Discussion of paper "Leave out estimation of variance components" by Patrick Kline, Raffaele Saggio and Mikkel Solvsten

Anna Mikusheva

MIT, Department of Economics

Typical structure:

- Data is used to arrive at estimator $\widehat{\beta}$ for a parameter β .
- Estimator $\widehat{\beta}$ is close to gaussian (OLS or averages):

$$\widehat{\beta} - \beta \approx N(0, \Sigma).$$

- Parameter of interest $\theta = F(\beta)$.
- Example (IV): $\theta_{IV} = \frac{\beta_1}{\beta_2}$.
- This paper $\theta = \beta' A \beta$.
- One will have difficulties with statistical analysis (bias, unusual inference) when F is significantly non-linear in the area of uncertainty of β.

Bias

- Simplistic example: $\widehat{\beta} = \beta + \sigma_n \xi$, $\xi \sim N(0,1)$, parameter of interest $\theta = \beta^2$.
- Naive estimate

$$\widehat{\theta} = (\widehat{\beta})^2 = (\beta + \sigma_n \xi)^2 = \theta + 2\beta \sigma_n \xi + \sigma_n^2 \xi^2.$$

- It contains bias: $E\widehat{\theta} = \theta + \sigma_n^2$.
- It is usually called "finite-sample bias": if $\sigma_n = \frac{const}{\sqrt{n}}$, the bias is of order $\frac{c}{n}$.
 - It does not have to be small.
 - Relative bias $\frac{\sigma_n^2}{\theta} = \left(\frac{\beta}{\sigma_n}\right)^{-2}$ connected to uncertainty about β in relation to its impact.
 - If $\beta = (\beta_1, ..., \beta_k)$ and $\theta = \sum_{i=1}^k \beta_i^2$, bias accumulates: $E\widehat{\theta} = \theta + \sum_{i=1}^k \sigma_{ni}^2$

Bias correction

•
$$\widehat{\beta}=\beta+\sigma_n\xi$$
, $\xi\sim N(0,1)$, $\theta=\beta^2$
$$E\widehat{\theta}=\theta+\sigma_n^2$$

- Natural way to correct bias is $\widetilde{\theta} = \left(\widehat{\beta}\right)^2 \widehat{\sigma}^2$
- The paper discusses when β is many-dimensional, $\theta = \beta' A \beta$ and data is heteroskedastic: what a good estimate of σ 's is.
- The solution is leave-one-out:
 - Very clean and convincing argument
 - Approach very successfully used in many weak IV literature

Inferences

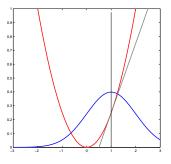
Corrected estimator

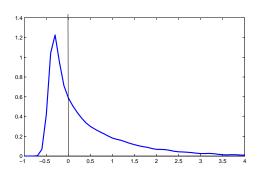
$$\widetilde{\theta} - \theta = \left\{ \left(\widehat{\beta} \right)^2 - \sigma_n^2 \right\} - \theta = \underbrace{2\beta\sigma_n\xi}_{\text{gaussian}} + \underbrace{\sigma_n^2(\xi^2 - 1)}_{\text{centered}} \quad \chi_1^2$$

- Relative importance of two components is $\frac{\beta \sigma_n}{\sigma_n^2} = \frac{\beta}{\sigma_n}$ connected to the size of β relative to its uncertainty.
- Standard inferences based on Delta-method:

$$\widetilde{\theta} - \theta \approx 2\beta \sigma_n \xi$$
.

Inferences

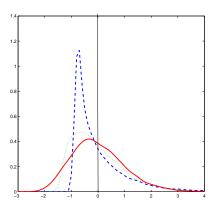




Here
$$\widehat{\beta} \sim N(1,1), \theta = \frac{1}{4}\beta^2$$
.

The distribution on the right is properly centered (at zero) and normalized to have variance 1.

Inferences



Change uncertainty about $\beta:\widehat{\beta}\sim \textit{N}(1,\sigma^2)$. Blue $(\sigma^2=1)$, Green $(\sigma^2=0.2)$, Red $(\sigma^2=0.04)$

Inference

- In the application β is very multi-dimensional, $\theta = \beta' A \beta$.
- High dimension of β may help: if $\theta = \sum_{i=1}^k \beta_i^2$ and all $\widehat{\beta}_i$ are stochastically of the same size (asymptotically negligible), the CLT will bring gaussianity back (as $k \to \infty$).
- Problem occurs when: θ strongly depends on a few linear combinations of β that are imprecisely estimated relative to overall uncertainty in $\widehat{\theta}$.

Two-way fixed effect

$$y_{gt} = \alpha_g + \psi_{j(g,t)} + \varepsilon_{gt}.$$

- Individual fixed effect α_g and firm fixed effect ψ_j cannot be separately identified, they come as a sum
- If there are workers who moved between Firm 1 and Firm 2, then $\psi_1 \psi_2$ is identified by $E(y_{gt_1} y_{gt_2})$.
- Uncertainty of $\widehat{\psi}_1 \widehat{\psi}_2$ is connected to how many workers moved.
- If some workers moved between Firm 1 and Firm 2, and some moved between Firm 2 and Firm 3, then $\psi_1 \psi_3$ is identified even if none moved between Firm 1 and Firm 3.

- This way you can uncover variation $\psi_j \psi_{j^*}$ over all "connected" firms. But the structure of uncertainty is cumbersome.
- Goal: to estimate $\theta = Var(\psi_j)$. It is identified if all firms are "connected".

 Imagine that there are two "clusters" of firms; firms are tightly connected within cluster but not between

$$\theta = \omega_1 \textit{Var}(\psi_j; j \in \textit{cl}_1) + \omega_2 \textit{Var}(\psi_j; j \in \textit{cl}_2) + \textit{a}(\overline{\psi}_{\textit{cl}_1} - \overline{\psi}_{\textit{cl}_2})^2.$$

- Between-cluster-difference $\overline{\psi}_{ch}$ $\overline{\psi}_{ch}$ has strong influence on θ .
- If only a few workers moved between clusters ('bottleneck'), this component is poorly estimated (a.k.a. weakly identified).
- $\begin{array}{l} \bullet \ \ \text{Problem occurs when:} \\ \theta \ \ \text{strongly depends on a few linear combinations of } \beta \ \ \text{that are} \\ imprecisely \ \ \text{estimated relative to overall uncertainty in } \widehat{\theta}. \end{array}$

- Complication: the network structure of "connected" firms is complicated.
- Potential problem depends on many unknowns: the effect of a linear component, its uncertainty, its relation to other components.
- Method of inference (Andrews and Mikusheva (2016)) measure the curvature of F function in relation to covariance, choosing the direction of 'worst curvature' (determining the problematic direction); then adjust critical values accordingly.
- Method is agnostic it does not require knowledge of the problem location.
- This method is nicely executed; it demonstrates problem exactly
 where you would expect it: no curvature when estimation is done over
 one well-connected region and pronounced curvature when estimation
 is done over two poorly connected regions.