution. Standard references on this subject (e.g., Searle et al., 2009) suggest diag-

nostics for heteroscedasticity and non-normality, but offer little guidance regarding estimation and

inference when these problems are encountered. Likewise, the econometrics literature on multi-way

fixed effects models includes several proposals for the estimation of variance components (Andrews

et al., 2008; Jochmans and Weidner, 2016; Bonhomme et al., 2017a,b; Borovičková and Shimer,

2017) but currently provides no approach to conducting inference on these parameters in the plau-

sible setting where heteroscedasticity or non-normality are present.

We begin by proposing a new variance component estimator designed for settings with many

regressors and heteroscedasticity of unknown form. The estimator is finite sample unbiased and

can be written as a naive “plug-in” variance component estimator plus a bias correction term that

involves “cross-fit” (Newey and Robins, 2018) estimates of observation-specific error variances. We

also develop a representation of the estimator in terms of a covariance between outcomes and a

“leave-one-out” generalized prediction (e.g., as in Powell et al., 1989), which allows us to apply

recent results on the behavior of second order U-statistics.

We study this leave-out estimator in an environment where the number of regressors may be

proportional to the sample size: a framework that has alternately been termed “many covariates”

1See Cochran (1980) for a discussion of the intellectual development of this early work.
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(Cattaneo et al., 2017) or “moderate dimensional” (Lei et al., 2016) asymptotics. We provide

verifiable conditions under which the estimator is consistent and show that these conditions are

weaker than those required by jackknife bias correction procedures (Quenouille, 1949; Hahn and

Newey, 2004; Dhaene and Jochmans, 2015). A series of examples is discussed where the leave-out

estimator can be shown to be consistent but such “automatic” bias-correction methods fail due to

imbalance in the regressor design.

The large sample distribution of the estimator is derived using a variant of the arguments in

Chatterjee (2008) and Sølvsten (2017). In general, this distribution is non-pivotal and can be

represented by a linear combination of normal and non-central χ2 random variables, with the non-

centralities of the χ2 terms serving as weakly identified nuisance parameters. We present conditions

under which the limiting distribution simplifies to either a normal or a linear combination of central

χ2 random variables and discuss how these findings can be used to extend existing results on testing

linear restrictions (Anatolyev, 2012; Chao et al., 2014; Cattaneo et al., 2017). However, in many

settings, neither of these pivotal approximations will be appropriate for conducting inference on

variance components.

To construct asymptotically valid confidence intervals in the presence of nuisance parameters,

we propose inverting a minimum distance test statistic that utilizes a variance estimator relying

on local averages. Critical values are obtained via an application of the procedure of Andrews and

Mikusheva (2016). The resulting confidence interval is shown to be uniformly valid and to have a

closed form representation in many settings, which greatly simplifies its computation.

We illustrate our results with an application of the two-way worker-firm fixed effects model of

Abowd et al. (1999) to matched employer employee wage data in a set of Italian provinces. Leave-

out estimators find a substantially smaller contribution of firms to wage inequality and much more

assortativity in the matching of workers to firms than either the uncorrected plug-in estimator of

Abowd et al. (1999) or the homoscedasticity-based correction procedure of Andrews et al. (2008).

Monte Carlo exercises utilizing the realized mobility patterns of workers between firms corroborate

the accuracy of our asymptotic approximations. Clear evidence of non-normality arises in the

sampling distribution of the estimated variance of firm effects in settings where the worker-firm

mobility network is weakly connected.

1 Unbiased Estimation of Variance Components

Consider the linear model

yi = x′iβ + εi (i = 1, . . . , n)
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where the regressors xi ∈ Rk are non-random and the design matrix Sxx =
∑n

i=1 xix
′
i has full rank.

The unobserved errors {εi}
n
i=1 are mutually independent and obey E[εi] = 0, but may possess

observation specific variances E[ε2
i ] = σ2

i . Our object of interest is a quadratic form θ = β′Aβ for

some non-random symmetric matrix A ∈ Rk×k of rank r. We consider either positive semi-definite

or non-definite A which, following Searle et al. (2009), correspond to variance and covariance

components respectively. Economic examples where such parameters are of interest are discussed

in the next section.

A naive plug-in estimator of θ is the quadratic form θ̂PI = β̂′Aβ̂, where β̂ = S−1
xx

∑n
i=1 xiyi

denotes the OLS estimator of β. Estimation error in β̂ leads the plug-in estimator to exhibit a bias

involving a linear combination of the unknown variances {σ2
i }
n
i=1 that takes the form

trace
(
AV[β̂]

)
=

n∑
i=1

Biiσ
2
i where Bii = x′iS

−1
xxAS

−1
xx xi.

As discussed in the next section, this bias can be particularly severe when the dimension of the

regressors k is large relative to the sample size.

A bias correction can be motivated by observing that an unbiased estimator of the i-th error

variance is

σ̂2
i = yi

(
yi − x

′
iβ̂−i

)
where β̂−i =

(
Sxx − xix

′
i

)−1∑
6̀=i x`y` denotes the leave-i-out OLS estimator of β. This insight

suggests the following bias-corrected estimator of θ:

θ̂ = β̂′Aβ̂ −
n∑
i=1

Biiσ̂
2
i . (1)

Newey and Robins (2018) observe that “cross-fit” covariances such as σ̂2
i have desirable efficiency

properties but we are not aware of existing estimators involving the {σ̂2
i }
n
i=1.

One can also motivate θ̂ via a change of variables argument. Letting x̃i = AS−1
xx xi denote a

vector of “generalized” regressors, we can write

θ = β′Aβ = β′SxxS
−1
xxAβ =

n∑
i=1

β′xix̃
′
iβ =

n∑
i=1

E
[
yix̃
′
iβ
]
.

This observation suggests using the unbiased leave-out estimator

θ̂ =

n∑
i=1

yix̃
′
iβ̂−i. (2)
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An application of the Sherman-Morrison-Woodbury formula (Woodbury, 1949; Sherman and Mor-

rison, 1950) reveals that the representations in (1) and (2) are numerically equivalent:

yix̃
′
iβ̂−i = yix̃

′
iS
−1
xx

∑
6̀=i
x`y`︸ ︷︷ ︸

=yix̃
′
iβ̂−Biiy

2
i

+
yix̃
′
iS
−1
xx xix

′
iS
−1
xx

1− x′iS
−1
xx xi

∑
`6=i

x`y`︸ ︷︷ ︸
=Biiyix

′
iβ̂−i

= yix̃
′
iβ̂ −Biiσ̂

2
i .

A similar combination of a change of variables argument and a leave-one-out estimator was used by

Powell et al. (1989) in the context of weighted average derivatives. The JIVE estimators proposed

by Phillips and Hale (1977) and Angrist et al. (1999) also use a leave-one-out estimator, though

without the change of variables.2

Remark 1. Direct computation of β̂−i can be avoided by exploiting the representation

yi − x
′
iβ̂−i =

yi − x
′
iβ̂

1− Pii
,

where Pii = x′iS
−1
xx xi gives the leverage of observation i. Drineas et al. (2012) provide algorithms

to compute these leverages efficiently in large datasets. Spielman and Srivastava (2011) provide

analogous methods specialized to the setting where Sxx involves a Laplacian matrix, as is often the

case in simple two-way fixed effects models (see, e.g., Jochmans and Weidner, 2016, and Appendix

B).

Remark 2. In some cases it may be important to allow dependence in the errors in addition to

heteroscedasticity. A common case arises when the data are organized into mutually exclusive

and independent “clusters” within which the errors may be dependent (Moulton, 1986). The same

change of variables argument implies that an estimator of the form
∑n

i=1 yix̃
′
iβ̂−c(i) will be unbiased

in such settings, where β̂−c(i) is the OLS estimator obtained after leaving out all observations in

the cluster to which observation i belongs.

1.1 Relation to Existing Approaches

As discussed in the next section, several literatures make use of bias corrections nominally predi-

cated on homoscedasticity. A common “homoscedasticity-only” estimator takes the form

θ̂HO = β̂′Aβ̂ −
n∑
i=1

Biiσ̂
2
HO (3)

2The object of interest in JIVE estimation is a ratio of quadratic forms θ1/θ2 = β′1Sxxβ2/β
′
2Sxxβ2 in the

two-equation model yij = x′iβj + εij for j = 1, 2. When no covariates are present, using leave-out estimators
of both the numerator and denominator of this ratio yields the JIVE1 estimator of Angrist et al. (1999).
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where σ̂2
HO = 1

n−k
∑n

i=1(yi − x
′
iβ̂)2 is the degrees-of-freedom corrected variance estimator. A suf-

ficient condition for unbiasedness of θ̂HO is that there be no empirical covariance between σ2
i and

(Bii, Pii). This restriction is in turn implied by the special cases of homoscedasticity where σ2
i does

not vary with i or balanced design where (Bii, Pii) does not vary with i. In general, however, this

estimator will tend to be biased (see, e.g., Scheffe, 1959, chapter 10, or Appendix C1.1).

A second estimator, closely related to θ̂, relies upon a jackknife bias-correction (Quenouille,

1949) of the plug-in estimator. This estimator can be written

θ̂JK = nθ̂PI −
n− 1

n

n∑
i=1

θ̂PI,−i where θ̂PI,−i = β̂′−iAβ̂−i.

In Section 3 we illustrate that jackknife bias-correction tends to over-correct and produce a first

order bias in the opposite direction of the bias in the plug-in estimator. This is analogous to

the upward bias in the jackknife estimator of V[β̂] which was derived by Efron and Stein (1981)

and shown by Karoui and Purdom (2016) to be of first order importance for inference with many

Gaussian regressors.

There are several proposed adaptations of the jackknife to long panels that can decrease bias

under stationarity restrictions on the regressors. Letting t(i) ∈ {1, ..., T} denote the time period in

which an observation is observed, we can write the panel jackknife of Hahn and Newey (2004) as

θ̂PJK = T θ̂PI −
T − 1

T

T∑
t=1

θ̂PI,−t where θ̂PI,−t = β̂′−tAβ̂−t

and β̂−t = (
∑

i:t(i)6=t xix
′
i)
−1∑

i:t(i) 6=t xiyi is the OLS estimator that excludes all observations from

period t. Dhaene and Jochmans (2015) propose a closely related split panel jackknife

θ̂SPJK = 2θ̂PI −
θ̂PI,1 + θ̂PI,2

2
where θ̂PI,j = β̂′jAβ̂j

and β̂1 (and β̂2) are OLS estimators based on the first half (and the last half) of an even number

of time periods. In Section 3, we illustrate how non-stationary regressors or short panels can lead

these adaptations of the jackknife to produce first order biases in the opposite direction of the bias

in the plug-in estimator.

Remark 3. One might be tempted to estimate θ using the estimators of σ2
i employed in Eicker-

White style estimators of V[β̂] = S−1
xx

(∑n
i=1 xix

′
iσ

2
i

)
S−1
xx (see, e.g., MacKinnon and White (1985)

and Davidson and MacKinnon (1993)). Cattaneo et al. (2016) show that the estimation error in β̂

leads to first order biases in estimators of this type when k/n 9 0. Their results apply here with
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minimal changes since, for a non-random vector v, it follows that:

V[v′β̂] =

n∑
i=1

(
x′iS
−1
xx v

)2
σ2
i .

Remark 4. Conversely, one can also use {σ̂2
i }
n
i=1 to construct an unbiased variance estimator V̂[β̂] =

S−1
xx

(∑n
i=1 xix

′
iσ̂

2
i

)
S−1
xx . The variance estimation results in Section 5.2 imply that V̂[β̂] can be used

to perform asymptotically valid inference on linear contrasts in settings where existing Eicker-White

estimators fail. Specifically, V̂[β̂] leads to valid inference under conditions where the MINQUE

estimator of Rao (1970) and the MINQUE-type estimator of Cattaneo et al. (2016) do not exist

(see, e.g., Horn et al., 1975; Verdier, 2016).

1.2 Finite Sample Properties

We now study the finite sample properties of the leave-out estimator θ̂ and its infeasible analogue

θ∗ = β̂′Aβ̂ −
∑n

i=1Biiσ
2
i , which uses knowledge of the individual error variances. First, we note

that θ̂ is unbiased whenever each of the leave-one-out estimators β̂−i exists. This basic requirement

is equivalently expressed as maxi Pii < 1 where Pii is the leverage of observation i.

Lemma 1. If maxi Pii < 1, then E[θ̂] = θ.

Next, we show that when the errors are normal, the infeasible estimator θ∗ is a weighted sum of

a series of non-central χ2 random variables. This second result provides a useful point of departure

for our asymptotic approximations and highlights the important role played by the matrix

Ã = S−1/2
xx AS−1/2

xx ,

which encodes features of both the target parameter (which is defined by A) and the design matrix

Sxx.

Let λ1, . . . , λr denote the non-zero eigenvalues of Ã, where λ2
1 ≥ · · · ≥ λ2

r and each eigenvalue

appears as many times as its algebraic multiplicity. We use Q to refer to the corresponding matrix

of orthonormal eigenvectors so that Ã = QDQ′ where D = diag(λ1, . . . , λr). With these definitions

we have

β̂′Aβ̂ =

r∑
`=1

λ`b̂
2
` where b̂ = (b̂1, . . . , b̂r)

′ = Q′S1/2
xx β̂.

The r-dimensional random vector b̂ and the eigenvalues λ1, . . . , λr are central to both the finite

sample distribution provided below in Lemma 2 and the asymptotic properties of θ̂ as studied

in Section 4. Each eigenvalue of Ã can be thought of as measuring how strongly θ depends on
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a particular linear combination of the elements of β relative to the difficulty of estimating that

combination (as summarized by S−1/2
xx ). As discussed in Section 4, when a few of these eigenvalues

are large relative to the others, a form of weak identification can arise.

Lemma 2. If εi ∼ N (0, σ2
i ), then

θ∗ =

r∑
`=1

λ`

(
b̂2` − V[b̂`]

)
and b̂ ∼ N

(
b,V[b̂]

)

where b = Q′S1/2
xx β.

The distribution of θ∗ is a sum of r potentially dependent non-central χ2 random variables

with non-centralities b = (b1, . . . , br)
′. In the special case of homoscedasticity (σ2

i = σ2) and no

signal (b = 0) we have that b̂ ∼ N
(

0, σ2Ir

)
, which implies that the distribution of θ∗ is a weighted

sum of r independent central χ2 random variables. The weights are the eigenvalues of Ã, therefore

consistency of θ∗ follows whenever the sum of squared eigenvalues converge to zero. The next

subsection establishes that the leave-out estimator remains consistent when a signal is present

(b 6= 0) and the errors exhibit unrestricted heteroscedasticity.

1.3 Consistency

We now drop the normality assumption and provide conditions under which θ̂ remains consistent.

To accommodate high dimensionality of the regressors we allow all parts of the model to change

with n:

yi,n = x′i,nβn + εi,n (i = 1, . . . , n)

where xi,n ∈ Rkn , Sxx,n =
∑n

i=1 xi,nx
′
i,n, E[εi,n] = 0, E[ε2

i,n] = σ2
i,n and θn = β′nAnβn for some

sequence of non-random symmetric matrices An ∈ Rkn×kn of rank rn. By treating xi,n and An as

sequences of constants, all uncertainty derives from the disturbances
{
εi,n : 1 ≤ i ≤ n, n ≥ 1

}
. This

conditional perspective is common in the statistics literatures on ANOVA (Scheffe, 1959; Searle

et al., 2009) and high-dimensional models (Lei et al., 2016), and allows us to be agnostic about the

potential dependency among the {xi,n}
n
i=1. Following standard practice we drop the n subscript in

what follows. All limits are taken as n goes to infinity unless otherwise noted.

Our analysis makes heavy use of the following assumptions.

Assumption 1. (a) maxi

(
E[ε4

i ] + σ−2
i

)
= O(1), (b) there exist a c < 1 such that maxi Pii ≤ c for

all n, and (c) maxi(x
′
iβ)2 = O(1).
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Part (a) of this condition limits the thickness of the tails in the error distribution, as is typically

required for OLS estimation (see, e.g., Cattaneo et al., 2017, page 10). The bounds on (x′iβ)2 and

Pii imply that σ̂2
i has bounded variance. Assumption 1(c) is a technical condition that can be

relaxed to allow for maxi(x
′
iβ)2 to be unbounded as the sample size grows as discussed further in

Section 6. From (b) it follows that k
n ≤ c < 1 for all n.

The following Lemma establishes consistency of θ̂.

Lemma 3. 1. If A is positive semi-definite, (i) θ = O(1),

(ii) trace(Ã2) =
r∑
`=1

λ2
` = o(1),

and Assumption 1 holds, then θ̂ − θ p→ 0.

2. If A is non-definite then write A = A′1A2 for some A1, A2. If Θ` = β′A′`A`β satisfies (i) and

(ii) for ` = 1, 2, then θ̂ − θ p→ 0.

The first part of the Lemma establishes consistency of variance components given boundedness

of θ and a joint condition on the design matrix Sxx and the matrix A. In several of the examples

discussed in the next section, trace(Ã2) is of order r/n2 which automatically satisfies (ii). A more

extensive discussion of primitive conditions that yield (ii) is provided in Section 6. Consistency of

covariance components follows from consistency of variance components that dominate them via

the Cauchy-Schwarz inequality, i.e., θ2 ≤ Θ1Θ2.

2 Examples

We now consider four commonly encountered empirical examples where our proposed estimation

strategy provides an advantage over existing methods.

Example 1 (Coefficient of determination).

Sewall Wright (1921) proposed measuring the explanatory power of a linear model using the

coefficient of determination. When xi includes an intercept, the object of interest and its corre-

sponding plug-in estimator can be written

R2 =
β′Aβ

β′Aβ + 1
n

∑n
i=1 σ

2
i

=
σ2
Xβ

σ2
y

and R̂2
PI =

β̂′Aβ̂
1
n

∑n
i=1(yi − ȳ)2 =

σ̂2
Xβ,PI

σ̂2
y

where

A =
1

n

n∑
i=1

(xi − x̄)(xi − x̄)′, x̄ =
1

n

n∑
i=1

xi, ȳ =
1

n

n∑
i=1

yi.
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Theil (1961) noted that the plug-in estimator of σ2
Xβ is biased and proposed an adjusted R2 measure

that utilizes the homoscedasticity-only estimator in (3)

R̂2
adj =

σ̂2
Xβ,HO

σ̂2
y

=
β̂′Aβ̂ − k−1

n σ̂2
HO

σ̂2
y

where

n∑
i=1

Bii =
k − 1

n
.

A rearrangement gives the familiar representation
1−R̂2

adj

1−R̂2
PI

= n−1
n−k which highlights that the adjusted

estimator of R2 relates to the unadjusted one through a degrees-of-freedom correction.

The leave-out estimator of σ2
Xβ allows for unrestricted heteroscedasticity and can be found by

noting that x̃i = AS−1
xx xi = 1

n(xi − x̄), which yields

R̂2 =
σ̂2
Xβ

σ̂2
y

where σ̂2
Xβ =

1

n

n∑
i=1

yi(xi − x̄)′β̂−i.

In general, this estimator does not have an interpretation in terms of degrees-of-freedom correc-

tions. Instead, the explanatory power of the linear model is assessed using the empirical covariance

between leave-one-out predictions (xi − x̄)′β̂−i and the left out observation yi.

Example 2 (Analysis of covariance).

Since the work of Fisher (1925), it has been common to summarize the effects of experimen-

tally assigned treatments on outcomes with estimates of variance components. Consider a dataset

comprised of observations on N groups with Tg observations in the g-th group. The “analysis of

covariance” model posits that outcomes can be written

ygt = αg + x′gtδ + εgt (g = 1, . . . , N, t = 1, . . . , Tg ≥ 2),

where αg is a group effect and xgt is a vector of strictly exogenous covariates.

A recent application comes from Chetty et al. (2011) who study the adult earnings ygt of

n =
∑N

g=1 Tg students assigned experimentally to one of N different classrooms. Each student also

has a vector of predetermined background characteristics xgt. The variability in student outcomes

attributable to classrooms can be written:

σ2
α =

1

n

N∑
g=1

Tg
(
αg − ᾱ

)2
where ᾱ = 1

n

∑N
g=1 Tgαg gives the (enrollment-weighted) mean classroom effect. This model and

object of interest can be brought in to the notation of the preceding section (yi = x′iβ + εi and

σ2
α = β′Aβ) if for each (g, t) we let i = i(g, t) where i(·, ·) is bijective with inverse denoted (g(·), t(·)),
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yi = ygt, εi = εgt,

xi = (d′i, x
′
gt)
′, β = (α′, δ′)′, α = (α1, . . . , αN )′, di = (1{g=1}, . . . ,1{g=N})

′,

and

A =

[
Add 0

0 0

]
where Add =

1

n

n∑
i=1

(di − d̄)(di − d̄)′, d̄ =
1

n

n∑
i=1

di.

Chetty et al. (2011) estimate σ2
α using a random effects ANOVA estimator (see e.g., Searle et al.,

2009) which is of the homoscedasticity-only type given in (3). As discussed in Section 1 and

Appendix C1.1, this estimator is in general first order biased when the errors are heteroscedastic

and group sizes are unbalanced.

When there are no common regressors (xgt = 0 for all g, t), the leave-out estimator of σ2
α has a

particularly simple representation:

σ̂2
α =

1

n

N∑
g=1

(
Tg
(
α̂g − ˆ̄α

)2 − (1−
Tg
n

)
σ̂2
g

)
for σ̂2

g =
1

Tg − 1

Tg∑
t=1

(ygt − α̂g)
2, (4)

where α̂g = 1
Tg

∑Tg
t=1 ygt, and ˆ̄α = 1

n

∑N
g=1 Tgα̂g. This representation shows that if the model

consists of group specific intercepts only, then the leave-out estimator relies on group level degrees-

of-freedom corrections. The statistic in (4) was analyzed by Akritas and Papadatos (2004) in the

context of testing the null hypothesis that σ2
α = 0 while allowing for heteroscedasticity at the group

level.

Another instructive representation of the leave-out estimator is in terms of the empirical co-

variance

σ̂2
α =

n∑
i=1

yid̃
′
iα̂−i where β̂−i = (α̂′−i, δ̂

′
−i).

The generalized regressor d̃i can be described as follows: if there are no common regressors then

d̃i = 1
n(di − d̄), which is analogous to Example 1. If the model includes common regressors then

d̃i = 1
n

(
(di − d̄)− Γ̂ ′(xg(i)t(i) − x̄g(i))

)
where x̄g = 1

Tg

∑Tg
t=1 xgt and Γ̂ is the coefficient vector from

an instrumental variables (IV) regression of di− d̄ on xg(i)t(i)− x̄g(i) using xg(i)t(i) as an instrument.

The IV residual d̃i is uncorrelated with xg(i)t(i) and, because di is uncorrelated with xg(i)t(i)− x̄g(i),
the covariance between di and d̃i is Add . This ensures that the empirical covariance between

yi = d′iα+ x′g(i)t(i)δ + εi and the generalized prediction d̃i
′
α̂−i is an unbiased estimator of σ2

α.

Example 3 (Random coefficients).

Group memberships are often modeled as influencing slopes in addition to intercepts (Kuh, 1959;
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Hildreth and Houck, 1968; Bryk and Raudenbush, 1992; Arellano and Bonhomme, 2011; Graham

and Powell, 2012; Graham et al., 2016). Consider the following “random coefficient” model:

ygt = αg + zgtγg + εgt (g = 1, . . . , N, t = 1, . . . , Tg ≥ 3)

with n =
∑N

g=1 Tg.

An influential example comes from Raudenbush and Bryk (1986), who model student mathe-

matics scores as a “hierarchical” linear function of socioeconomic status (SES) with school-specific

intercepts (αg ∈ R) and slopes (γg ∈ R). The student-weighted variance of slopes can be written:

σ2
γ =

1

n

N∑
g=1

Tg
(
γg − γ̄

)2
,

where γ̄ = 1
n

∑N
g=1 Tgγg. In the notation of the preceding section we can write yi = x′iβ + εi and

σ2
γ = β′Aβ where

xi = (d′i, d
′
izgt)

′, β = (α′, γ′)′, γ = (γ1, . . . , γN )′, A =

[
0 0

0 Add

]

for yi, εi, di, Add, and α as in the preceding example.

Raudenbush and Bryk (1986) use a maximum likelihood estimator of σ2
γ predicated upon nor-

mality and homoscedastic errors. Swamy (1970) considers an estimator of σ2
γ that relies on group-

level degrees-of-freedom corrections and is unbiased when the error variance is allowed to vary at

the group level, but not with the level of zgt. By contrast, the leave-out estimator is unbiased under

arbitrary patterns of heteroscedasticity.

The leave-out estimator can be represented in terms of the empirical covariance

σ̂2
γ =

n∑
i=1

yiz̃id̃
′
iγ̂−i where d̃i =

1

n
(di − d̄), z̃i =

zg(i)t(i) − z̄g(i)∑Tg(i)
t=1 (zg(i)t − z̄g(i))

2
,

and z̄g = 1
Tg

∑Tg
t=1 zgt. Demeaning zg(i)t(i) at the group level makes d̃iz̃i uncorrelated with di and

scaling by the group variability in zg(i)t ensures that the covariance between d̃iz̃i and dizg(i)t(i)

is Add. This implies that the empirical covariance between yi = d′iα + zg(i)t(i)d
′
iγ + εi and the

generalized prediction z̃id̃
′
iγ̂−i is an unbiased estimator of σ2

γ .

Example 4 (Two-way fixed effects).

Economists often study settings where units possess two or more group memberships, some of

which can change over time. A prominent example comes from Abowd et al. (1999) (henceforth

AKM) who propose a panel model of log wage determination that is additive in worker and firm

12



fixed effects. This so-called “two-way” fixed effects model takes the form:

ygt = αg + ψj(g,t) + x′gtδ + εgt (g = 1, . . . , N, t = 1, . . . , Tg ≥ 2) (5)

where the function j(·, ·) : {1, . . . , N}×{1, . . . ,maxg Tg} → {0, . . . , J} allocates each of n =
∑N

g=1 Tg

worker-year observations to one of J+1 firms. Here αg is a “person effect”, ψj(g,t) is a “firm effect”,

xgt is a time-varying covariate, and εgt is a time-varying error. In this context, the mean zero

assumption on the errors εgt can be thought of as requiring both the common covariates xgt and

the firm assignments j(·, ·) to obey a strict exogeneity condition.

Interest in such models often centers on understanding how much of the variability in log wages

is attributable to firms (see, e.g., Card et al., 2013; Song et al., 2017). AKM summarize the firm

contribution to wage inequality via the following two parameters:

σ2
ψ =

1

n

N∑
g=1

Tg∑
t=1

(
ψj(g,t) − ψ̄

)2
and σα,ψ =

1

n

N∑
g=1

Tg∑
t=1

(
ψj(g,t) − ψ̄

)
αg

where ψ̄ = 1
n

∑N
g=1

∑Tg
t=1 ψj(g,t). The variance component σ2

ψ measures the contribution of firm wage

variability to inequality, while the covariance component σα,ψ measures the additional contribution

of systematic sorting of high wage workers to high wage firms.

To represent this model and the corresponding objects of interest in the notation of the preceding

section (yi = x′iβ + εi, σ
2
ψ = β′Aψβ, and σα,ψ = β′Aα,ψβ), let

xi = (d′i, f
′
i , x
′
gt)
′, β = (α′, ψ′, δ′)′, α = (α1, . . . , αN )′ + 1′Nψ0, ψ = (ψ1 . . . , ψJ)′ − 1′Jψ0,

for yi, εi, and di as in the preceding examples,

fi = (1{j(g,t)=1}, . . . ,1{j(g,t)=J})
′,

Aψ =

0 0 0

0 Aff 0

0 0 0

 where Aff =
1

n

n∑
i=1

(fi − f̄)(fi − f̄)′, f̄ =
1

n

n∑
i=1

fi,

and

Aα,ψ =
1

2

 0 Adf 0

A′df 0 0

0 0 0

 where Adf =
1

n

n∑
i=1

di(fi − f̄)′.

Addition and subtraction of ψ0 in β amounts to the normalization, ψ0 = 0, which has no effect on

the variance components of interest. As Abowd et al. (1999, 2002) note, least squares estimation

of (5) requires one normalization of the ψ vector within each set of firms connected by worker
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mobility. For simplicity, we assume all firms are connected so that only a single normalization is

required.

AKM estimate σ2
ψ and σα,ψ using the naive plug-in estimators β̂′Aψβ̂ and β̂′Aα,ψβ̂ which are,

in general, biased. Andrews et al. (2008) propose the “homoscedasticity-only” estimators of (3).

These estimators are unbiased when the errors εi are independent and have common variance. Our

leave-out estimator, which avoids the homoscedasticity requirement on the errors, takes the form

σ̂2
ψ =

n∑
i=1

yix
′
iS
−1
xxAψβ̂−i, σ̂α,ψ =

n∑
i=1

yix
′
iS
−1
xxAα,ψβ̂−i. (6)

A simpler representation of σ̂2
ψ is available in the case where only two time periods are available

and no common regressors are present (Tg = 2 and xgt = 0 for all g, t). Consider this model in first

differences

∆yg = ∆f ′gψ + ∆εg (g = 1, . . . , N) (7)

where ∆yg = yg2 − yg1, ∆εg = εg2 − εg1, and ∆fg = fi(g,2) − fi(g,1). The estimator σ̂2
ψ equals the

leave-out estimator of σ2
ψ applied to this model:

σ̂2
ψ =

N∑
g=1

∆yg∆f̃
′
gψ̂−g where ∆f̃g = AffS

−1
∆f∆f∆fg.

S∆f∆f and ψ̂−g correspond respectively to Sxx and β̂−i in the above first differenced model. This

equivalence reveals that σ̂2
ψ is not only unbiased under arbitrary heteroscedasticity and design

unbalance, but also under arbitrary correlation between εg1 and εg2. The same can be shown to

hold for σ̂α,ψ. Furthermore, this representation highlights that σ̂2
ψ only depends on observations

with ∆fg 6= 0 (i.e., firm “movers”).

3 Comparison to Jackknife Estimators

This section compares the leave-out estimator θ̂ to estimators predicated on jackknife bias cor-

rections. We start by introducing some of the high-level assumptions that are typically used to

motivate jackknife estimators. We then consider some variants of Examples 2 and 3 where these

high-level conditions fail to hold and establish that the jackknife estimators have first order biases

while the leave-out estimator retains consistency.
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3.1 High-level Conditions

Jackknife bias corrections are typically motivated by the high-level assumption that the bias of a

plug-in estimator θ̂PI shrinks with the sample size in a known way and that the bias of 1
n

∑n
i=1 θ̂PI,−i

depends on sample size in an identical way, i.e.,

E[θ̂PI] = θ +
D1

n
+

D2

n2 , E

[
1

n

n∑
i=1

θ̂PI,−i

]
= θ +

D1

n− 1
+

D2

(n− 1)2 for some D1,D2. (8)

Under (8), the jackknife estimator θ̂JK = nθ̂PI − n−1
n

∑n
i=1 θ̂PI,−i has a bias of − D2

n(n−1) .

For some long panel settings the bias in θ̂PI is shrinking in the number of time periods T such

that

E[θ̂PI] = θ +
Ḋ1

T
+

Ḋ2

T 2 for some Ḋ1, Ḋ2.

In such settings, it may be that the biases of 1
T

∑T
t=1 θ̂PI,−t and 1

2(θ̂PI,1 + θ̂PI,2) depend on T in an

identical way, i.e.,

E

[
1

T

T∑
t=1

θ̂PI,−t

]
= θ +

Ḋ1

T − 1
+

Ḋ2

(T − 1)2 and E
[

1

2
(θ̂PI,1 + θ̂PI,2)

]
= θ +

2Ḋ1

T
+

4Ḋ2

T 2 .

From here it follows that the panel jackknife estimator θ̂PJK = T θ̂PI − T−1
T

∑T
t=1 θ̂PI,−t has a bias

of − Ḋ2
T (T−1) and that the split panel jackknife estimator θ̂SPJK = 2θ̂PI − 1

2(θ̂PI,1 + θ̂PI,2) has a bias

of −2Ḋ2

T
2 , both of which shrink faster to zero than Ḋ1

T if T → ∞. Typical sufficient conditions for

bias-representations of this kind to hold (to second order) are that (a) T → ∞, (b) the design is

stationary over time, and (c) that θ̂PI is asymptotically linear (see, e.g., Hahn and Newey, 2004;

Dhaene and Jochmans, 2015). Below we illustrate that jackknife corrections can be inconsistent in

Examples 2 and 3 when (a) and/or (b) do not hold. Finally we note that θ̂PI (a bilinear function)

need not be asymptotically linear as is evident from the non-normal asymptotic distribution of θ̂

derived in Theorem 1 of the next section.

3.2 Examples of Jackknife Failure

Example 2 (Special case). Consider the model

ygt = αg + εgt (g = 1, . . . , N, t = 1, . . . , T ≥ 2),
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where σ2
gt = σ2 and suppose the parameter of interest is θ = 1

N

∑N
g=1 α

2
g. For T even, we have the

following bias calculations:

E[θ̂PI] = θ +
σ2

T
, E

[
1

n

n∑
i=1

θ̂PI,−i

]
= θ +

σ2

T
+

σ2

n(T − 1)
,

E

[
1

T

T∑
t=1

θ̂PI,−t

]
= θ +

σ2

T − 1
, E

[
1

2
(θ̂PI,1 + θ̂PI,2)

]
= θ +

2σ2

T
.

The jackknife estimator θ̂JK has a first order bias of − σ
2

T (T−1) , which when T = 2 is as large as

that of θ̂PI but of opposite sign. By contrast, both of the panel jackknife estimators, θ̂PJK and the

leave-out estimator are exactly unbiased and consistent as n→∞ when T is fixed.

This example shows that the jackknife estimator can fail when applied to a setting where the

number of regressors is large relative to sample size. Here the number of regressors is N and the

sample size is NT , yielding a ratio of 1/T and we see that 1/T → 0 is necessary for consistency of

θ̂JK. While the panel jackknife corrections appear to handle the presence of many regressors, this

property disappears in the next example which adds the “random coefficients” of Example 3.

Example 3 (Special case). Consider the model

ygt = αg + xgtδg + εgt (g = 1, . . . , N, t = 1, . . . , T ≥ 3)

where σ2
gt = σ2 and θ = 1

N

∑N
g=1 δ

2
g .

An analytically convenient example arises when the regressor design is “balanced” across groups

as follows:

(xg1, xg2, . . . , xgT ) = (x1, x2, . . . , xT ),

where x1, x2, x3 take distinct values and
∑T

t=1 xt = 0. The leave-out estimator is unbiased and

consistent for any T ≥ 3, whereas for even T ≥ 4 we have the following bias calculations:

E[θ̂PI] = θ +
σ2∑T
t=1 x

2
t

,

E

[
1

T

T∑
t=1

θ̂PI,−t

]
= θ +

σ2

T

T∑
t=1

1∑
s 6=t(xs − x̄−t)

2 ,

E
[

1

2
(θ̂PI,1 + θ̂PI,2)

]
= θ +

σ2

2
∑T/2

t=1(xt − x̄1)2
+

σ2

2
∑T

t=T/2+1(xt − x̄2)2
,

where x̄−t = 1
T−1

∑
s 6=t xs, x̄1 = 2

T

∑T/2
t=1 xt, and x̄2 = 2

T

∑T
t=T/2+1 xt.
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The calculations above reveal that non-stationarity in either the level or variability of xt over

time can lead to a negative bias in panel jackknife approaches, e.g.,

E
[
θ̂SPJK

]
− θ ≤ 2σ2∑T

t=1 x
2
t

− σ2

2
∑T/2

t=1 x
2
t

− σ2

2
∑T

t=T/2+1 x
2
t

≤ 0

where the first inequality is strict if x̄1 6= x̄2 and the second if
∑T/2

t=1 x
2
t 6=

∑T
t=T/2+1 x

2
t . In fact, the

following example

(x1, x2, . . . , xT ) = (−1, 2, 0, . . . , 0,−1)

renders the panel jackknife corrections inconsistent for small or large T :

E[θ̂PJK] = θ − 7/5

6
σ2 +O

(
1

T

)
and E[θ̂SPJK] = θ − 8/5

6
σ2 +O

(
1

T

)
.

Inconsistency results here from biases of first order that are negative and larger in magnitude than

the original bias of θ̂PI (which is σ
2

6 ). Exact bias formulas are given in Appendix C3.

4 Distribution theory

In this section, we develop asymptotic theory intended to approximate the finite sample behavior of

θ̂ in a wide array of settings. Section 1.2 showed that the finite sample distribution of the infeasible

estimator θ∗ under normality of the errors is a sum of r non-central χ2 random variables weighted

by the eigenvalues λ1, . . . , λr of Ã, i.e., for θ∗ = β̂′Aβ̂ −
∑n

i=1Biiσ
2
i and Bii = x′iS

−1
xxAS

−1
xx xi we

have

θ∗ =
r∑
`=1

λ`

(
b̂2` − V[b̂`]

)
and b̂ ∼ N

(
b,V[b̂]

)

where b = Q′S1/2
xx β. This distribution is centered at θ, but its shape depends on the r-dimensional

nuisance parameter b, which complicates using this result for inference. When r is small, a potential

approach is to base inference on a minimum distance statistic for b̂. In general, this approach need

not have any optimality properties as θ =
∑r

`=1 λ`b
2
` is a non-invertible function of b, but it can be

shown to be asymptotically valid when the estimator of V[b̂] utilizes {σ̂2
i }
n
i=1. In many applications,

however, r will be large and computation of b̂ will become intractable because it involves all the

eigenvectors of Ã. We therefore provide asymptotic approximations to the distribution of θ̂ that

serve both to relax the normality assumption on the errors and to motivate an inference procedure

based on a minimum distance statistic for a vector of substantially lower dimension than b̂.
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In Proposition 1 we show that the finite sample distribution of θ∗ provides a good approximation

to the asymptotic distribution of θ̂ when r is small. Proposition 2 establishes that when r is large,

and the largest squared eigenvalue λ2
1 is small relative to the sum of squared eigenvalues

∑r
`=1 λ

2
` ,

the asymptotic distribution of θ̂ simplifies to that of a normal random variable. Approximations

of these two kinds are common in the literature on hypothesis testing (see, e.g., Andrews, 1988;

Anatolyev, 2012; Chao et al., 2014), but we are not aware of existing theorems that contain our

results as special cases.

Propositions 1 and 2 are important in their own right as the objects of interest in Examples 1

and 2 are covered by these results. However, these results also serve to motivate Theorem 1, which

covers the case where r is large and some of the squared eigenvalues are large relative to their sum.

In this case the resulting asymptotic distribution is a linear combination of normal and non-central

χ2 random variables. This added generality is necessary to accommodate Examples 3 and 4 and

we are not aware of existing results that provide approximations of this type.

4.1 The low rank case

The following Proposition characterizes the asymptotic distribution of θ̂ when r is small. The result

relies on the observation that b̂ is a weighted sum,

b̂ =

n∑
i=1

wiyi where wi = (wi1, . . . , wir)
′ = Q′S−1/2

xx xi,

which is asymptotically normal when no observation is too influential, i.e., when maxiw
′
iwi = o(1).

One can think of maxiw
′
iwi as measuring the inverse effective sample size available for estimating

b: when the weights are equal across i, the equality
∑n

i=1wiw
′
i = Ir implies that w2

i` = 1
n .

Proposition 1. If Assumption 1 holds, maxiw
′
iwi = o(1), and r is fixed, then

θ̂ =
r∑
`=1

λ`

(
b̂2` − V[b̂`]

)
+ op(V[θ̂]1/2) and V[b̂]−1/2(b̂− b) d−→ N (0, Ir)

where b = Q′S1/2
xx β, and V[b̂] =

∑n
i=1wiw

′
iσ

2
i .

Here, the limit distribution of θ̂ is first order equivalent to that derived for the infeasible

estimator θ∗ when β̂ is normally distributed. However, Proposition 1 allows β̂ to include statistics

estimated from as few as two observations, so β̂ need not behave as a normally distributed vector

in large samples. Rather, the assumptions imply that the r-dimensional vector b̂ is approximately

normal and that the estimated bias correction
∑n

i=1Biiσ̂
2
i has a second order effect on the variability

of θ̂.
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Depending upon the nature of the target parameter θ, the condition maxiw
′
iwi = o(1) may

directly constrain the limiting behavior of β̂. For example, if A is such that θ corresponds to the

square of the first element of β, this condition requires that the first element of β̂ (though not the

other elements) be asymptotically normally distributed. By contrast, if θ corresponds to the square

of an average of several elements in β, then all that is needed is for the average of these elements

to be asymptotically normal.

Since 1
n

∑n
i=1w

′
iwi = r

n we have that the Lindeberg condition maxiw
′
iwi = o(1) is implied

by a variety of primitive conditions that limit how far a maximum is from the average (see, e.g.,

Anatolyev, 2012, Appendix A.1). On the other hand, this observation also makes it clear that

Proposition 1 does not apply to settings where r is proportional to n as maxiw
′
iwi ≥ r

n .

Remark 5. Proposition 1 extends classical results on hypothesis testing of a few linear restrictions,

say, H0 : Rβ = 0, to allow for many regressors and heteroscedasticity. In such a setting a natural

choice of A is 1
rR
′(RS−1

xxR
′)−1R where r, the rank of R ∈ Rr×k, is fixed. Under H0, the asymptotic

distribution of θ̂ is an equally weighted sum of r central χ2 random variables. This distribution is

known up to V[b̂] and a critical value can be found through simulation. For a recent contribution

to this literature, see Anatolyev (2012) who allows for many regressors but considers the special

case of homoscedastic errors.

4.2 The high rank case

For the next two results, let x̌i =
∑n

`=1Mi`
B``

1−P``
x` where Mi` = 1{i = `} − xiS

−1
xx x`. Note that

x̌i gives the residual from a regression of Bii
1−Pii

xi on xi, therefore x̌i = 0 when the regressor design

is balanced. The contribution of x̌i to the behavior of θ̂ is through the estimation of
∑n

i=1Biiσ
2
i ,

which could be ignored in the case where the rank of A is bounded. When the rank of A is large,

as implied by condition (ii) of the following Proposition, this estimation error can resurface in the

asymptotic distribution.

Proposition 2. Recall that x̃i = AS−1
xx xi where θ̂ =

∑n
i=1 yix̃

′
iβ̂−i. If

(i) V[θ̂]−1 max
i

(
(x̃′iβ)2 + (x̌′iβ)2

)
= o(1), (ii)

λ2
1∑r

`=1 λ
2
`

= o(1),

and Assumption 1 holds, then V[θ̂]−1/2(θ̂ − θ) d−→ N (0, 1).

One can think of the eigenvalue ratio in (ii) as the inverse effective rank of Ã: when all the

eigenvalues are equal λ
2
1∑r

`=1 λ
2
`

= 1
r . Moreover, (ii) is a Lindeberg condition which ensures that the

weighted sum
∑r

`=1 λ`b̂
2
` is not dominated by any of the random variables b̂1, . . . , b̂r. However, the

random variables b̂1, . . . , b̂r are not necessarily independent, which renders the classical Lindeberg
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central limit theorem inapplicable. Instead the proof of Proposition 2 relies on a variation of Stein’s

method developed in Sølvsten (2017) and a representation of θ̂ as a second order U-statistic, i.e.,

θ̂ =
n∑
i=1

∑
`6=i

Ci`yiy` (9)

where Ci` = Bi` − 2−1Mi`

(
M−1
ii Bii +M−1

`` B``

)
and Bi` = x′iS

−1
xxAS

−1
xx x`. The proof shows that

the “kernel” Ci` varies with n in such a way that θ̂ is asymptotically normal whether or not θ̂ is a

degenerate U-statistic (i.e., whether or not β is zero).

One representation of the variance appearing in Proposition 2 is

V[θ̂] =

n∑
i=1

(
2x̃′iβ − x̌

′
iβ
)2
σ2
i + 2

n∑
i=1

∑
`6=i

C2
i`σ

2
i σ

2
` .

Note that this variance is bounded from below by mini σ
2
i

∑n
i=1(2x̃′iβ)2+(x̌′iβ)2 since

∑n
i=1 x̃

′
iβx̌
′
iβ =

0. Therefore (i) will be satisfied whenever maxi

(
(x̃′iβ)2 + (x̌′iβ)2

)
is not too large compared to∑n

i=1(x̃′iβ)2 + (x̌′iβ)2. As in Proposition 1, (i) is implied by a variety of primitive conditions that

limit how far a maximum is from the average, but since (i) involves a one dimensional function of

xi it can also be satisfied when r is large. A particularly simple case where (i) is satisfied is when

β = 0.

Remark 6. A natural application of Proposition 2 is to tests of specification that can be formulated

in terms of a large system of linear restrictions of the form H0 : Rβ = 0 where r →∞ is the rank

of R ∈ Rr×k. Under this null hypothesis, choosing A = 1
rR
′(RS−1

xxR
′)−1R implies V[θ̂]−1/2θ̂

d−→
N (0, 1) since all the non-zero eigenvalues of Ã are equal to 1

r . The existing literature allows for

either heteroscedastic errors and moderately few regressors (Donald et al., 2003, k3/n → 0) or

homoscedastic errors and many regressors (Anatolyev, 2012, k/n ≤ c < 1). When coupled with the

estimator of V[θ̂] presented in Section 5, this result enables tests with heteroscedastic errors and

many regressors.

Remark 7. Proposition 2 extends some common results in the literature on many and many weak

instruments (see, e.g., Chao et al., 2012) where the estimators are asymptotically equivalent to

bilinear forms. The structure of that setting is such that Ã = Ir/r and r → ∞, in which case

Proposition 2(ii) is automatically satisfied and therefore does not feature prominently in that

literature.
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4.3 The general case

We turn now to our main theorem which covers the case where some of the squared eigenvalues

λ2
1, . . . , λ

2
r are large relative to their sum

∑r
`=1 λ

2
` . To motivate this condition, recall that each

eigenvalue of Ã measures how strongly θ depends on a particular linear combination of the elements

of β relative to the difficulty of estimating that combination (as summarized by S−1/2
xx ). From

Lemma 3, trace(Ã2) =
∑r

`=1 λ
2
` governs the total variability in θ̂. Therefore, Theorem 1 covers the

case where θ depends strongly on a few linear combinations of β that are imprecisely estimated

relative to the overall sampling uncertainty in θ̂. We discuss in Section 6 when this state of affairs

can arise.

Assumption 2. There exist a c > 0 and a known and fixed q ∈ {1, . . . , r − 1} such that

λ2
q+1∑r
`=1 λ

2
`

= o(1) and
λ2
q∑r

`=1 λ
2
`

≥ c for all n.

Assumption 2 defines q as the number of squared eigenvalues that are large relative to their sum.

Equivalently, q indexes the number of nuisance parameters in b that are weakly identified relative

to their influence on θ and the uncertainty in θ̂. The assumption that q is known is motivated

by our application and the discussion of Examples 1-4 in Section 6. In Section 5.3 we offer some

guidance on choosing q in settings where it is unknown.

Given knowledge of q, we can split θ̂ into a known function of b̂q and θ̂q where

b̂q = (b̂1, . . . , b̂q)
′ =

n∑
i=1

wiqyi, wiq = (wi1, . . . , wiq)
′,

θ̂q = θ̂ −
q∑
`=1

λ`(b̂
2
` − V̂[b̂`]), V̂[b̂] =

n∑
i=1

wiw
′
iσ̂

2
i .

The main difficulty in proving the following Theorem is to show that the joint distribution of

(b̂′q, θ̂q)
′ is normal, which we do using the same variation of Stein’s method that was employed for

Proposition 2. The high-level conditions involve x̃iq and x̌iq which are the parts of x̃i and x̌i that

pertain to θ̂q and are defined in the proof of Theorem 1. It is possible to provide a theorem that

simultaneously covers Proposition 1 (q = r, r fixed) and Proposition 2 (q = 0, r → ∞), but to

avoid dealing with settings where b̂q is an empty vector or θ̂q is identically zero we exclude these

cases below.

Theorem 1. If maxi w
′
iqwiq = o(1), V[θ̂q]

−1 maxi

(
(x̃′iqβ)2 + (x̌′iqβ)2

)
= o(1), and Assumptions 1
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and 2 hold, then

θ̂ =

q∑
`=1

λ`

(
b̂2` − V[b̂`]

)
+ θ̂q + op(V[θ̂]1/2)

and

V[(b̂′q, θ̂q)
′]−1/2

(
(b̂′q, θ̂q)

′ − E[(b̂′q, θ̂q)
′]
)

d−→ N
(
0, Iq+1

)
.

Theorem 1 provides an approximation to θ̂ in terms of a quadratic function of q asymptotically

normal random variables and a linear function of one asymptotically normal random variable. Here,

the non-centralities E[b̂q] = (b1, . . . , bq)
′ serve as nuisance parameters that influence both θ and the

shape of the limiting distribution of θ̂ − θ. The next section proposes an approach to dealing with

these nuisance parameters that provides asymptotically valid inference on θ for any value of q.

5 Inference

In this section, we develop a two-sided confidence interval for θ that delivers asymptotic size control

conditional on a choice of q. Our proposal involves inverting a minimum distance statistic in b̂q and

θ̂q, which Theorem 1 implies are jointly normally distributed. To avoid the conservatism associated

with standard projection methods (e.g., Dufour and Jasiak, 2001), we seek to adjust the critical

value downwards to deliver size control on θ rather than E[(b̂′q, θ̂q)
′]. However, unlike in standard

projection problems (e.g., the problem of subvector inference), θ is a nonlinear function of E[b̂q]. To

accomodate this complication, we use a critical value proposed by Andrews and Mikusheva (2016)

that depends on the curvature of the problem.

When q = 0, this procedure simplifies to a standard two-sided confidence interval based on θ̂

and asymptotic normality. If q = 1, the resulting confidence interval has a closed form solution,

and for q > 1, inference relies on solving two quadratic optimization problems that involve q + 1

unknowns. Here we focus on the cases of q = 0 and q = 1 and relegate the full description of the

case where q > 1 to Appendix C5.2.

5.1 Confidence Interval

The confidence interval we consider is based on inversion of a minimum-distance statistic for (b̂′q, θ̂q)
′

using the critical value proposed in Andrews and Mikusheva (2016). For a specified level of confi-
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dence, 1− α, we consider the interval

Ĉθq =

[
min

(ḃ1,...,ḃq ,θ̇q)
′∈Bq

q∑
`=1

λ`ḃ
2
` + θ̇q, max

(ḃ1,...,ḃq ,θ̇q)
′∈Bq

q∑
`=1

λ`ḃ
2
` + θ̇q

]
where

Bq =

{
(b′q, θq)

′ ∈ Rq+1 :

(
b̂q − bq

θ̂q − θq

)′
Σ̂−1
q

(
b̂q − bq

θ̂q − θq

)
≤ z2

κ̂

}

and Σ̂q = V̂[(b̂′q, θ̂q)
′] is an estimator of Σq = V[(b̂′q, θ̂q)

′] given in the next subsection.

The critical value function, zκ, depends on the maximal curvature, κ, of a certain manifold

(exact definitions of zκ and κ are given in Appendix C5.2). Heuristically, κ can be thought of as

summarizing the influence of the nuisance parameter E[b̂q] on the shape of θ̂’s limiting distribution.

Accordingly, z2
0 is equal to the (1− α)’th quantile of a central χ2

1 random variable. As κ→∞, z2
κ

approaches the (1 − α)’th quantile of a central χ2
q+1 random variable. This upper limit on zκ is

used in the projection method in its classical form as popularized in econometrics by Dufour and

Jasiak (2001), while the lower limit z0 would yield size control if θ were linear in E[(b̂′q, θ̂q)
′].

When q = 0, the maximal curvature is zero and Ĉθ0 simplifies to
[
θ̂ ± z0V̂[θ̂]1/2

]
where the

standard error V̂[θ̂]1/2 is given in the next subsection. When q = 1, the maximal curvature is

κ̂ = 2|λ1|V̂[b̂1]

V̂[θ̂1]
1/2

(1−ρ̂2)
1/2 where ρ̂ is the estimated correlation between b̂1 and θ̂1. This curvature measure

is intimately related to eigenvalue ratios previously introduced, as κ̂2 is approximately equal to
2λ

2
1∑r

`=2 λ
2
`

when the error terms are homoscedastic and β = 0.

A useful representation of Ĉθ1 is

Ĉθ1 =
[
λ1b

2
1,− + θ1,−, λ1b

2
1,+ + θ1,+

]
where b1,± and θ1,± are solutions to

b1,± = b̂1 ± zκ̂
(
V̂[b̂1](1− â±)

)1/2

θ1,± = θ̂1 − ρ̂
V̂[θ̂1]1/2

V̂[b̂1]1/2
(b̂1 − b1,±)± zκ̂

(
V̂[θ̂1](1− ρ̂2)â±

)1/2

for â± =

(
1 +

(
sgn(λ1)κ̂b1,±

V̂[b̂1]
1/2 + ρ̂√

1−ρ̂2

)2
)−1

.

This construction is fairly intuitive. When ρ̂ = 0, the interval has endpoints that combine

λ1

(
b̂1 ± zκ̂

(
V̂[b̂1](1− â±)

)1/2
)2

and θ̂q ± zκ̂
(
V̂[θ̂q]â±

)1/2
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where â± estimates the fraction of V[θ̂] that stems from θ̂1 when b1 is one of b1,±. When ρ̂ is

non-zero, Ĉθ1 involves an additional rotation of (b̂1, θ̂1)′. Ĉθ1 can be calculated by finding the roots

of a fourth order polynomial given in Appendix C5.2.

Before proposing variance estimators, we report the requirement for asymptotic validity of our

inference procedure under the conditions of Theorem 1.

Lemma 4. If Σ−1
q Σ̂q

p−→ Iq+1 and the conditions of Theorem 1 hold, then

lim inf
n→∞

P
(
θ ∈ Ĉθq

)
≥ 1− α.

Remark 8. When the nuisance parameters b1, . . . , bq are large, i.e., min`∈{1,...,q} b
2
` →∞, it follows

from Theorem 1 and the Delta method that Ĉθ0 =
[
θ̂ ± z0V̂[θ̂]1/2

]
delivers size control even when

q is non-zero. The interval Ĉθq will also provide size control, but will tend to be longer (and

conservative) as zκ̂ > z0. Note that b1, . . . , bq are linear combinations of β rescaled so that their

estimators b̂1, . . . , b̂q have a non-vanishing variance. Thus min`∈{1,...,q} b
2
` → ∞ will be satisfied if

the corresponding unscaled linear combinations are estimated consistently and bounded away from

zero. In Section 7 we illustrate that Ĉθ0 can undercover in a setting where q > 0 and min`∈{1,...,q} b
2
`

is bounded, which serves to illustrate the fragility of the Delta method.

5.2 Asymptotic Variance Estimation

We now develop an estimator of the covariance matrix that appears in Theorem 1 and is used

in construction of Ĉθq . In order to explain its final form we first consider the special cases of

Propositions 1 and 2.

The low rank case

For this case the relevant variance is V[b̂] =
∑n

i=1wiw
′
iσ

2
i and our estimator is of the Eicker-White

form but uses the leave-one-out estimators {σ̂2
i }
n
i=1

V̂[b̂] =
n∑
i=1

wiw
′
iσ̂

2
i .

Unbiasedness of V̂[b̂] is immediate and consistency follows from the same set of assumptions that

lead to Proposition 1.

Lemma 5. If the conditions of Proposition 1 holds, then V[b̂]−1V̂[b̂]
p−→ Ir.
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Remark 9. In the special case where A = vv′ for some non-random vector v, this result implies

that

v′(β̂ − β)√
V̂[v′β̂]

d−→ N (0, 1) for V̂[v′β̂] = v′S−1
xx

(
n∑
i=1

xix
′
iσ̂

2
i

)
S−1
xx v

which allows for asymptotically valid inference on linear contrasts of β in a setting with many

regressors and heteroscedasticity. To derive this result we assumed that maxi Pii ≤ c for some c < 1,

whereas classical versions of Eicker-White variance estimators typically require that maxi Pii → 0

and Cattaneo et al. (2017) provide maxi Pii ≤ c for some c ≤ 1/2 as a sufficient condition for their

MINQUE-type variance estimator to yield asymptotically valid inference. Thus V̂[v′β̂] leads to

valid inference under weaker conditions than existing versions of Eicker-White variance estimators.

The high rank case

For Proposition 2 the relevant variance is that of θ̂ and the U-statistic representation of θ̂ in (9)

implies that the variance of θ̂ is

V[θ̂] = 4
n∑
i=1

∑
` 6=i

Ci`x
′
`β

2

σ2
i + 2

n∑
i=1

∑
`6=i

C2
i`σ

2
i σ

2
` .

Naively using {σ̂2
i }
n
i=1 to form an estimator of V[θ̂] will in general not lead to valid inference as

σ̂2
i σ̂

2
` is not an unbiased estimator of σ2

i σ
2
` . Additionally, V[θ̂] depends on the unknown x′`β which

will also have to be estimated. While V[θ̂] can, in principle, be estimated without bias using leave-

three-out estimators, this approach will be computationally intractable in many settings. Moreover,

in the case of Example 4, it is likely that discarding particular triples of observations will lead the

mobility network to become disconnected, making it impossible to compute estimates of β.

Given these considerations, we follow a classical approach where each σ̂2
i is smoothed using

local averages. Let

V̂[θ̂] = 4

n∑
i=1

∑
`6=i

Ci`y`

2

σ̃2
i − 2

n∑
i=1

∑
`6=i

C2
i`σ̃

2
i σ̃

2
`

where σ̃2
i = σ̃2(ωi), ωi = (Bii, Pii)

′, and σ̃2(ω) =
∑n

i=1 σ̂
2
i ki(ω) for a sequence of weight functions

{ki} such that
∑n

i=1 ki(ω`) = 1 and ki(ω`) = k`(ωi) for any i, `. The subtraction (as opposed to

addition) of the second term in the definition of V̂[θ̂] is intentional as the use of y` in place of x′`β

in the first term of V̂[θ̂] leads to an approximate bias of 4
∑n

i=1

∑
`6=iC

2
i`σ

2
i σ

2
` .

Inference based on V̂[θ̂] is asymptotically valid when: (a) σ2
i is a Lipschitz function of ωi and
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(b) the sequence of weight functions {ki} satisfy standard conditions which imply that σ̃2(ωi)− σ
2
i

converge to zero (uniformly over i) in mean squared error.

Assumption 3. (a) For some σ2(·) : R2 → R+, c <∞, and norm ‖·‖, σ2
i = σ2(ωi) and |σ2(ω)−

σ2(ω′)| ≤ c‖ω − ω′‖ for any ω, ω′ ∈ R2. (b) maxi
∑n

`=1 k`(ωi)
2 + |k`(ωi)|‖ωi − ω`‖ = o(1).

Lemma 6. If the conditions of Proposition 2 and Assumption 3 hold, then V̂[θ̂]/V[θ̂]
p−→ 1.

Remark 10. If σ̃2(ω) is a locally linear kernel estimator based on a neighborhood Nω = {ωi :

‖ωi − ω‖ ≤ h(ω)} with |Nω| nearest neighbors using a tricube kernel, then Assumption 3(b) is

satisfied when the minimum number of neighbors mini
∣∣Nwi∣∣ goes to infinity and the maximal

neighbor distance maxi h(ωi) goes to zero. In our implementation, we rely on a common number of

neighbors being chosen so that σ̃2(ω) is rate optimal when σ2(·) has two derivatives. We use ‖ωi‖ =

(B2
ii/σ

2
B +P 2

ii/σ
2
P )1/2, the standard Euclidean distance weighted by sample standard deviations, to

define neighborhoods.

The general case

In Theorem 1 the relevant variance is Σq = V[(b̂′q, θ̂q)
′],

Σq =

n∑
i=1

 wiqw
′
iqσ

2
i 2wiq

(∑
` 6=iCi`qx

′
`β
)
σ2
i

2w′iq

(∑
6̀=iCi`qx

′
`β
)
σ2
i 4

(∑
` 6=iCi`qx

′
`β
)2
σ2
i + 2

∑
` 6=iC

2
i`qσ

2
i σ

2
`

 ,
where Ci`q is defined in Appendix C4. Our estimator of this variance reuses the ideas introduced

for Propositions 1 and 2:

Σ̂q =
n∑
i=1

 wiqw
′
iqσ̂

2
i 2wiq

(∑
` 6=iCi`qy`

)
σ̃2
i

2w′iq

(∑
` 6=iCi`qy`

)
σ̃2
i 4

(∑
`6=iCi`qy`

)2
σ̃2
i − 2

∑
`6=iC

2
i`qσ̃

2
i σ̃

2
`

 .
The following result shows consistency of this variance estimator.

Lemma 7. If the conditions of Theorem 1 and Assumption 3 holds, then Σ−1
q Σ̂q

p−→ Iq+1.

5.3 Choosing q

It is possible to infer q in large samples provided that Assumption 2 is adjusted slightly to include

a rate condition on the eigenvalues that are small relative to their sum.

Assumption 2′. There exist a c > 0, ε > 0, and a fixed q ∈ {1, . . . , r − 1} such that

λ2
q+1∑r
`=1 λ

2
`

= O(r−ε) and
λ2
q∑r

`=1 λ
2
`

≥ c for all n.
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A “rule-of-thumb” choice of q based on Assumption 2′ is the unique q̂ for which

λ2
q̂+1∑r
`=1 λ

2
`

< cr and
λ2
q̂∑r

`=1 λ
2
`

≥ cr for some cr → 0.

Under Assumption 2′, q̂ = q in sufficiently large samples provided that cr is chosen so that crr
ε →

∞. For instance, this condition is satisfied when cr shrinks to zero slower than 1/ log(r). Note that
λ
2
q̂+1∑r
`=1 λ

2
`

can be thought of as summarizing inverse effective sample size for the weighted average θ̂q̂ of

b̂q̂+1, . . . , b̂r. Our Monte Carlo study suggests good performance of the asymptotic approximations

for effective sample sizes as low as 10, which is in line with statistics folklore (see, e.g., Lei, Bickel,

and Karoui, 2016, page 20). We leave the study of which particular rules of thumb work best across

a wide array of settings to future work.

Remark 11. For any given rule of thumb choice q̂, one may also report the more conservative interval

Ĉθq̂ ∪ Ĉ
θ
q̂+1. In our application we find that Ĉθ0 and Ĉθ1 are nearly indistinguishable in settings with

λ
2
1∑r

`=1 λ
2
`

≤ 1
10 , which suggest that little power may be lost from such a cautionary approach.

6 Verifying Conditions

We now revisit the examples of Section 2 and verify the conditions required to apply our theoretical

results. Appendix C6 provides further details on these calculations.

Example 1. (Coefficient of determination, continued) Recall that θ = σ2
Xβ = β′Aβ where A =

1
n

∑n
i=1(xi− x̄)(xi− x̄)′ and Ã = 1

n

(
Ik − nS

−1/2
xx x̄x̄′S−1/2

xx

)
. Supposing Assumption 1 holds, consis-

tency follows from Lemma 3 since λ` = 1
n for ` = 1, . . . , r where r = dim(xi)−1. Thus trace(Ã2) =

r/n2 ≤ 1/n = o(1). If r is fixed, then w′iwi = Pii− 1
n and Proposition 1 applies under the “textbook”

condition that maxi Pii = o(1). If r → ∞, then Proposition 2 applies if V[θ̂]−1 maxi(x̌
′
iβ)2 = o(1)

which follows if, e.g., maxi
1√
r

∑n
`=1|Mi`| = o(1) where Mi` = 1{i=`} − x

′
iS
−1
xx x`. Equality among

all eigenvalues excludes the conditions of Theorem 1. Inspection of the proofs reveals that As-

sumption 1(c), maxi(x
′
iβ)2 = O(1), can be dropped if maxi,` Pii(x

′
`β)2 = o(1) when r is fixed or if

maxi,j
|x′jβ|(1+

∑n
`=1|Mi`|)√
r

= o(1) when r →∞.

Example 2. (Analysis of covariance, continued) With no common regressors, this is a special case

of the previous example with r = N−1, Pii = T−1
g(i) and x̌i = 0. Assumption 1(b),(c) requires Tg ≥ 2

and maxg α
2
g = O(1). Proposition 1 applies if N is fixed and ming Tg → ∞, while Proposition 2

applies if N →∞. Theorem 1 cannot apply to this example.

To accomodate common regressors of fixed dimension, assume ‖δ‖2 + maxg,t‖xgt‖
2 = O(1) and

that 1
n

∑N
g=1

∑Tg
t=1(xgt − x̄g)(xgt − x̄g)

′ converges to a positive definite limit. This is a standard
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assumption in basic panel data models (see, e.g., Wooldridge, 2010, Chapter 10). Allowing such

common regressors does not alter our conclusions: Proposition 1 applies if N is fixed and ming Tg →
∞ since w′iwi ≤ Pii = T−1

g(i) + O(n−1), Proposition 2 applies if N → ∞ since
∑n

`=1|Mi`| = O(1),

and Theorem 1 cannot apply since nλ` ∈ [c1, c2] for ` = 1, . . . , r and some c2 ≥ c1 > 0 not

depending on n. All conclusions continue to hold if maxg,t α
2
g + ‖xgt‖

2 = O(1) is replaced with
maxg,t α

2
g+‖xgt‖

2

max{N,ming Tg}
= o(1) and σ2

α + 1
n

∑N
g=1

∑Tg
t=1‖xgt‖

2 = O(1).

Example 3. (Random coefficients, continued) Consider the second moment θ = 1
n

∑N
g=1 Tgγ

2
g ,

impose Assumption 1, and assume that maxg,t αg + γ2
g + z2

gt = O(1) and ming Szz,g ≥ c > 0

where Szz,g =
∑Tg

t=1(zgt − z̄g)
2. Note that ming Szz,g > 0 is equivalent to full rank of Sxx. The

N eigenvalues of Ã are λg = 1
n

1

T
−1
g Szz,g

for g = 1, . . . , N where the group indexes are ordered so

that λ1 ≥ · · · ≥ λN . Consistency follows from Lemma 3 if λ−1
1 = n

Szz,1
T1
→ ∞. If N is fixed and

ming Szz,g →∞, then Proposition 1 applies. If
√
N
T1
Szz,1 →∞, then Proposition 2 applies.

If
√
N
T2
Szz,2 →∞,

√
N
T1
Szz,1 = O(1), and Szz,1 →∞, then Theorem 1 applies with q = 1. In this

case, γ1 is weakly identified relative to its influence on θ and the overall variability of θ̂. This is

expressed through the condition
√
N
T1
Szz,1 = O(1) where Szz,1 is the identification strength of γ1,

T1 provides the influence of γ1 on θ and 1/
√
N indexes the variability of θ̂.

Example 4. (Two-way fixed effects, continued) In this final example, we focus on whether Propo-

sition 2 or Theorem 1 applies. Our target parameter is the variance of firm effects θ = σ2
ψ =

1
n

∑N
g=1

∑Tg
t=1

(
ψj(g,t) − ψ̄

)2
and we restrict attention to the first-differenced setting of (7) with

J →∞. The eigenvalues of Ã satisfy the equality

λ` =
1

nλ̇J+1−`
for ` = 1, . . . , J

where λ̇1 ≥ · · · ≥ λ̇J are the non-zero eigenvalues of the matrix E1/2LE1/2. L is the normalized

Laplacian of the employer mobility network and connectedness of the network is equivalent to full

rank of Sxx (see Appendix C6 for precise definitions). E is a diagonal matrix of employer specific

“churn rates”, i.e., the number of moves in and out of a firm divided by the total number of

employees in the firm. E and L interact in determining the eigenvalues of Ã. In Example 3, the

quantities {T−1
` Szz,`}

N
`=1 played a role directly analogous to the churn rates in E, so in this example

we focus on L by assuming that the diagonal entries of E are all equal.

The worker-firm mobility network is strongly connected if
√
JC → ∞ where C ∈ (0, 1] is the

isoperimetric (or Cheeger’s) constant for the mobility network (see, e.g., Mohar, 1989; Jochmans

and Weidner, 2016). Intuitively, C measures the most severe “bottleneck” in the network, where

a bottleneck is a set of movers that upon removal from the data splits the mobility network into

two disjoint subnetworks. The severity of the bottleneck is governed by the number of movers
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removed divided by the smallest number of movers in either of the two disjoint subnetworks. It

follows from the Cheeger inequality λ̇J ≥ 1−
√

1− C2 (Chung, 1997, Theorem 2.3) and the bound
λ
2
1∑J

`=1 λ
2
`

≤ 4(
√
Jλ̇J)−2 that a strongly connected network yields q = 0, which rules out application

of Theorem 1. Furthermore, a strongly connected network is sufficient (but not necessary) for

consistency of θ̂ as
∑J

`=1 λ
2
` ≤ J

n (
√
nλ̇J)−2.

When
√
JC is bounded, the network is weakly connected and can contain a sufficiently thin

bottleneck that a linear combination of the elements of ψ is estimated imprecisely relative to its

influence on θ and the total uncertainty in θ̂. We illustrate this in our empirical application by

considering two provinces with limited mobility between them. In this setting, the between-province

difference in average firm effects is weakly identified relative to the two within-province variances

of firm effects, which yields one very large eigenvalue ratio indicating that q = 1.

7 Application

Consider again the problem of estimating variance components in a two-way fixed effect model of

wage determination. Card et al. (2018) note that plug-in wage decompositions of the sort introduced

by AKM typically attribute 15%-25% of overall wage variance to variability in firm fixed effects.

Given the bias and potential sampling variability associated with plug-in estimates, however, it has

been difficult to infer whether firms play a significantly greater role in the determination of wage

inequality in some areas than others.

In this section, we use Italian social security records to formally investigate whether the variance

components that comprise the AKM decomposition differ across two provinces from the Veneto

region of Northeast Italy. The first province, Rovigo, has a large share of firms in the agriculture

and fishing sectors and is often viewed as a lagging area within the Veneto region (Istat, 2001).

The second province, Belluno, is a wealthy area that is intensive in manufacturing and contains

one of the largest clusters of eyeglass production in Europe (Whitford, 2001). The two provinces

lie at opposite ends of the Veneto region (Figure A.1 provides a map) and mobility between them

is rather infrequent. We examine below how this limited inter-provincial mobility influences the

finite sample behavior of variance component estimates in a sample that pools the two provinces

together.

7.1 Data

The data used in our analysis come from the Veneto Worker History (VWH) file, which provides

the annual earnings and days worked associated with each employment spell taking place in the

Veneto region over the years 1975-2001 covered by the Italian social security system. For each

worker, we retain the unique spell yielding the highest earnings in that year. Further detail on
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our processing of these records is provided in Appendix A. We limit our sample to worker-firm

spells taking place in the years 1999 and 2001, which provides us a three year horizon over which

to measure job mobility.

Table 1 reports the number of person-year observations available among workers employed by

firms in each province’s largest connected set along with the largest connected set for the pooled

sample composed of the union of the two provinces. Many firms in each sample are very weakly

connected to one another: the average number of movers per firm ranges from approximately 2.0

in Rovigo to 2.5 in Belluno. Our leave-out approach requires that the firm effects remain estimable

after removing any single observation. The second panel of Table 1 enforces this requirement by

restricting to firms that remain connected when any single mover is dropped (see Appendix B1 for

computational details).3 Pruning the sample in this way drops roughly half of the firms but less

than a third of the movers, and has little effect on the mean or variance of wages.

In the pruned “leave-out connected set” the average number of movers per firm ranges from

approximately 2.8 in Rovigo to nearly 3.8 in Belluno. Our theoretical results suggest that not only

the number of moves, but also their distribution throughout the mobility network, influences the

behavior of variance component estimates. The leave-out connected set of the union of the two

provinces is portrayed in Figure 1. As the illustration makes clear, worker mobility is much more

common within than between provinces. Theorem 1 and the discussion in Section 6 show that inter-

provincial bottlenecks in the mobility network can generate weak identification and non-normality,

a phenomenon we explore in detail below.

7.2 Estimates

Consider the following simplified version of the AKM model introduced in Section 2:

ygt = αg + ψj(g,t) + εgt. (g = 1, . . . , N, t = 1, 2)

The bottom of Table 1 reports for each sample the maximum leverage (maxi Pii) of any person-

year observation (see Appendix B for computational details). While our pruning procedure ensures

maxi Pii < 1, it is noteworthy that maxi Pii is still quite close to one, indicating that certain

person-year observations remain influential on the parameter estimates. This finding highlights

the inadequacy of asymptotic approximations that require the dimensionality of regressors to grow

3In Rovigo’s original leave-out connected set, both the largest eigenvalue ratio λ
2
1∑r

`=1 λ
2
`

and weight maxi w
2
i1

associated with the variance of firm effects were above 0.1, leading to a potential violation of the conditions
in Theorem 1. To reduce maxi w

2
i1 we located the mover with the highest w2

i1 and removed the stayers (i.e.,
non-movers) from the two firms this individual moved between. This extra pruning substantially decreased

maxi w
2
i1, leading to an effective sample size for b̂1 of 50. Point estimates were qualitatively similar when

these stayers were retained in the data.
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slower than the sample size, which would lead the maximum leverage to tend to zero.

Table 2 reports three sets of estimators of the AKM variance decomposition: the naive plug-

in estimator θ̂PI originally proposed by AKM, the homoscedasticity-corrected estimator θ̂HO of

Andrews et al. (2008), and the leave-out estimator θ̂. The plug-in estimator finds that the variance

of firm effects in Rovigo accounts for roughly half of the total variance of wages in that province,

while in Belluno the firm effect variability accounts for only 16% of overall wage variance. Although

the Belluno sample is larger, variability in firm effects account for 41% of the variance of wages in

the pooled Rovigo-Belluno sample, which indicates a substantial between-province component of

firm variability.

Are these patterns driven by biases attributable to estimation error? Applying the homoscedas-

tic correction of Andrews et al. (2008) shrinks the estimated variances of firm effects by roughly

10% in Rovigo and 30% in Belluno. The leave-out estimator, in turn, yields comparably sized

decreases in the estimated firm effect variance relative to the homoscedastic correction, suggesting

the presence of substantial heteroscedasticity in these samples. The leave-out estimates indicate

that firm effect variability accounts for 36% of the variance of wages in Rovigo but only 8% of the

variance in Belluno. Because the standard errors for the estimated firm effect variances are fairly

small, we can conclude with some confidence that there is much more firm effect variability present

in Rovigo than Belluno.

The estimated firm effect variance in the pooled Rovigo-Belluno sample is notably less precise

than the province-specific estimates, which suggests that the between-province component of vari-

ance may be weakly identified. Applying the results in Remark 9, we show in Appendix Table A.1

that the difference in person-year weighted mean firm effects between Belluno and Rovigo is 0.260

with a corresponding standard error of 0.094. Evidently, the Belluno employers pay higher wages

than those in Rovigo, but there is substantial uncertainty regarding the size of this differential.

Plug-in estimates of the person effect variance suggest person effects are more dispersed in

Rovigo than Belluno. Applying the homoscedastic-correction reduces the magnitude of the person

effect variance in both provinces but preserves their ranking. The leave-out estimator yields addi-

tional downward corrections and the associated standard errors suggest that Rovigo does in fact

have a larger person effect variance than Belluno.

Plug-in estimates of the covariance between worker and firm effects are negative in both

provinces. When converted to correlations, these figures suggest there is mild negative assorta-

tive matching of workers to firms. Applying the homoscedasticity correction leads the covariances

to change sign in both Rovigo and Belluno but not in the pooled sample. In all cases, however,

the homoscedasticity-corrected estimates indicate very small correlations between worker and firm

effects. By contrast, the leave-out estimator finds a rather strong positive correlation of 0.154 in

Belluno and 0.220 in Rovigo, indicating the presence of non-trivial positive assortative matching

between workers and firms. Interestingly, the leave-out estimate of worker-firm correlation in the
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pooled sample is only .047, indicating that the between-province component of covariance remains

negative after correction. Corroborating this interpretation, we show in Appendix Table A.1 that

the difference in mean person effects between Belluno and Rovigo is -0.102 with an associated

standard error of 0.094. While Belluno has higher paying firms than Rovigo, our estimates suggest

Belluno may actually have lower quality workers.

Finally, we examine the overall fit of the two-way fixed effects model using the coefficient of

determination. The naive plug-in R2 estimator suggests the two-way fixed effects model explains

more than 90% of wage variation in each region. Homoscedasticity-correcting the R2 yields the

adjusted R2 measure of Theil (1961). In Rovigo, the adjusted R2 measure indicates that the two-

way fixed effects model explains roughly 92% of the variance of wages, which is quite close to the

figures reported in Card et al. (2013) for the German labor market. In Belluno, however, the model

is found to explain only 85% of the variance. Applying the leave-out estimator yields very minor

changes in estimated explanatory power relative to the homoscedasticity-corrected estimates. In

sum, the two-way fixed effects model appears to provide a very comprehensive statistical summary

of wage structure in the Italian data, even after accounting for the “over-fitting” that results from

estimating many parameters.

7.3 Inference

Table 3 considers more carefully the problem of conducting inference on the variance of firm effects.

The top panel of Table 3 reports 95% confidence intervals that arise from assuming either q =

0 or q = 1. While the former interval employs a normal approximation, the latter allows for

weak identification. We also report an estimate of the curvature parameter κ used to construct

the weak identification robust interval. In both Rovigo and Belluno, κ is estimated to be quite

small. Accordingly, the two sets of confidence intervals are nearly identical, suggesting a normal

approximation would be accurate. In the pooled Rovigo-Belluno sample, however, we find κ = 1.45

indicating that normality is a poor approximation. Accordingly, setting q = 1 in this sample widens

the confidence interval substantially. The fact that the two province’s weak identification robust

confidence intervals do not overlap implies, assuming independence, that we can reject the null

hypothesis that the firm effect variances are the same in Belluno and Rovigo at the (1−0.952)×100 =

9.75% level.

Theorem 1 suggested two important diagnostics for the asymptotic behavior of our estimator

are the Lindeberg statistic maxi w
′
iqwiq and the top eigenvalue share λ

2
1∑r

`=1 λ
2
`

. The bottom panel of

Table 3 reports these statistics for each sample. Rovigo has a relatively large top eigenvalue, while

the pooled Rovigo-Belluno sample has an enormous top eigenvalue share of 0.88. From Theorem 1,

a large top eigenvalue indicates the leave-out estimator depends heavily on the square of a particular

linear combination of estimated firm effects, and will therefore exhibit a substantial χ2 component.
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The relatively small top eigenvalue found in Belluno indicates the large sample distribution of

the leave-out firm effect variance estimator is, in that sample, likely to be well approximated by a

normal, which is in accord with the behavior of our two empirical confidence intervals. Interestingly,

the sum of squared eigenvalues is quite small in all three samples, indicating that the leave out

estimator is consistent even in the pooled Rovigo-Belluno sample.

One can think of the Lindeberg statistic maxi w
2
i1 as an inverse measure of effective sample size

available for estimating the linear combination of firm effects associated with the largest eigenvalue.

The effective sample size in Rovigo is 1
.02 = 50. In Belluno, by contrast, the effective sample size

is less than 4. Fortunately, the top eigenvalue share in Belluno is small, suggesting that mistakes

in estimating the relevant linear combination of firm effects are not particularly consequential for

inference.

7.4 Monte Carlo Experiments

We turn now to studying the finite sample behavior of our leave-out estimator of the variance of

firm effects and the performance of our asymptotic inference procedures. Data were generated from

the following first differenced model based on equation (7):

∆yg = ∆f ′gψ̂ + ∆εg, (g = 1, . . . , N)

Here ψ̂ gives the J × 1 vector of OLS firm effect estimates, rescaled to have the province-specific

leave-out variance reported in Table 2. The errors ∆εg were drawn independently from a student

t distribution with 5 degrees of freedom. Each error was then rescaled to match the smoothed

leave-out estimate σ̃2
i of that observation’s error variance (see Appendix B for details).

For each province, we sampled from the above DGP 10,000 times holding firm assignments fixed

at their realized sample values. We then applied our leave-out estimator to each simulated dataset

and constructed the corresponding 95% confidence intervals. Table 4 shows that the leave-out

estimator is unbiased and that the standard error estimate is also approximately unbiased. The

coverage rates exhibited by the normal theory confidence interval are, in each province, close to

their nominal level. By contrast, the weak identification robust confidence intervals exhibit very

mild over-coverage. Evidently, Belluno’s large Lindeberg statistic does not, in this case, compromise

inference.

In the pooled Rovigo-Belluno sample, the normal theory confidence interval undercovers sub-

stantially, which is to be expected given the large top eigenvalue in this sample. Applying the

weak identification robust interval again generates very mild over-coverage despite the fact that

the effective sample size available for the top eigenvector is only 1/.0378 ≈ 26. In sum, the Monte

Carlo experiments suggest confidence intervals predicated on the assumption that q = 1 can provide
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adequate size control even when the realized mobility network exhibits very severe bottlenecks.

8 Conclusion

We proposed a new estimator of quadratic forms with applications to several areas of economics.

This estimator is finite sample unbiased and consistent in the presence of heteroscedasticity and

many regressors, including in circumstances where “automatic” bias correction procedures fail.

A new distributional theory was developed highlighting the potential for this estimator to exhibit

deviations from normality when certain linear combinations of coefficients are imprecisely estimated.

We also developed a feasible inference procedure that is uniformly asymptotically valid in the

presence of weakly identified nuisance parameters.

In an application to Italian worker-firm data, we demonstrated that ignoring heteroscedasticity

can substantially bias conclusions about the relative contribution of workers, firms, and worker-firm

sorting to wage inequality. We also found that bottlenecks in the mobility network can generate

quantitatively important deviations from normality. Our inference procedure captured these devia-

tions accurately with a choice of q = 1. In cases where the mobility network was strongly connected,

we found that choosing q = 0 yielded accurate inference.
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Rovigo Belluno Rovigo	  -‐	  Belluno
[1] [2] [3]

Largest	  Connected	  Set
Number	  of	  Observations 43,330 63,462 106,964
Number	  of	  Movers 5,061 7,921 13,022
Number	  of	  Firms 2,579 3,131 5,732

Mean	  Log	  Daily	  Wage 4.6089 4.7482 4.6917
Variance	  Log	  Daily	  Wage 0.1560 0.1256 0.1427

Leave	  Out	  Sample	  (Pruned)
Number	  of	  Observations 32,848 56,044 89,666
Number	  of	  Movers 3,531 6,414 9,972
Number	  of	  Firms 1,282 1,684 2,974

Mean	  Log	  Daily	  Wage 4.6015 4.7636 4.7047
Variance	  Log	  Daily	  Wage 0.1674 0.1245 0.1465

Maximum	  Leverage	  (	  	  	  	  	  	  	  ) 0.9241 0.9085 0.9236

Table	  1:	  Comparing	  Samples	  and	  Places

Note:	  Data	  in	  each	  column	  corresponds	  to	  person	  year	  observations	  in	  the	  years	  1999	  and	  2001	  belonging	  to	  
a	  given	  province	  in	  Veneto,	  where	  the	  last	  column	  represents	  the	  union	  of	  the	  Rovigo	  and	  Belluno	  provinces.	  
Largest	  connected	  set	  represents	  the	  largest	  sample	  in	  which	  all	  the	  associated	  firms	  are	  connected.	  The	  
leave	  out	  sample	  is	  the	  largest	  connected	  set	  such	  that	  every	  firm	  remains	  connected	  after	  removing	  any	  
given	  edge	  (mover),	  see	  Appendix	  B	  for	  details.	  We	  further	  pruned	  this	  sample	  by	  removing	  any	  stayer	  
belonging	  to	  the	  firms	  associated	  with	  the	  mover	  with	  the	  highest	  lindeberg	  condition.	  	  A	  mover	  is	  defined	  as	  
a	  worker	  who	  switched	  firm	  between	  the	  year	  1999	  and	  2001.	  Statistics	  on	  log	  daily	  wages	  are	  person-‐year	  
weighted.	  Source:	  VWH	  dataset.



Rovigo Belluno Rovigo	  -‐	  Belluno
[1] [2] [3]

Variance	  of	  Log	  Wages 0.1674 0.1245 0.1465

Variance	  of	  Firm	  Effects
Plug	  in	  (AKM) 0.0831 0.0198 0.0607
Homoscedatic	  Correction 0.0722 0.0136 0.0538
Leave	  Out 0.0609 0.0103 0.0442

(0.0083) (0.0011) (0.0110)
Covariance	  Firm,	  Worker	  Effects
Plug	  in	  (AKM) -‐0.0072 -‐0.0039 -‐0.0126
Homoscedatic	  Correction 0.0030 0.0018 -‐0.0038
Leave	  Out 0.0138 0.0046 0.0028

(0.0043) (0.0009) (0.0076)
Variance	  of	  Worker	  Effects
Plug	  in	  (AKM) 0.0926 0.1035 0.1032
Homoscedatic	  Correction 0.0758 0.0883 0.0859
Leave	  Out 0.0647 0.0853 0.0792

(0.0043) (0.0011) (0.0038)
Correlation	  of	  Worker,	  Firm	  Effects
Plug	  in	  (AKM) -‐0.0821 -‐0.0863 -‐0.1593
Homoscedatic	  Correction 0.0409 0.0511 -‐0.0555
Leave	  Out 0.2202 0.1538 0.0469

Coefficient	  of	  Determination
Plug	  in	  (AKM) 0.9637 0.9280 0.9463
Homoscedatic	  Correction 0.9213 0.8490 0.8850
Leave	  Out 0.9153 0.8414 0.8797

Table	  2:	  Variance	  Decomposition

Note:	  Results	  for	  each	  province	  computed	  using	  the	  leave	  out	  connected	  sample	  described	  in	  the	  bottom	  panel	  of	  Table	  1.	  
Numbers	  in	  parentheses	  refer	  to	  asymptotic	  standard	  errors	  calculated	  using	  the	  ``high	  rank''	  variance	  estimator	  described	  in	  
Section	  5.2.	  All	  variance	  components	  are	  person-‐year	  weighted.	  



Rovigo Belluno Rovigo	  -‐	  Belluno
[1] [2] [3]

Variance	  of	  Firm	  Effects
Leave	  out	  estimate 0.0609 0.0103 0.0442

(0.0083) (0.0011) (0.0110)

95%	  Confidence	  Intervals	  -‐	  Strong	  id	  (q=0) [0.0446;	  0.0771] [0.0081;	  0.0125] [0.0226;	  0.0658]
95%	  Confidence	  Intervals	  -‐	  Weak	  id	  (q=1) [0.0455;	  0.0795] [0.0081;	  0.0127] [0.0288;	  0.0786]
Curvature	  (	  	  	  	  	  )	   0.1792 0.1372 1.4448

Diagnostics
Eigenvalue	  Ratio	  -‐	  1	   0.1062 0.0465 0.8866
Eigenvalue	  Ratio	  -‐	  2 0.0623 0.0439 0.0132
Eigenvalue	  Ratio	  -‐	  3 0.0499 0.0348 0.0081

Lindeberg	  Condition	  (	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ) 0.0200 0.2681 0.0378
Sum	  of	  Squared	  Eigenvalues 0.0006 0.0002 0.0001

Table	  3:	  Inference	  on	  Variance	  of	  Firm	  Effects

Note:	  Results	  for	  each	  province	  computed	  using	  the	  leave	  out	  connected	  sample	  described	  in	  bottom	  panel	  of	  Table	  1.	  To	  compute	  the	  
standard	  error,	  we	  fit	  a	  local	  linear	  estimator	  using	  a	  tricube	  kernel	  with	  nearest	  neighbors	  with	  bandwidth	  set	  to	  n^(-‐1/3)	  where	  n	  is	  the	  
number	  of	  person-‐year	  observations,	  see	  Appendix	  B	  for	  details.	  Lindeberg	  condition	  and	  weak	  id	  confidence	  intervals	  calculated	  assuming	  
that	  q=1.	  Curvature	  reports	  the	  maximal	  curvature	  defined	  in	  Section	  6.1,	  see	  Appendix	  C5.2	  for	  further	  details.	  Critical	  values	  to	  compute	  the	  
weak	  identification	  confidence	  intervals	  of	  Andrews	  and	  Mikusheva	  (2016)	  based	  on	  10,000	  simulations.	  Eigenvalue	  ratio	  -‐	  1	  	  is	  equal	  to	  the	  
ratio	  of	  the	  squared	  largest	  eigenvalue	  relative	  to	  the	  sum	  of	  all	  squared	  eigenvalues.	  Similarly	  for	  Eigenvalue	  Ratio	  -‐	  2	  and	  Eigenvalue	  Ratio	  -‐	  
3	  which	  use	  the	  second	  and	  third	  largest	  eigenvalues	  respectively.



[1] [2] [3]
Rovigo Belluno Rovigo	  -‐	  Belluno

True	  Variance	  of	  the	  Firm	  Effects 0.0609 0.0103 0.0442

Mean,	  Standard	  deviation	  across	  Simulations
Leave	  Out	   0.0608 0.0103 0.0443

(0.0073) (0.0010) (0.0116)

Plug-‐in	  (AKM) 0.0841 0.0196 0.0619
(0.0073) (0.0010) (0.0116)

Homoscedatic	  Correction 0.0735 0.0134 0.0524
(0.0073) (0.0010) (0.0116)

Mean	  estimated	  Standard	  Error 0.0074 0.0010 0.0108

Coverage	  Rate	  at	  95%
Leave	  Out	  -‐	  Strong	  Id	  (q=0)	   0.9479 0.9469 0.8535
Leave	  Out	  -‐	  Weak	  Id	  (q=1) 0.9634 0.9701 0.9736

Table	  4:	  Montecarlo	  Results	  for	  the	  Variance	  of	  Firm	  Effects

Note:	  Monte	  Carlo	  results	  based	  on	  the	  observed	  network	  structure	  of	  the	  listed	  provinces	  in	  the	  years	  1999	  and	  2001.	  Data	  were	  generated	  by	  summing	  the	  plug-‐
in	  firm	  effects	  estimates	  (rescaled	  to	  match	  the	  leave-‐out	  variance	  estimate)	  and	  a	  t-‐distributed	  error	  with	  5	  degrees	  of	  freedom	  and	  observation	  specific	  variance	  
equal	  to	  the	  smoothed	  estimate	  described	  in	  Appendix	  B,	  see	  Section	  7	  for	  details.	  	  Leave	  Out,	  AKM,	  Homoscedastic	  correction	  report	  the	  average	  of	  the	  estimate	  
of	  the	  firm	  effects	  across	  simulations	  for	  the	  three	  different	  methodologies.	  ``Leave	  Out	  -‐	  Strong	  Id"	  builds	  a	  confidence	  interval	  using	  the	  leave	  out	  estimate	  of	  the	  
variance	  of	  firms	  effects,	  the	  normal	  distribution	  quantile	  and	  the	  estimated	  standard	  error	  of	  the	  variance	  of	  firm	  effects	  under	  the	  high	  rank	  case	  described	  in	  
Section	  5.2	  	  ``Leave	  Out	  -‐	  Weak	  Id"	  builds	  a	  confidence	  interval	  using	  the	  Andrews	  and	  Mikusheva	  (2016)	  methodology	  with	  q=1.	  Number	  of	  Monte	  Carlo	  draws	  is	  
fixed	  at	  10,000.



Figure 1: Realized Mobility Network: Rovigo and Belluno

Firms in Rovigo

Within−Rovigo mobility

Firms in Belluno

Within−Belluno mobility

Between province mobility

Note: This figure provides a visualization of the design matrix Sxx for the pruned Rovigo-Belluno sample

considered in the application (see Table 1 for reference). The graph is plotted in the statistical software R

using the igraph package and the large-scale graph layout (DrL).
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Appendix A: Data and Additional Results

Here we describe the data used for our application and report some additional results.

A1 Veneto Workers History

Our data come from the Veneto Workers History (VWH) file, which provides social security based

earnings records on annual job spells for all workers employed in the Italian region of Veneto at

any point between the years 1975 and 2001. Each job-year spell in the VWH lists a start date,

an end date, the number of days worked that year, and the total wage compensation received by

the employee in that year. The earnings records are not top-coded. We also observe the gender of

each worker and several geographic variables indicating the location of each employer. See Card,

Devicienti, and Maida (2014) and Serafinelli (2017) for additional discussion and analysis of the

VWH.

To construct the person-year panel used in our analysis, we follow closely the sample selection

procedures described in Card, Heining, and Kline (2013). First, we drop employment spells in

which the worker’s age lies outside the range 20-60. The average worker in this sample has 1.21

jobs per year. To generate unique worker-firm assignments in each year, we restrict attention to

spells associated with “dominant jobs” where the worker earned the most in each corresponding

year. From this person-year file, we then exclude workers that (i) report a daily wage less than

5 real euros or have zero days worked (1.5% of remaining person-year observations) (ii) report a

log daily wage change one year to the next that is greater than 1 in absolute value (6%) (iii) are

employed in the public sector (10%) or (iv) have more than 10 jobs in any year or that have gender

missing (0.1%).
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Firm	  Effects
Avg.	  Firm	  Effects	  (Belluno) -‐0.0189
Avg.	  Firm	  Effects	  (Rovigo) -‐0.2787
Difference 0.2598

(0.0941)

Lindeberg	  Condition	  	  (	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ) 0.0381

Person	  Effects
Avg.	  Person	  Effects	  (Belluno) 4.7823
Avg.	  Person	  Effects	  (Rovigo) 4.8854
Difference -‐0.1020

(0.0941)

Lindeberg	  Condition	  	  (	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ) 0.0381

Appendix	  Table	  A.1:	  Provincial	  Differences	  in	  Mean	  Effects

Note:	  This	  table	  compares	  average	  firm	  and	  person	  effects	  across	  provinces	  in	  the	  
pooled	  Rovigo-‐Belluno	  sample.	  Standard	  error	  for	  the	  difference	  between	  the	  two	  
means	  is	  reported	  in	  parentheses	  and	  computed	  as	  described	  in	  Remark	  9.	  Lindeberg	  
condition	  computed	  assuming	  A=vv'	  where	  v	  is	  such	  that	  v'*β	  returns	  the	  person-‐
year	  weighted	  difference	  in	  fixed	  effect	  means	  across	  the	  two	  provinces.	  See	  text	  for	  
details.	  Source:	  VWH	  dataset.



Figure A1: The seven provinces of Veneto
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Appendix B: Computation

In this Appendix we describe computation of the leave out estimator θ̂, with an emphasis on the

application to two-way fixed effects models discussed in Section 7.

B1 Leave One Out Connected Set

Computing θ̂ requires Pii < 1 (see Assumption 1). In the two-way fixed effects model of Section

(7.2), this condition requires that the bipartite graph formed by worker-firms links remains con-

nected when any one worker is removed. This condition fails if a firm has only one worker that

either left or joined the firm across the two periods.

Below we describe an algorithm that prunes the data to ensure that Pii < 1. The input data

is a connected bipartite graph G where vertices are represented by workers and firms and edges

correspond to the realization of a match between a worker and a firm (see Jochmans and Weidner,

2016; Bonhomme, 2017, for discussion). In practice, one typically starts with a G corresponding to

the largest connected component of the graph (see, e.g., Card et al., 2013).

Algorithm 1 Leave One Out Connected Set

1: function PruningNetwork(G) . G ≡ Connected graph from bipartite network of
firms and workers

2: a = 1
3: while a > 0 do
4: Gbad = ∅.
5: for g = 1, . . . N do
6: Add g to Gbad if removal of worker g from G disconnects the resulting graph.
7: end for
8: a = |Gbad|.
9: Update G by finding the largest connected set after removing workers in Gbad.

10: end while
11: end function

The output of this algorithm is a bipartite graph where removal of any given worker does not

break the connectedness of the graph. To find such graph, the algorithm iteratively searches for,

and then removes, workers that represent articulation points in G. This can be done very efficiently

using the Boost Graph Library available for Matlab.
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B2 Leave One Out Matrices

Leave one out estimation hinges on computation of the leverage scores Pii = x′iS
−1
xx xi ∀i = 1, . . . n.

Fast computation of these scores is an active area of research in computer science (see, e.g., the

discussion in Drineas et al., 2012). We use recent advances in this area to illustrate how these

scores can be computed efficiently in two-way fixed effects models.

Without loss of generality, we can write the model of Section 7.2 as

yi = x′iβ + εi

where xi = (d′i,−ḟ
′
i)
′, ḟi = (1j(g,t)=0, . . . ,1j(g,t)=J)′, β = (α′,−ψ′)′ and ψ = (ψ0, . . . , ψJ).

It is easy to verify that in this case Sxx = L̇ where L̇ is the weighted Laplacian associated with

the bipartite graph G formed by workers and firms. This implies that:

Pii = x′iS
†
xxxi

= L̇†g,g + L̇†N+j(g,t),N+j(g,t) − 2L̇†g,N+j(g,t)

= (eg − eN+j(g,t))
′
L̇†(eg − eN+j(g,t))

= (eg − eN+j(g,t))
′
L̇†L̇L̇†(eg − eN+j(g,t))

= ||XL̇†(eg − eN+j(g,t))||
2

where ei represents the elementary unit vector with a coordinate of 1 in position i, X stacks all

x′i’s and S†xx is the Moore-Penrose inverse of the Laplacian matrix. The last line of the above

expression reveals that Pii represents a particular pairwise distance between column vectors of the

matrix Z = XL̇†. Obtaining these distances however involves computation of a very large block

diagonal linear system that has a total of k × n unknowns, where here k = N + J , i.e. the total

number of workers and firms observed in the data.4

There are (at least) two possible approaches to solving this system. The first is to parallelize

computation of Pii (and Bii) across different cores. We pursue this idea when computing estimates

for the three provinces shown in our application. The second idea, which is more suitable when

working with millions of workers and firms, is to work with a randomized “sketch” of the matrix Z

and use this sketch to estimate the differences between rows of the matrix Z. This is the intuition

behind the Johnson-Lindenstrauss Lemma (JLL) presented below

Lemma B2.1. (Achlioptas, 2001). Given fixed vectors z1, . . . , zk ∈ Rn and ε > 0, let Q ∈ Rp×n be

a random Rademacher matrix with entries ±1/
√
p with p ≥ 24 log(k)/ε2. Then with probability at

4An alternative would be to consider the QR decomposition of the matrix Sxx. However, as described in
Drineas et al. (2012), the QR decomposition runs in O(nk2) time and may therefore become intractable in
large datasets.
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least 1− 1/k

(1− ε)||zκ − zκ′ ||
2 ≤ ||Qzκ −Qzκ′ ||

2 ≤ (1 + ε)||zκ − zκ′ ||
2

for all pairs (κ, κ′) with κ, κ′ ∈ {1, . . . , k}.

The JLL implies that we can ε-approximate all the statistical leverages in our bipartite graph by

solving only a logarithmic number (p) of linear systems. Algorithm 2 below is taken from Spielman

and Srivastava (2011) and illustrates how to approximate the statistical leverages associated with

the model of Section (7.2). To implement the solution step listed in row 7, we take advantage

of the “CMG” solver of Koutis et al. (2011) for symmetric diagonally dominant linear systems.

Computing ≈ 234, 000 firm effects and ≈ 2, 200, 000 worker effects took approximately 11 seconds

with the CMG solver on a 64 core machine with 256 GB of dedicated RAM. By contrast, using the

method suggested in Card et al. (2013) took approximately 34 seconds.

Algorithm 2 Fast Approximation of Statistical Leverages

1: function leverage(x,ε)
2: Let p = 24 log k

ε
2 .

3: Construct Q as a random ±1/
√
p Rademacher matrix of dimensions p× n.

4: Compute Υ = QX.
5: Let ξκ denote the κ’th row of Υ.
6: for κ = 1, . . . p do
7: Solve the system: L̇z̃κ = ξ′κ
8: end for
9: Build Z̃ = (z̃′1, . . . , z̃

′
p)

10: Approximate each Pii as: ||Z̃(eg − eN+j(g,t))||2
11: end function

Our procedure also requires computation of Bii = x′iS
−1
xxAS

−1
xx xi. When A is used to estimate

variance components, then we can rewrite Bii as

Bii = (eg − eN+j(g,t))
′
L̇†AL̇†(eg − eN+j(g,t)) = ||A1/2L̇†(eg − eN+j(g,t))||

2

Hence, one can approximate Bii via a simple modification of Algorithm 2. When A is used to

estimate covariance components, we can rewrite A as in Lemma 3, that is A = A′1A2. Note that a

simple corollary of the JLL is that inner products are preserved under random projections (see for

instance Corollary 2 in Arriaga and Vempala, 1999).

We conclude by noting that our discussion has focused on the special case where xi includes

only firm and worker indicators. When controls are included in the model, it is possible to obtain

the leverage scores in an efficient way by applying the algorithm of Drineas et al. (2012), which

generalizes Algorithm 2 to a setting with arbitrary design matrix Sxx.
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B2.1 Quality of The Approximation

Table B1 reports estimates of the variance of firm effects in three samples of different sizes belonging

to the VWH dataset. Two computational methods are considered: one based on Algorithm 2 and

one that parallelizes computation of (Pii, Bii) across multiple cores and provides an exact solution.

Overall, both the maximum leverage and the leave one out estimate of the variance of firm effects

based on random projections turns out to be very close to their exact counterparts. Importantly,

both the quality of the approximation to the variance of the firm effects and the computation time

saved relative to the exact method appear to improve as we estimate the model in larger bipartite

networks.

B2.2 Computation of Standard Errors

Here we describe the standard errors reported in Table 3. To compute σ̃2
i and therefore V̂[θ̂], we

fit a local linear regression of the leave one out variances σ̂2
i on normalized values of (Bii, Pii). We

used a tricube kernel and a common bandwidth of n−1/3 neighbors. This is performed in Matlab

using the lfit routine. In practice, we find that different choices of the kernel and/or bandwidth

deliver very similar results.
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Belluno-‐Rovigo Venice Veneto
[2] [2] [3]

Leave	  One	  Out	  Sample
Number	  of	  Observations 351,029 736,362 4,512,718
Number	  of	  Movers 26,372 49,200 370,287
Number	  of	  Firms 6,218 12,447 76,971

Time	  to	  compute	  Pii	  and	  Bii	  (seconds)
Exact	  Method 88 517 34,969
Algorithm	  2 30 75 679

Variance	  of	  firm	  effects
Exact	  Method 0.0300 0.0361 0.0293
Algorithm	  2 0.0298 0.0361 0.0293

Maximum	  Leverage
Exact	  Method 0.7028 0.7385 0.7807
Algorithm	  2 0.7030 0.7529 0.7958

Table	  B1:	  Evaluating	  Computation	  Methods

Note:	  Each	  column	  represents	  data	  taken	  from	  a	  different	  set	  of	  provinces	  in	  Veneto.	  Column	  1	  is	  the	  union	  of	  the	  
provinces	  in	  Belluno-‐Rovigo	  in	  the	  years	  1997-‐2001	  (T=5).	  Column	  2	  is	  the	  province	  of	  Venice	  in	  the	  years	  1997-‐
2001.	  Column	  3	  is	  the	  entire	  region	  of	  Veneto	  observed	  in	  the	  years	  1997-‐2001.	  Exact	  method	  refers	  to	  an	  algorithm	  
that	  parallelizes	  computation	  of	  Pii	  and	  Bii	  across	  multiple	  cores.	  Algorithm	  2	  uses	  the	  Johnson	  Lindestrauss	  Lemma	  
to	  find	  these	  two	  terms	  via	  a	  simulation	  method	  setting	  ε=0.01,	  see	  Appendix	  B	  for	  details.	  Calculations	  computed	  
on	  64	  cores	  machine	  with	  256	  GB	  of	  dedicated	  memory.	  Source:	  VWH	  dataset.



Appendix C: Proofs

The following contains all technical details and proofs that where left out of the main paper. All

material is presented in the order it appears in the main paper and under the same headings.

C1 Unbiased Estimation of Variance Components

Lemma C1.1. It follows from the Sherman-Morrison-Woodbury formula that the two representa-

tions of θ̂ given in (1) and (2) are numerically identical, i.e., that

β̂′Aβ̂ −
n∑
i=1

Biiσ̂
2
i =

n∑
i=1

yix̃
′
iβ̂−i

whenever Sxx has full rank and maxi Pii < 1.

Proof. The Sherman-Morrison-Woodbury formula states that if Sxx has full rank and Pii < 1, then

S−1
xx +

S−1
xx xix

′
iS
−1
xx

1− x′iS
−1
xx xi

=
(
Sxx − xix

′
i

)−1
.

Furthermore, we have that x̃′iS
−1
xx xi = xiS

−1
xxAS

−1
xx xi = Bii so

yix̃
′
iβ̂−i = yix̃

′
i

(
Sxx − xix

′
i

)−1∑
6̀=i
x`y` = yix̃

′
iS
−1
xx

∑
`6=i

x`y` +
yix̃
′
iS
−1
xx xix

′
iS
−1
xx

1− x′iS
−1
xx xi

∑
`6=i

x`y`

= yix̃
′
iβ̂ −Biiy

2
i + yiBii x

′
i

S−1
xx

1− x′iS
−1
xx xi

∑
`6=i

x`y`︸ ︷︷ ︸
=x
′
iβ̂−i

= yix̃
′
iβ̂ −Biiyi(yi − x

′
iβ̂−i)

where the last expression equals yix̃
′
iβ̂ − Biiσ̂

2
i . This finishes the proof since β̂′Aβ̂ =

∑n
i=1 yix̃

′
iβ̂.

In the above the Sherman-Morrison-Woodbury formula was also used to establish that

x′iβ̂−i = x′i
(
Sxx − xix

′
i

)−1∑
` 6=i

x`y` = x′i
S−1
xx

1− x′iS
−1
xx xi

∑
`6=i

x`y`,

and from this it follows that yi − x
′
iβ̂−i =

yi − x
′
iβ̂

1− Pii
as claimed in the paper.

C1.1 Relation To Existing Approaches

Next we show that the bias of θ̂HO is a function of the covariation between σ2
i and (Bii, Pii).

54



Lemma C1.2. The bias of θ̂HO is

σ
nBii,σ

2
i

+ SB
n

n− k
σ
Pii,σ

2
i

where

σ̄2 =
1

n

n∑
i=1

σ2
i , SB =

n∑
i=1

Bii, σ
nBii,σ

2
i

=

n∑
i=1

Bii(σ
2
i − σ̄

2), σ
Pii,σ

2
i

=
1

n

n∑
i=1

Pii(σ
2
i − σ̄

2).

Proof. Since σ̂2 = 1
n−k

∑n
i=1(yi − x

′
iβ̂)2 = 1

n−k
∑n

i=1

∑n
`=1Mi`εiε` we get that

E[θ̂HO]− θ =

n∑
i=1

Biiσ
2
i −

(
n∑
i=1

Bii

)
1

n− k

n∑
i=1

Miiσ
2
i

=

n∑
i=1

Bii(σ
2
i − σ̄

2)− SB
1

n− k

n∑
i=1

Mii(σ
2
i − σ̄

2)

= σ
nBii,σ

2
i

+ SB
n

n− k
σ
Pii,σ

2
i
.

C1.2 Finite Sample Properties

Here we provide a restatement and proof of Lemmas 1 and 2 together with a characterization of

the finite sample distribution of θ̂ which was excluded from the main text.

Lemma C1.3. Recall that θ∗ = β̂′Aβ̂ −
∑n

i=1Biiσ
2
i .

1. If maxi Pii < 1, then E[θ̂] = θ.

2. If εi ∼ N (0, σ2
i ), then θ∗ =

∑r
`=1 λ`

(
b̂2` − V[b̂`]

)
and b̂ ∼ N

(
b,V[b̂]

)
where

b = Q′S1/2
xx β and V[b̂] =

n∑
i=1

wiw
′
iσ

2
i .

3. If maxi Pii < 1 and εi ∼ N (0, σ2
i ), then θ̂ =

∑rC
`=1 λ` (C)

(
z2
` − V``

)
where Z ∼ N (µ, V ),

µ = Q′CXβ, V = Q′CΩQC , C = (Ci`)i,`, Ω = diag(σ2
1, . . . , σ

2
n), and C = QCDCQ

′
C is a

spectral decomposition of C such that DC = diag(λ1(C), . . . , λrC (C) and rC is the rank of C.

Proof of Lemma C1.3. First note that β̂′Aβ̂ =
∑n

i=1

∑n
`=1Bi`yiy` and σ̂2

i = yi(yi − x′iβ̂−i) =
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yiM
−1
ii

∑n
`=1Mi`y`, so

θ̂ =

n∑
i=1

n∑
`=1

Bi`yiy` −BiiM
−1
ii Mi`yiy`

=

n∑
i=1

n∑
`=1

(
Bi` − 2−1Mi`

(
BiiM

−1
ii +B``M

−1
``

))
yiy` =

n∑
i=1

∑
` 6=i

Ci`yiy`.

The errors are mean zero and uncorrelated across observations, so

E[θ̂] =

n∑
i=1

∑
6̀=i
Ci`x

′
iβx
′
`β =

n∑
i=1

n∑
`=1

Bi`x
′
iβx
′
`β −BiiM

−1
ii Mi`x

′
iβx
′
`β = θ,

since
∑n

i=1

∑n
`=1Bi`xix

′
` = A and

∑n
`=1Mi`x` = 0. This shows the first claim of the lemma.

Recall the spectral decomposition Ã = QDQ′ and definition that b̂ = Q′S1/2
xx β̂ which satisfies

that b̂ ∼ N (E[b̂],V[b̂]) when εi ∼ N (0, σ2
i ). We have that

θ∗ =

r∑
`=1

λ`

(
b̂2` − V[b̂`]

)
since

β̂′Aβ̂ = β̂′S1/2
xx ÃS

1/2
xx β̂ = b̂′Db̂ =

r∑
`=1

λ`b̂
2
` ,

and
n∑
i=1

Biiσ
2
i = trace(BΩ) = trace(AV[β̂]) = trace(DV[b̂]) =

r∑
`=1

λ`V[b̂`].

where B = (Bi`)i,`. This shows the second claim of the lemma.

The matrix C is is well-defined as miniMii > 0. Define ŷ = Q′C(y1, . . . , yn)′ which satisfies that

ŷ ∼ N (µ, V ) when εi ∼ N (0, σ2
i ). As for the second claim we have that

θ̂ = y′Cy = ŷ′DC ŷ =

rC∑
`=1

λ`(C)ŷ2
` ,

so the third claim follows from the observation that Cii = 0 for all i, so that
∑

` λ` (C)V`` =

trace(CΩ) = 0.

C1.3 Consistency

The next result provides a restatement and proof of Lemma 3.

56



Lemma C1.4. 1. If A is positive semi-definite, (i) θ = O(1),

(ii) trace(Ã2) =

r∑
`=1

λ2
` = o(1),

and Assumption 1 holds, then θ̂ − θ p→ 0.

2. If A is non-definite then write A = A′1A2 for some A1, A2. If Θ` = β′A′`A`β satisfies (i) and

(ii) for ` = 1, 2, then θ̂ − θ p→ 0.

Proof of Lemma 3. Suppose that A is positive semi-definite. The difference between θ̂ and θ is

θ̂ − θ = 2
n∑
i=1

n∑
`=1

Bi`x
′
`βεi +

n∑
i=1

∑
`6=i

Bi`εiε` +
n∑
i=1

Bii(ε
2
i − σ̂

2
i ),

and each term has mean zero so we show that their variances are small in large samples. The

variance of the first term is

4
n∑
i=1

(
n∑
`=1

Bi`x
′
`β

)2

σ2
i ≤ 4 max

i
σ2
i β
′X ′B2Xβ = 4 max

i
σ2
i β
′AS−1

xxAβ

≤ 4 max
i
σ2
i θλ1 = o(1)

where B = (Bi`)i,`, the last inequality follows from positive semi-definiteness of A, and the last

equality follows from (i) θ = O(1) and (ii) λ1 ≤ trace(Ã2)1/2 = o(1). The variance of the second

term is

2
n∑
i=1

∑
` 6=i

B2
i`σ

2
i σ

2
` ≤ 2 max

i
σ4
i

n∑
i=1

n∑
`=1

B2
i` = 2 max

i
σ4
i trace(Ã2) = o(1).

Finally, the variance of the third term is

n∑
i=1

(
n∑
`=1

M−1
ll B``Mi`x

′
`β

)2

σ2
i + 2

n∑
i=1

∑
`6=i

M−2
ii B

2
iiM

2
i`σ

2
i σ

2
`

≤ 1

c2 max
i
σ2
i max

i
(x′iβ)2

n∑
i=1

B2
ii +

2

c
max
i
σ4
i

n∑
i=1

B2
ii = o(1)

where miniMii ≥ c > 0 and
∑n

i=1B
2
ii ≤ trace(Ã2) = o(1). This shows the first claim of the lemma.

When A is non-definite, we write A = A′1A2 and note that

β′AS−1
xxAβ = β′A′1A2S

−1
xxA

′
2A1β ≤ Θ1λ1(Ã2) and trace(Ã2) ≤ trace(Ã2

1)1/2trace(Ã2
2)1/2
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where Ã` = S−1/2
xx A′kAkS

−1/2
xx for ` = 1, 2 and λ1(Ã2) is the largest eigenvalue of Ã2. Thus consis-

tency of θ̂ follows from Θ1 = O(1), trace(Ã2
1) = o(1), and trace(Ã2

2) = O(1).

C2 Examples

All mathematical discussions of the examples are collected in C6.

C3 Comparison to Jackknife Estimators

For this special case of example 2 we have that A = IN
N and Sxx = TIN so that Ã = IN

NT and

trace(Ã2) = 1

NT
2 = o(1) which implies consistency of θ̂. Similarly we have that the bias of θ̃ is

1

n

N∑
g=1

TgV[α̂g] =
1

n

N∑
g=1

σ2 =
σ2

T
where α̂g =

1

Tg

Tg∑
t=1

ygt.

The same types of calculations lead to the other biases reported in the paper.

For this special case of example 3 we have that A =

[
0 0

0 IN
N

]
and Sxx =

[
TIN 0

0 IN
∑T

t=1 x
2
t

]
which implies that trace(Ã2) = 1

N
(∑T

t=1 x
2
t

)2 = o(1) and therefore consistency of θ̂. Similarly we

have that the bias of θ̃ is

1

n

N∑
g=1

TgV[δ̂g] =
σ2∑T
t=1 x

2
t

where δ̂g =

∑Tg
t=1 xtygt∑T
t=1 x

2
t

.

The same types of calculations lead to the other biases reported in the paper. Now for the numerical

example

(x1, x2, . . . , xT ) = (−1, 2, 0, . . . , 0,−1)

we have that

T∑
t=1

x2
t = 6,

∑
s 6=t

(xs − x̄−t)
2 =


2− 4

T−1 if t = 2,

5− 1
T−1 if t ∈ {1, T},

6 otherwise .

,

T/2∑
t=1

(xt − x̄1)2 = 2

T/2∑
t=1

x2
t − T x̄

2
1 = 5− 2

T
,

T∑
t=T/2+1

(xt − x̄2)2 = 1− 2

T
,
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so we get

E[θ̂PJK]− θ =
Tσ2∑T
t=1 x

2
t

− σ2 (T − 1)

T

T∑
t=1

1∑
s 6=t(xs − x̄−t)

2

= σ2T

6
− σ2T − 1

T

(
2

5− 1
T−1

+
1

2− 4
T−1

+
T − 3

6

)

= σ2

(
2

3
− 4

6T
− T − 1

T

2

5− 1
T−1

− T − 1

T

1

2− 4
T−1

)

= − 7

30
σ2 +O

(
1

T

)
and E[θ̂SPJK]− θ =

2σ2∑T
t=1 x

2
t

− σ2

2
∑T/2

t=1(xt − x̄1)2
+

σ2

2
∑T

t=T/2+1(xt − x̄2)2

= σ2

(
1

3
− 1

10− 4
T

− 1

2− 4
T

)
= − 8

30
σ2 +O

(
1

T

)
,

where the biases are increasing functions of T .

C4 Distribution Theory

This appendix provides restatements and proofs of Propositions 1 and 2 and Theorem 1. The

proofs of the last two results relies on an auxiliary lemma which extends a central limit theorem

given in Sølvsten (2017).

C4.1 The low rank case

Proposition C4.1. If Assumption 1 holds, maxiw
′
iwi = o(1), and r is fixed, then

θ̂ =
r∑
`=1

λ`

(
b̂2` − V[b̂`]

)
+ op(V[θ̂]1/2) and V[b̂]−1/2(b̂− b) d−→ N (0, Ir)

where b = Q′S1/2
xx β, and V[b̂] =

∑n
i=1wiw

′
iσ

2
i .

Proof of Proposition C4.1. The proof has two steps: First, we write θ̂ as
∑r

`=1 λ`

(
b̂2` − V[b̂`]

)
plus

an approximation error which is of smaller order than V[θ̂]. Second, we use Lyapounov’s CLT to

show that b̂ ∈ Rr is jointly asymptotically normal.
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Decomposition and Approximation

From the proof of Lemma 2 it follows that

θ̂ =
r∑
`=1

λ`

(
b̂2` − V[b̂`]

)
+

n∑
i=1

Bii(σ
2
i − σ̂

2
i )

where we now show that the mean zero random variable
∑n

i=1Bii(σ
2
i − σ̂

2
i ) is op(V[θ̂]1/2).

We have

n∑
i=1

Bii(σ̂
2
i − σ

2
i ) =

n∑
i=1

Bii

n∑
`=1

M−1
ii x

′
iβMi`ε` (C1)

+

n∑
i=1

Bii(ε
2
i − σ

2
i ) (C2)

+

n∑
i=1

Bii
∑
` 6=i

M−1
ii Mi`εiε`. (C3)

The variances of these three terms are

(C1) :
n∑
`=1

σ2
`

(
n∑
i=1

Mi`BiiM
−1
ii x

′
iβ

)2

≤ max
i
σ2
i

n∑
i=1

B2
iiM

−2
ii (x′iβ)2

≤ max
i
σ2
i max

i
(x′iβ)2M−2

ii ×
n∑
i=1

B2
ii,

(C2) :
n∑
i=1

B2
iiV[ε2

i ] ≤ max
i

E[ε4
i ]×

n∑
i=1

B2
ii,

(C3) :
n∑
i=1

∑
` 6=i

(
B2
iiM

−2
ii +BiiM

−1
ii B`M

−1
``

)
M2
i`σ

2
i σ

2
j ≤ 2 max

i
σ4
iM
−2
ii ×

n∑
i=1

B2
ii.

Furthermore, we have that

V[θ̂]−1
n∑
i=1

B2
ii ≤ max

i
w′iwiV[θ̂]−1

r∑
l=1

λ2
l (Ã) ≤ max

i
w′iwi max

i
σ−4
i = o(1),

so each of the three variances are of smaller order than V[θ̂].
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Asymptotic Normality

Next we show that all linear combinations of b̂ are asymptotically normal. Let v ∈ Rr be a non-

random vector with v′v = 1. Lyapunov’s CLT implies that V[v′b̂]−1/2v′(b̂− b) d−→ N(0, 1) if

V[v′b̂]−2
n∑
i=1

E[ε4
i ](v

′Q′S−1/2
xx xi)

4 = V[v′β̃]−2
n∑
i=1

E[ε4
i ](v

′wi)
4 = o(1). (C4)

We have that maxiw
′
iwi = o(1) implies (C4) since maxi(v

′wi)
2 ≤ maxiw

′
iwi and

n∑
i=1

(v′wi)
2 = 1, V[v′β̃]−1 ≤ max

i
σ−2
i = O(1), max

i
E[ε4

i ] = O(1),

by definition of wi and Assumption 1.

A central limit theorem

The proofs of Proposition 2 and Theorem 1 is based on the following lemma. Let {vn,i}i,n be a

triangular array of row-wise independent random variables with E[vn,i] = 0 and V[vn,i] = σ2
n,i, let

{ẇn,i}i,n be a triangular array of non-random weights that satisfy
∑n

i=1 ẇ
2
n,iσ

2
n,i = 1 for all n, and

let (Wn)n be a sequence of symmetric non-random matrices in Rn×n with zeroes on the diagonal

that satisfy 2
∑n

i=1

∑
6̀=iW

2
n,i`σ

2
n,iσ

2
n,` = 1. For simplicity, we drop the subscript n on vn,i, σ

2
n,i,

ẇn,i and Wn. Define

Sn =
n∑
i=1

ẇivi and Un =
n∑
i=1

∑
`6=i

Wi`viv`.

Lemma C4.1. If maxi E[v4
i ] + σ−2

i = O(1),

(i) max
i
ẇ2
i = o(1), (ii) max

`
λ2
` (W ) = o(1),

then (Sn,Un)′
d−→ N (0, I2).

This lemma extends the main result of Appendix S.2 in Sølvsten (2017) to allow for {vi}i to

be an array of non-identically distributed variables and presents the conclusion in a way that is

tailored to the application in this paper. The proof requires no substantially new ideas compared

to Sølvsten (2017), but we give it at the end of this section for completeness.
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Proposition C4.2. If

(i) V[θ̂]−1 max
i

(
(x̃′iβ)2 + (x̌′iβ)2

)
= o(1), (ii)

λ2
1∑r

`=1 λ
2
`

= o(1),

and Assumption 1 holds, then V[θ̂]−1/2(θ̂ − θ) d−→ N (0, 1).

C4.2 The high rank case

Proof of Proposition 2. The proof involves two steps: First, we decompose θ̂ into a weighted sum

of two terms of the type described in Lemma C4.1. Second, we use Lemma C4.1 to show joint

asymptotic normality of the two terms. The conclusion that θ̂ is asymptotically normal is immediate

from there.

Decomposition

The difference between θ̂ and θ is

θ̂ − θ =

n∑
i=1

(
2x̃′iβ − x̌

′
iβ
)
εi +

n∑
i=1

∑
` 6=i

Ci`εiε`,

where these two terms are uncorrelated and have variances

VS =

n∑
i=1

(2x̃′iβ − x̌
′
iβ)2σ2

i and VU = 2

n∑
i=1

∑
` 6=i

C2
i`σ

2
i σ

2
` .

Thus we write V[θ̂]−1/2(θ̂ − θ) = ω1Sn + ω2Un where

Sn = V
−1/2
S

n∑
i=1

(
2x̃′iβ − x̌

′
iβ
)
εi, Un = V

−1/2
U

n∑
i=1

∑
`6=i

Ci`εiε`,

ω1 =

√
VS/V[θ̂], ω2 =

√
VU/V[θ̂].

Asymptotic Normality

We will argue along converging subsequences. Move to a subsequence where ω1 converges. If the

limit is zero, then V[θ̂]−1/2(θ̂−θ) = ω2Un+op(1) and it follows from Result C4.2 in the next section

and Proposition 2(ii) that θ̂ is asymptotically normal. Thus we consider the case where the limit

of ω1 is nonzero.
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In the notation of Lemma C4.1 we have

ẇi =

(
2x̃′iβ − x̌

′
iβ
)

V
1/2
S

and Wi` =
Ci`

V
1/2
U

.

For Lemma C4.1(i) we have

max
i
ẇ2
i ≤ 4ω−1

1 max
i

(x̃′iβ)2 + (x̌′iβ)2

V[θ̂]
= o(1),

where the last equality follows from Proposition 2(i) and the nonzero limit of ω1.

For Lemma C4.1(ii) we show instead that trace(W 4) = o(1). It can be shown that for all n,

trace(C4) ≤ cU · trace(B4) = cU · trace(Ã4) ≤ cUλ
2
1 · trace(Ã2) and VU ≥ cL mini σ

4
i · trace(Ã), where

the finite and nonzero constants cU and cL do not depend on n (but depend on miniMii which is

bounded away from zero). Thus, Assumption 1 implies that

trace(W 4) ≤ cUλ
2
1 · trace(Ã2)

(cL mini σ
4
i · trace(Ã2))2 = O

(
λ2

1

trace(Ã2)

)
= o(1)

where the last equality follows from Proposition 2(ii).

C4.3 The general case

Theorem C4.1. If maxi w
′
iqwiq = o(1), V[θ̂q]

−1 maxi

(
(x̃′iqβ)2 + (x̌′iqβ)2

)
= o(1), and Assumptions

1 and 2 holds, then

θ̂ =

q∑
`=1

λ`

(
b̂2` − V[b̂`]

)
+ θ̂q + op(V[θ̂]1/2)

where

V[(b̂′q, θ̂q)
′]−1/2

(
(b̂′q, θ̂q)

′ − E[(b̂′q, θ̂q)
′]
)

d−→ N
(
0, Iq+1

)
,

V[(b̂′q, θ̂q)
′] =

n∑
i=1

 wiqw
′
iqσ

2
i 2wiq

(∑
`6=iCi`qx

′
`β
)
σ2
i

2w′iq

(∑
6̀=iCi`qx

′
`β
)
σ2
i 4

(∑
`6=iCi`qx

′
`β
)2
σ2
i + 2

∑
`6=iC

2
i`qσ

2
i σ

2
`

 ,
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Ci`q = Bi`q − 2−1Mi`

(
M−1
ii Biiq +M−1

`` B``q

)
, and

Bi`q = x′iS
−1/2
xx ÃqS

−1/2
xx x` for Ãq = Ã−

q∑
`=1

λ`q`q
′
`,

x̃iq =

n∑
`=1

Bi`qx`, x̌iq =

n∑
`=1

Mi`M
−1
`` B``qx`,

Proof of Theorem C4.1. The proof involves two steps: First, we write θ̂ as the sum of (1a) a

quadratic function applied to b̂q, (1b) an approximation error which is of smaller order than V[θ̂],

and (2) a weighted sum of two terms, Sn and Un, of the type described in Lemma C4.1. Second,

we use Lemma C4.1 to show that (b̂′q,Sn,Un)′ ∈ Rq+2 is jointly asymptotically normal.

Decomposition and Approximation

We have that

θ̂ =

q∑
`=1

λ`(b̂
2
` − V[b̂`]) + θ̂q + op(V[θ̂]1/2)

θ̂q =
n∑
i=1

∑
6̀=i
Ci`qyiy`

since

β̂′Aβ̂ =

q∑
`=1

λ`b̂
2
` +

n∑
i=1

n∑
`=1

Bi`qyiy`

and
n∑
i=1

Biiσ̂
2
i =

n∑
i=1

Bii1σ
2
i +

n∑
i=1

Biiqσ̂
2
i +

n∑
i=1

Bii,−q(σ̂
2
i − σ

2
i )

=

q∑
`=1

λ`V[b̂`] +

n∑
i=1

Biiqσ̂
2
i + op(V[θ̂]1/2)

where Bii,−q = Bii − Biiq and it follows from maxi w
′
iqwiq = o(1) and the calculations in the proof

of Proposition 1 that the mean zero random variable
∑n

i=1Bii,−q(σ̂
2
i − σ

2
i ) is op(V[θ̂]1/2).

We will further center and rescale θ̂q by writing

V[θ̂q]
−1/2

(
θ̂q − E[θ̂q]

)
= ω1Sn + ω2Un
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where

Sn = V
−1/2
S

n∑
i=1

(
2x̃′iqβ − x̌

′
iqβ
)
εi, Un = V

−1/2
U

n∑
i=1

∑
`6=i

Ci`qεiε`,

VS =
n∑
i=1

(
2x̃′iqβ − x̌

′
iqβ
)2
σ2
i , VU = 2

n∑
i=1

∑
` 6=i

C2
i`qσ

2
i σ

2
` ,

ω1 =

√
VS/V[θ̂q], ω2 =

√
VU/V[θ̂q],

and Un is uncorrelated with both Sn and b̂q.

Asymptotic Normality

As in the proof of Proposition 2, we will argue along converging subsequences and therefore move

to a subsequence where ω1 converges. If the limit is zero, then the conclusion of the theorem follows

from Lemma C4.1 applied to (V[v′b̂q]
−1/2(v′b̂q − E[v′b̂q]),Un)′ for v ∈ Rq with v′v = 1. Thus we

consider the case where the limit of ω1 is nonzero.

Next we use Lemma C4.1 to show that(
v′b̂q − E[v′b̂q] + uSn

V[b̂q + uSn]1/2
,Un

)′
d−→ N (0, I2)

for any non-random (v′, u)′ ∈ Rq+1 with v′v + u2 = 1. In the notation of Lemma C4.1 we have

ẇi =
v′wiq + uV

−1/2
S

(
2x̃′iqβ − x̌

′
iqβ
)

V[b̂q + uSn]1/2
and Wi` =

Ci`q

V
1/2
U

.

A simple calculation shows that V[v′b̂q + uSn] ≥ mini σ
2
i � 0, so maxi ẇ

2
i = o(1) follows from

Theorem 1(i), Theorem 1(ii), and ω1 being bounded away from zero.

Similarly, we have as in the proof of Proposition 2 that

trace(C4
2 ) ≤ ctrace(B4

2) ≤ cλ2
q+1

r∑
`=q+1

λ2
`

V 2
U ≥ ω

−4
2 min

i
σ8
i trace(Ã2)2,

so it follows from Assumptions 1 and 2 that trace(W 4) = o(1).
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Proof of a central limit theorem

The proof of Lemma C4.1 uses the notation and verifies the conditions of Lemmas S2.1 and S2.2 in

Sølvsten (2017) referred to as SS2.1 and SS2.2, respectively. First, we show marginal convergence

in distribution of Sn and Un. Then, we show joint convergence in distribution of Sn and Un. Let

Vn = (v1, . . . , vn) where {vi}i are as in the setup of Lemma C4.1.

Before starting we note that maxi σ
−2
i = O(1) and 2

∑n
i=1

∑
` 6=iW

2
i`σ

2
i σ

2
` = 1 implies that

trace(W 2) =
∑n

i=1

∑
6̀=iW

2
i` = O(1) and therefore that

max
`
λ2
` (W ) = o(1)⇔ trace(W 4) = o(1).

Marginal Distributions

Result C4.1. maxi E[v4
i ] + σ−2

i = O(1),
∑n

i=1 ẇ
2
i σ

2
i = 1, and Lemma C4.1(i) implies that Sn

d−→
N (0, 1).

In the notation of SS2.1 we have,

∆0
iSn = ẇivi and E[Tn |Vn] = 1 + 1

2

n∑
i=1

ẇ2
i (v

2
i − σ

2
i ),

and it follows from maxi E[v4
i ] + σ−2

i = O(1),
∑n

i=1 ẇ
2
i σ

2
i = 1, and Lemma C4.1(i) that

E[Tn |Vn]
L1−→ 1,

n∑
i=1

E[(∆0
iSn)2] = 1,

n∑
i=1

E[(∆0
iSn)4] ≤ max

i

E[v4
i ]

σ2
i

ẇ2
i = o(1),

so Result C4.1 follows from SS2.1.

Result C4.2. maxi E[v4
i ] + σ−2

i = O(1), 2
∑n

i=1

∑
`6=iW

2
n,i`σ

2
n,iσ

2
n,` = 1, and Lemma C4.1(ii)

implies that Un
d−→ N (0, 1).

In the notation of SS2.1 we have,

∆0
iUn = 2vi

∑
6̀=i
Wi`v` and E[Tn |Vn] =

n∑
i=1

∑
`6=i

∑
k 6=i

(vi + σ2
i )Wi`Wikv`vk,

and

n∑
i=1

E[(∆0
iUn)2] = 2,

n∑
i=1

E[(∆0
iUn)4] ≤ 25 max

i
E[v4

i ]
2 max

i
σ−4
i max

i

∑
`6=i

W 2
i`,
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where maxi
∑
6̀=iW

2
i` ≤

√
trace(W 4) = o(1). Now, split E[Tn |Vn]− 1 into three terms

an =
n∑
i=1

∑
` 6=i

σ2
iW

2
i`(v` + v2

` − σ
2
` )

bn = 2

n∑
i=1

∑
6̀=i

∑
k 6=i,`

σ2
kW`kWikviv` +

n∑
i=1

∑
`6=i

W 2
i`vi(v

2
` − σ

2
` )

cn =
n∑
i=1

∑
` 6=i

∑
k 6=i,`

Wi`Wik(v
2
i − σ

2
i )v`vk.

Interlude: Convergence in L1

an, bn, and cn are a linear sum, a quadratic sum, and a cubic sum. We will need to treat similar sums

later, so we record some simple sufficient conditions for their convergence. For brevity, let
∑n

i 6=` =∑n
i=1

∑
6̀=i, and

∑n
i 6= 6̀=k =

∑n
i=1

∑
` 6=i
∑

k 6=i,`, etc. We use the notation ui = (vi1, vi2, vi3, vi4) ∈ R4

to denote independent random vectors in order that the result applies to combinations of vi and

v2
i − σ

2
i as in an, bn, and cn above. For the inferential results we will also treat quartic sums, so we

provide the sufficient conditions here.

Result C4.3. Let Sn1 =
∑n

i=1 ωivi1, Sn2 =
∑n

i 6=` ωi`vi1v`2, Sn3 =
∑n

i 6=`6=k ωi`kvi1v`2vk3, and

Sn4 =
∑n

i 6= 6̀=k 6=m ωi`kmvi1v`2vk3vm4 where the weights ωi, ωi`, ωi`k, and ωi`km are non-random.

Suppose that E[ui] = 0, maxi E[u′iui] = O(1).

1. If
∑n

i=1 ω
2
i = o(1), then Sn1

L1−→ 0.

2. If
∑n

i 6=` ω
2
i` = o(1), then Sn2

L1−→ 0.

3. If
∑n

i 6= 6̀=k ω
2
i`k = o(1), then Sn3

L1−→ 0.

4. If
∑n

i 6= 6̀=k 6=m ω
2
i`km = o(1), then Sn4

L1−→ 0.

Consider Sn3, the other results follows from the same line of reasoning. In the notation of SS2.2

we have,

∆0
iSn3 = vi1

∑
6̀=i

∑
k 6=i,`

ωi`kv`2vk3 + vi2
∑
` 6=i

∑
k 6=i,`

ω`ikv`1vk3 + vi3
∑
`6=i

∑
k 6=i,`

ω`kiv`1vk2.
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Focusing on the first term we have,

n∑
i=1

E

vi1∑
6̀=i

∑
k 6=i,`

ωi`kv`2vk3

2 ≤ max
i

E[u′iui]
3

n∑
i 6=`6=k

(
ω2
i`k + ωi`kωik`

)

≤ 2 max
i

E[u′iui]
3

n∑
i 6=` 6=k

ω2
i`k,

so the results follows from SS2.2,
∑n

i 6= 6̀=k ω
2
i`k = o(1), and the observation that the last bound also

applies to the other two terms in ∆0
iSn3.

Marginal Distributions, continued

To see how an
L1−→ 0, bn

L1−→ 0 and cn
L1−→ 0 follows from Result C4.3, let W̄i` =

∑n
k=1WikWk` and

note that trace(W 4) =
∑n

i=1

∑n
`=1 W̄

2
i`. We have

n∑
i=1

∑
`6=i

σ2
`W

2
i`

2

≤ max
i
σ4
i

n∑
i=1

W̄ 2
ii.

n∑
i=1

∑
6̀=i

∑
k 6=i,`

σ2
kW`kWik

2

≤ max
i
σ4
i

n∑
i=1

n∑
`=1

W̄ 2
i`

n∑
i=1

∑
`6=i

W 4
i` = O

(
max
i,`

W 2
i`

)
n∑
i=1

∑
6̀=i

∑
k 6=i,`

W 2
i`W

2
ik = O

max
i

∑
` 6=i

W 2
i`

 ,

all of which are o(1) as trace(W 4) = o(1).

Joint Distribution

Let (u1, u2)′ ∈ R2 be given and non-random with u2
1 + u2

2 = 1. Define Wn = u1Sn + u2Un.

Lemma C4.1 follows if we show that Wn
d−→ N (0, 1). In the notation of SS2.1 we have,

∆0
iWn = u1ẇivi + u22vi

∑
` 6=i

Wi`v`
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and

E[Tn |Vn] = u2
1

(
1 + 1

2

n∑
i=1

ẇ2
i (v

2
i − σ

2
i )

)
+ u2

2

n∑
i=1

∑
`6=i

∑
k 6=i

(vi + σ2
i )Wi`Wikv`vk

+ u1u23
n∑
i=1

∑
6̀=i

(v2
i + σ2

i )ẇiWi`vj .

The proofs of Result C4.1 and Result C4.2 showed that

n∑
i=1

E[(∆0
iWn)2] = O(1),

n∑
i=1

E[(∆0
iWn)4] = o(1)

and that the first two terms of E[Tn |Vn] converge to u2
1 + u2

2 = 1. Thus the lemma follows if we

show that the “conditional covariance”

3
n∑
i=1

∑
`6=i

(v2
i + σ2

i )ẇiWi`vj

converges to 0 in L1. This conditional covariance involves a linear and a quadratic sum so

n∑
i=1

∑
6̀=i
σ2
`w`Wi`

2

≤ max
i
σ4
i max

`
λ2
` (W )

n∑
i=1

ẇ2
i = O(max

`
λ2
` (W ))

n∑
i=1

∑
6̀=i
ẇ2
iW

2
i` ≤

n∑
i=1

∑
`6=i

W 2
i` max

i
ẇ2
i = O(max

i
ẇ2
i )

ends the proof.

C5 Inference

C5.1 Asymptotic Variance Estimation

Lemma C5.1. If the conditions of Proposition 1 holds, then V[b̂]−1V̂[b̂]
p−→ Ir.

Proof of Lemma C5.1. It suffices to show that

δ(v) :=
V̂[v′b̂]− V[v′b̂]

V[v′b̂]
= op(1)

for all nonrandom v ∈ Rr with v′v = 1.

Let v ∈ Rr be nonrandom with v′v = 1. As in the first step in the proof of Proposition 1 we
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have that δ(v) =
∑n

i=1wi(v)(σ̂2
i − σ

2
i ) is a mean zero variable which is op(1) if

∑n
i=1wi(v)4 = o(1)

where wi(v) = (v
′
wi)

2∑n
i=1 σ

2
i (v
′
wi)

2 . But this follows from

n∑
i=1

wi(v)4 ≤ max
i
σ−4
i max

i
w′iwi = o(1)

by Proposition 1(i), v′v = 1, and
∑n

i=1wiw
′
i = Ir.

Lemma C5.2. If the conditions of Proposition 2 and Assumption 3 holds, then V̂[θ̂]/V[θ̂]
p−→ 1.

Proof of Lemma C5.2. It suffices to show that

δ :=
V̂[θ̂]− V[θ̂]

V[θ̂]
= o(1).

where we have that

δ = 4V[θ̂]−1
n∑
i=1

∑
6̀=i
Ci`x

′
`β

2

(σ̃2
i − σ

2
i ) (C5)

+ 4V[θ̂]−1
n∑
i=1

∑
6̀=i
Ci`ε`

2

σ̃2
i − 2V[θ̂]−1

n∑
i=1

∑
` 6=i

C2
i`

(
σ̃2
i σ̃

2
` + σ2

i σ
2
`

)
(C6)

+ 8V[θ̂]−1
n∑
i=1

∑
6̀=i
Ci`x

′
`β

∑
`6=i

Ci`ε`

 σ̃2
i . (C7)

We proceed by showing that both the mean and variance of δ converge to zero and for this we rely

on the representation:

σ̃2(ω) =
n∑
i=1

ki(ω)σ̂2
i =

n∑
i=1

ki(ω)ε2
i +

n∑
`=1

(
n∑
i=1

ki(ω)M−1
ii x

′
iβ

)
Mi`ε`

+
n∑
i=1

∑
`6=i

ki(ω)M−1
ii Mi`εiε` (C8)
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from which it follows that

∣∣∣E [σ̃2(ω)
]
− σ2(ω)

∣∣∣ =

∣∣∣∣∣
n∑
i=1

ki(ω)(σ2(ωi)− σ
2(ω))

∣∣∣∣∣
≤ c

n∑
i=1

|ki(ω)|‖ωi − ω‖M (C9)

V[σ̃2(ω)] = O

(
n∑
i=1

ki(ω)2

)
(C10)

where the last equality follows from the calculations applied to (C1)–(C3) (with ki replacing Bii).

From (C9) we find that the mean of (C5) is of order

max
i

n∑
`=1

|k`(ωi)|‖ωi − ω`‖M = o(1)

and from (C8) we find that the variance of (C5) is of order

max
i

n∑
`=1

k`(ωi)
2 = o(1).

Similarly, we find from (C9) and (C10) that the mean of (C6) is of order

max
i

∣∣∣E [σ̃2(ωi)
]
− σ2(ωi)

∣∣∣+ V[σ̃2(ωi)] +

(
n∑
`=1

k`(ωi)
2

)1/2

= o(1),

and that the mean of (C7) is of order

max
i

(
n∑
i=1

k`(ωi)
2

)1/2

= o(1).

Now, the demeaned versions of (C6) and (C7) involve linear, quadratic, cubic, and quartic sums.

We have already treated versions of linear, quadratic and cubic sums in detail in the proof of

Lemma C4.1. Thus, we report here the calculations for the two quartic terms stemming from (C6)

(details for the remaining terms can be provided upon request):

n∑
i 6=`6=k 6=m

ωi`kmεiε`εkεm
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where ωi`km is either

4V[θ̂]−1
n∑
j=1

CjiCj`kk(ωj)M
−1
kk Mkm

or

2V[θ̂]−1
n∑
j=1

n∑
j
′
=1

C2
jj
′ki(ωj)M

−1
ii Mi`kk(ωj′)M

−1
kk Mkm.

Some calculations yield that
∑n

i 6=` 6=k 6=m ω
2
i`km is of order

trace(C4)

V[θ̂]
max
i

n∑
`=1

k`(ωi)
2 +

(
max
i

n∑
`=1

k`(ωi)
2

)2

= o(1)

in either case.

Lemma C5.3. If the conditions of Theorem 1 and Assumption 3 hold, then

Σ−1
q Σ̂q

p−→ Iq+1.

Proof of Lemma C5.3. The statements

V[b̂q]
−1V̂[b̂q]

p−→ Iq and
V̂[θ̂q]

V[θ̂q]

p−→ 1

follows by applying the arguments in Lemmas C5.1 and C5.2. Thus we focus on the remaining

claim that

δ(v) :=
Ĉ[v′b̂q, θ̂q]− C[v

′b̂q, θ̂q]

V[v′b̂q]
1/2V[θ̂q]

1/2

p−→ 0 where Ĉ[v′b̂q, θ̂q] = 2

n∑
i=1

v′wiq

∑
`6=i

Ci`qy`

 σ̃2
i

for all non-random v ∈ Rq with v′v = 1. The calculations and arguments used are repetitions of

those used to handle (C5) and (C6) so it follows from (C9) and (C10) that the expectation of δ(v)

is of order

max
i

n∑
`=1

|k`(ωi)|‖ωi − ω`‖M + max
i

(
n∑
i=1

k`(ωi)
2

)1/2

= o(1),

and the variance of δ(v) can similarly be shown to be of order o(1) by applying Result C4.3.
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C5.2 Confidence Intervals

Critical value function

For a given curvature κ > 0 and confidence level 1−α, the critical value function zκ is the square-

root of the (1− α)’th quantile of

min
− 2
κ
≤x≤0

√ 1

κ2 −
(

1

κ
+ x

)2

−
√
χ2
q

2

+

(
x−

√
χ2

1

)2

where χ2
q and χ2

1 are independently distributed. The critical value function at κ = 0 is the limit of

zκ as κ ↓ 0, which is the (1−α/2)’th quantile of a standard normal random variable. See Andrews

and Mikusheva (2016) for additional details.

Curvature

The confidence interval Ĉθq inverts hypotheses of the type H0 : θ = θ0 versus H1 : θ 6= θ0 based on

the value of the test statistic

min
bq ,θq :g(bq ,θq)=0

(
b̂q − bq

θ̂q − θq

)′
Σ̂−1

(
b̂q − bq

θ̂q − θq

)

where g(bq, θq) =
∑q

`=1 λ`b
2
q,` + θq − θ0 and bq = (bq,1, . . . , bq,q)

′. This testing problem depends on

the manifold

Ŝ =
{
x = Σ̂−1/2

q (bq, θq)
′ : g(bq, θq) = 0

}
for which we need an upper bound on the maximal curvature. To derive this upper bound we look

at the parameterization

x(ẏ) = Σ̂−1/2
q (ẏ1, . . . , ẏq, θ0 −

q∑
`=1

λ`ẏ
2
` )
′

which maps from Rq to Ŝ, is a homeomorphism, and has a Jacobian of full rank:

dx(ẏ) = Σ̂−1/2
q

[
diag(1, . . . , 1)

−2λ1ẏ1, . . . ,−2λqẏq

]
:= Zy
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κ̂, the curvature of Ŝ, is then given as κ̂ = maxẏ∈Rq κẏ

κẏ = sup
u∈Rq

‖(I − Pẏ)V (u� u)‖
‖Zẏu‖

2

where Pẏ = Zẏ(Z
′
ẏZẏ)

−1Z ′ẏ and V is the matrix of second derivatives of dx(ẏ)

V = Σ̂−1/2
q

[
0

−2λ1, . . . ,−2λq

]
.

Curvature when q = 1

In this case the maximization over u drops out and we have

κ̂ = max
y∈R

√
V ′V − (v

′
V )

2

v
′
v

v′v

where v = Σ̂−1/2
q (1,−2λ1ẏ)′ and V = Σ̂−1/2

q (0,−2λ1). The value ẏ = −
ρ̂
V̂[θ̂q ]

V̂[b̂1]
2λ1

is both a minimizer

of v′v and of (v′V )2, and it therefore leads to κ̂ = 2|λ1|V̂[b̂1]

V̂[θ̂q ]
1/2

(1−ρ̂2)
1/2 .

Curvature when q > 1

In this case we first maximize over ẏ and then over u. For a fixed u we want to find

max
ẏ∈Rq

√
V ′uVu − V

′
uPẏVu

v′u,ẏvu,ẏ

where Vu = Σ̂−1/2
q (0,−2

∑q
`=1 λ`u

2
` ), vu,ẏ = Σ̂−1/2

q (u′,−2u′Dqẏ)′ and Dq = diag(λ1, . . . , λq). The

value for ẏ that solves −2Dqẏ = V̂[b̂q]
−1Ĉ[b̂q, θ̂q] sets PẏVu = 0 and minimizes v′u,ẏvu,ẏ. Thus we

obtain

κ̂ =
2(

V̂[θ̂q]− Ĉ[b̂q, θ̂q]
′V̂[b̂q]

−1Ĉ[b̂q, θ̂q]
)1/2

max
u∈Rq

|u′Dqu|
u′V̂[b̂q]

−1u

=
2| ˙̇λ1(V̂[b̂q]

1/2DqV̂[b̂q]
1/2)|(

V̂[θ̂q]− Ĉ[b̂q, θ̂q]
′V̂[b̂q]

−1Ĉ[b̂q, θ̂q]
)1/2

where
˙̇
λ1(·) is the eigenvalue of largest magnitude.

74



Closed form representation of Ĉθ
1

The upper end of the interval is found by noting that maximization over a linear function in θ2

implies that the constraint must bind at the maximum, so we can reformulate the bivariate problem

as a univariate problem

max
ḃ1,θ2

{
λ1ḃ

2
1 + θ1 :

(
b̂1 − ḃ1
θ̂1 − θ1

)′
Σ̂−1

1

(
b̂1 − ḃ1
θ̂1 − θ1

)
≤ z2

κ̂

}

= max
ḃ1

λ1b
2
1 + θ̂1 − ρ̂

V̂[θ̂1]1/2

V̂[b̂1]1/2
(b̂1 − b1,±) +

(
V̂[θ̂1](1− ρ̂2)

)1/2
(
z2
κ̂ −

(b̂1 − b)
2

V̂[b̂1]

)1/2

where we are implicitly enforcing the constraint on ḃ1 that the term under the square-root is non-

negative. Thus we will find a global max in ḃ1 and note that it satisfies the constraint. The first

order condition is

2λ1b1,+ + ρ̂
V̂[θ̂1]1/2

V̂[b̂1]1/2
+
(
V̂[θ̂1](1− ρ̂2)

)1/2
b̂1−b1,+
V̂[b̂1](

z2
κ̂ −

(b̂1−b1,+)
2

V̂[b̂1]

)1/2
= 0

which after some rearrangement and squaring of both sides implies that

(b̂1 − b1,+)2

V̂[b̂1]
= (1− α̂+)z2

κ̂.

All solutions, b1,+, to this equation satisfies the non-negativity constraint since

(
z2
κ̂ −

(b̂1 − b)
2

V̂[b̂1]

)1/2

= zκ̂α̂
1/2
+ ≥ 0.

Inserting this in the first order condition yields the implicit solution

b+ = b̂1 + zκ̂

(
V̂[b̂1](1− â+)

)1/2

and upper bound of

f+(b1,+) = λ1b
2
1,+ + θ̂1 − ρ̂

V̂[θ̂1]1/2

V̂[b̂1]1/2
(b̂1 − b1,+) + zκ̂

(
V̂[θ̂1](1− ρ̂2)â+

)1/2
.

75



Rearranging and squaring the first order condition yields b1,+ as a solution to the quartic equation:

(b̂1 − ḃ1)2

V̂[b̂1]

1 +

sgn(λ1)κ̂ḃ1

V̂[b̂1]1/2
+

ρ̂√
1− ρ̂2

2 =

sgn(λ1)κ̂ḃ1

V̂[b̂1]1/2
+

ρ̂√
1− ρ̂2

2

z2
κ̂. (C11)

Thus the upper end of the confidence set can be found by maximizing f+ over the at most four real

solutions to the fourth order polynomial in (C11) that are also solutions to the first and second

order conditions

b1,+ = b̂1 + zκ̂

(
V̂[b̂1](1− â+)

)1/2

sgn(λ1)κ̂zκ̂ ≤ â
−3/2
+

(
1− ρ̂2

)
The same set of calculations yield that the lower end of the confidence set can be found by mini-

mizing

f−(b1,−) = λ1b
2
1,− + θ̂1 − ρ̂

V̂[θ̂1]1/2

V̂[b̂1]1/2
(b̂1 − b1,−)− zκ̂

(
V̂[θ̂1](1− ρ̂2)â−

)1/2

over the real solutions to (C11) that are also solutions to the first and second order conditions

b1,− = b̂1 − zκ̂
(
V̂[b̂1](1− â−)

)1/2

sgn(λ1)κ̂zκ̂ ≥ −â
−3/2
−

(
1− ρ̂2

)
.

Validity

Lemma C5.4. If Σ−1
q Σ̂q

p−→ Iq+1 and the conditions of Theorem 1 hold, then

lim inf
n→∞

P
(
θ ∈ Ĉθq

)
≥ 1− α.

Proof. The following two conditions are the inputs to the proof of Theorem 2 in Andrews and

Mikusheva (2016), from which it follows that

lim inf
n→∞

P
(
θ ∈ Ĉθq

)
= lim inf

n→∞
P

(
min

(ḃ
′
q ,θq)

′∈B

(
b̂q − ḃq

θ̂q − θq

)′
Σ̂−1
q

(
b̂q − ḃq

θ̂q − θq

)
≤ z2

κ̂

)
≥ 1− α

where B =
{

(ḃ′q, θq)
′ :
∑q

`=1 λ`ḃ
2
q,` + θq − θ = 0

}
and the last inequality follows from Theorem 2 in

Andrews and Mikusheva (2016).
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Condition (i):

Σ̂−1/2
q

(
(b̂′q, θ̂q)

′ − E[(b̂′q, θ̂q)
′]
)

d−→ N
(
0, Iq+1

)
,

which follows from Theorem 1 and Σ−1
q Σ̂q

p−→ Iq+1.

Condition (ii): The conditions of Lemma 1 in Andrews and Mikusheva (2016) are satisfied. To

verify this, take the manifold

S̃ =
{
ẋ ∈ Rq+1 : g̃(x) = 0

}
for

g̃(ẋ) = ẋ′Σ̂1/2
q

[
Dq 0

0 0

]
Σ̂1/2
q ẋ+ (2E[b̂q]

′, 1)

[
Dq 0

0 1

]
Σ̂1/2
q ẋ.

The curvature of S̃ is the same as that of Ŝ, g̃(0) = 0, and g̃ is continuously differentiable with a

Jacobian of rank 1. These are the conditions of Lemma 1 in Andrews and Mikusheva (2016). This

finishes the proof.

C6 Verifying Conditions

Example 1. The only non-immediate conclusions are that:

V[θ̂]−1 max
i

(x̃′iβ)2 = O

(
maxi(x

′
iβ)2/n2

mini σ
2
i trace(Ã2)

)
= O

(
maxi(x

′
iβ)2

r

)

V[θ̂]−1 max
i

(x̌′iβ)2 = O

(
maxi,jM

−2
jj

(
Pjj − 1

n

)2
(x′jβ)2 (

∑n
`=1|Mi`|)

2
/n2

mini σ
2
i trace(Ã2)

)

= O

(
maxi,j(x

′
jβ)2 (

∑n
`=1|Mi`|)

2

r

)
.

Example 2. We first derive the representations of σ̂2
α given in section 2. When there are no

common regressors, the representation in (4) follows from Bii = 1
nTg(i)

(
1− Tg(i)

n

)
and

σ̂2
g =

1

Tg

Tg∑
t=1

ygt

ygt − 1

Tg − 1

∑
s 6=t

ygs

 =
1

Tg

∑
i:g(i)=g

σ̂2
i
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which yields that

n∑
i=1

Biiσ̂
2
i =

1

n

N∑
g=1

(
1−

Tg
n

)
σ̂2
g .

With common regressors, it follows from the formula for block inversion of matrices that

X̃ ′ = AS−1
xx

[
D′

X ′

]
=

1

n

(D′ − d̄1′n) (I −X (X ′(I − PD)X ′
)−1

X ′(I − PD)
)

0


=

1

n

[
D′ − d̄1′n − Γ̂

′X ′(I − PD)

0

]

where D = (d1, . . . , dn)′, X = (xg(1)t(1), . . . , xg(n)t(n))
′, PD = DS−1

dd D
′, 1n = (1, . . . , 1)′, and Sdd =

D′D. Thus it follows that

x̃i =
1

n

(
di − d̄− Γ̂

′(xg(i)t(i) − x̄g(i))
0

)
.

The no common regressors claims are immediate. With common regressors we have

Pi` = T−1
g(i)1{g(i)=g(`)} + n−1(xg(i)t(i) − x̄g(i))

′W−1(xg(`)t(`) − x̄g(`)) = T−1
g(i)1{i=`} +O(n−1)

where W = 1
n

∑N
g=1

∑T
t=1(xgt − x̄g)(xgt − x̄g)

′ so Pii ≤ C < 1 in large samples. The eigenvalues of

Ã are equal to the eigenvalues of

1

n

(
IN − nS

−1/2
dd d̄d̄′S

−1/2
dd

)(
IN +

1

n
S

1/2
dd D

′XW−1X ′DS
−1/2
dd

)
which in turn satisfies that c1

n ≤ λ` ≤
c2
n for ` = 1, . . . , N − 1 and c2 ≥ c1 > 0 not depending on n.

w′iwi = O(Pii) so Proposition 1 applies when N is fixed and ming Tg →∞. Finally,

max
i

V[θ̂]−1(x̃′iβ)2 = O

(
maxg,t α

2
g + ‖xgt‖

2 1
n

∑n
i=1‖xg(i)t(i)‖

2σ2
α

N

)

max
i

V[θ̂]−1(x̌′iβ)2 = O

(
maxi,j(x

′
jβ)2 (

∑n
`=1|Mi`|)

2

N

)

and
∑n

`=1|Mi`| = O(1) so Proposition 2 applies when N →∞.

We finish this example with a setup where an unbalanced panel leads to a bias and inconsistency
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in θ̂HO. Consider

ygt = αg + εgt (g = 1, . . . , N, t = 1, . . . , Tg)

where N is even, (Tg = 2,E[ε2
gt] = 2σ2) for g ≤ N/2 and (Tg = 3,E[ε2

gt] = σ2) for g > N/2, and the

estimand is,

θ =
1

n

N∑
g=1

Tgα
2
g where n =

N∑
g=1

Tg =
5N

2
.

Here we have that Ã = IN/n and trace(Ã2) = N/n2 = o(1) as n → ∞ so the leave-out estimator

is consistent. Furthermore,

nBii = Pii =

1
2 , if i ≤ N,
1
3 , otherwise,

σ2
i =

2σ2, if i ≤ N,

σ2, otherwise,

so

E[θ̃]− θ =
n∑
i=1

Biiσ
2
i =

σ2

n

(
N +

N

2

)
=

3σ2

5
,

E[θ̂HO]− θ = σ
nBii,σ

2
i

+ SB
n

n−N
σ
Pii,σ

2
i

=
2σ2

50
+

2

3
× 2σ2

50
=
σ2

15
.

Example 3. Ã is diagonal with N diagonal entries of 1
n

Tg
Szz,g

, so λg = 1
n

Tg
Szz,g

for g = 1, . . . , N .

trace(Ã2) ≤ λ1
ming Szz,g

1
n

∑N
g=1 Tg = O(λ1). maxiw

′
iwi = maxg,t

(zgt−z̄g)
2

Szz,g
= o(1) when ming Szz,g →

∞. Furthermore, V[θ̂]−1 = O(n
2

N ), so

V[θ̂]−1 max
i

(x̃′iβ)2 = O

(
max
g,t

z2
gtδ

2
g

NSzz,g

)
= o(1),

and Mi` = 0 if g(i) 6= g(`) so

V[θ̂]−1 max
i

(x̌′iβ)2 = O

max
g

(
n
∑

i:g(i)=g Bii√
N

)2
 = O

max
g

(
Tg√
NSxx,g

)2
 = o(1)
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both under the condition that N →∞ and
√
NSxx,1
T1

. Used above:

Pi` = T−1
g(i)1{g(i)=g(`)} +

(zg(i)t(i) − z̄g(i))(zg(i)t(`) − z̄g(i))
Szz,g(i)

1{g(i)=g(`)}

Bii =
1

n

zg(i)t(i) − z̄g(i)
Szz,g(i)

Tg(i)

Szz,g(i)
.

Finally,

max
i

w′iqwiq = max
t

(z1t − z̄1)2

Szz,1
= o(1)

V[θ̂q]
−1 max

i
(x̃′iqβ)2 = O

(
max
g≥2,t

z2
gtδ

2
g

NSzz,g

)
= o(1),

V[θ̂q]
−1 max

i
(x̌′iqβ)2 = O

max
g≥2

(
Tg√
NSxx,g

)2
 = o(1)

under the conditions that
√
N
T2
Szz,2 →∞ and Szz,1 →∞. Thus, Theorem 1 applies when

√
N
T1
Szz,1 =

O(1).

Example 4. Let ḟi = (1{j(g,t)=0}, f
′
i)
′ = (1{j(g,t)=0},1{j(g,t)=1}, . . . ,1{j(g,t)=J})

′ and define the

following partial design matrices with and without dropping ψ0 from the model:

Sff =
n∑
i=1

fif
′
i , Sḟ ḟ =

n∑
i=1

ḟiḟ
′
i , S∆f∆f =

N∑
g=1

∆fg∆f
′
g, S∆ḟ∆ḟ =

N∑
g=1

∆ḟg∆ḟ
′
g,

where ∆ḟg = ḟi(g,2) − ḟi(g,1). Letting Ḋ be a diagonal matrix that holds the diagonal of S∆ḟ∆ḟ we

have that

E = ḊS−1

ḟ ḟ
and L = Ḋ−1/2S∆ḟ∆ḟ Ḋ

−1/2.

S∆ḟ∆ḟ is rank deficient with S∆ḟ∆ḟ1J+1 = 0 from which it follows that the non-zero eigenval-

ues of E1/2LE1/2 (which are the non-zero eigenvalues of S−1

ḟ ḟ
S∆ḟ∆ḟ ) are also the eigenvalues of

S∆f∆f (S−1
ff + 1J1

′
J

Sḟ ḟ ,11
). Finally, from the Woodbury formula we have that Aff is invertible with

A−1
ff = n(Sff − nf̄ f̄

′)−1 = n

(
S−1
ff + n

S−1
ff f̄ f̄

′S−1
ff

1− nf̄ ′S−1
ff f̄

)
= n

(
S−1
ff +

1J1
′
J

Sḟ ḟ ,11

)
,

80



so

λ` = λ`(AffS
−1
∆f∆f ) =

1

λJ+1−`(S∆f∆fA
−1
ff )

=
1

nλJ+1−`(E
1/2LE1/2)

.

With Ejj constant across j, we have that

λ2
1∑J

`=1 λ
2
`

=
λ̇−2
J∑J

`=1 λ̇
−2
`

≤ 4

(
√
Jλ̇J)2

since λ̇` ≤ 2 (Chung, 1997, Lemma 1.7). An algebraic definition of C is

C = min
X⊆{0,...,J}:

∑
j∈X Ḋjj≤ 1

2

∑J
j=0 Ḋjj

−
∑

j∈X
∑

k/∈X S∆ḟ∆ḟ ,jk∑
j∈X Ḋjj

and it follows from the Cheeger inequality λ̇J ≥ 1 −
√

1− C2 (Chung, 1997, Theorem 2.3) that
√
Jλ̇J →∞ if

√
JC → ∞.
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