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 1 

Abstract 2 

As the global climate changes, people are exposed to weather that is increasingly unusual relative to 3 

historical or pre-industrial conditions. However, expectations, memory limitations, and cognitive biases 4 

may influence people’s subjective experience of the weather. How do people judge today’s weather as 5 

typical or atypical? And how might that judgement shift in response to gradually-changing climatic 6 

conditions? Here we show that experience of weather in recent years, rather than longer historical 7 

periods, determines the baseline against which current weather is evaluated, potentially obscuring the 8 

signal of anthropogenic climate change as subjectively experienced. We employ variation in decadal 9 

trends in temperature at weekly and county resolution over the continental United States, combined 10 

with discussion of the weather drawn from over two billion social media posts. These data indicate that 11 

the remarkability of particular temperatures, measured as the volume of posts about weather that they 12 

generate, changes on relatively short timescales. We develop a learning model from our empirical 13 

results and apply it to climate model output to project the perception of temperature anomalies arising 14 

from future climate change. The rapidly-shifting baselines we observe have substantial implications for 15 

the public perception of anthropogenic warming. 16 

 17 

Main Text 18 

Environmental change involves the gradual shifting of system characteristics beyond bounds historically 19 

experienced by communities and ecosystems. Though the signal of these changes emerges clearly when 20 

examined at long time-scales or at large spatial scales, individual experience of change occurs locally and 21 

may be influenced by expectations, memory limitations, and cognitive biases1,2.  22 

Direct personal experience of environmental change, as an immediate, salient, and highly-trusted 23 

information source, may be critical in convincing the public of both the existence of a problem and the 24 

need for corrective policies to address it. This has been widely documented in the case of climate 25 

change: local weather anomalies alter stated belief in climate change3–8, and Americans self-report local 26 

weather conditions as influencing their opinions on climate change9. However, if individuals dynamically 27 

adjust their perceptions of ‘normal’ climate, experience of historically unusual conditions may not 28 

provide strong experiential evidence of environmental change over time.  29 
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Despite the importance of understanding the perception of both climate change and other forms of 30 

gradual environmental change, relatively little work has examined this topic empirically. Climate models 31 

have been used to determine the statistical “time of emergence” of the climate change signal10–12, but 32 

the relationship between these metrics and the general public’s perception of environmental change is 33 

unclear. Other work has applied hypothesized learning models to the problem of inferring the climate 34 

state from weather observations but these have not been tested against observed behavior13–16.  35 

Here we show that the remarkability of particular weekly temperature anomalies adjusts on 36 

approximately a five year timescale, suggesting that the sense of “normal weather” shifts relatively 37 

rapidly with a changing climate. We measure the remarkability of temperature as the volume of social 38 

media posts about weather that it generates and use the substantial spatial and seasonal variation in 39 

decadal temperature trends to identify the causal effect of repeated exposure to a given temperature 40 

anomaly on the remarkability of contemporaneous temperatures. We show that average climate 41 

conditions affect the likelihood that particular temperatures are remarked on (i.e. people respond more 42 

to temperatures if they are historically unusual for that location and time-of-year) but that recent trends 43 

are important in moderating this effect. Using a dynamic lag model, we find that the effect of 44 

temperature anomalies decays with repeated exposure over two to eight years. From these results, we 45 

derive a learning model describing how perceptions of normal temperatures might adjust in response to 46 

future warming and apply it to climate change projections. The shifting baseline we uncover has large 47 

implications for the magnitude of perceived temperature anomalies in a changing climate. 48 

Our social media data consists of all posts on Twitter between March 2014 and November 2016 49 

geolocated within the continental United States, for a total of 2.18 billion tweets (Supplementary Figure 50 

1). Tweets about weather were identified using a simple ‘bag of words’ approach (Supplementary 51 

Methods), and the classification was validated manually for 6,000 selectively-sampled tweets 52 

(Supplementary Methods, Supplementary Table 1). Twitter is a medium uniquely suited to examining 53 

this phenomenon because its wide geographic scope and high temporal resolution allow us to sample 54 

variation in both spatial and seasonal climate trends, and because the low marginal cost of tweeting 55 

provides a nearly instantaneous response to weather conditions, unaffected by market distortions or 56 

imperfections that might make responses to weather events on other margins more difficult to 57 

interpret.  58 
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We draw data on daily maximum temperature and total precipitation for the period 1981-2016 from the 59 

PRISM data set and aggregated these to the county level from a 0.25 degree grid17. We combine the 60 

PRISM data with cloud cover and relative humidity data from the NCEP Reanalysis II18.  61 

Social media and weather data are aggregated to the county (spatial) and weekly (temporal) level. We 62 

employ weekly rather than daily resolution as weeks are a plausible period over which people might 63 

resolve the seasonal climatology of their area (e.g. “end of March”, “mid-late November”)19. For each 64 

county-week combination a ten year “reference” period is defined as the average of the county-week’s 65 

temperature across the years 1981-1990, a period defined based on the earliest-available daily PRISM 66 

data. For comparison, a “recent” period was defined as the most recent five years. As an illustration, 67 

Figure 1 shows the spatial and seasonal variation in climate trends (defined as the difference between 68 

recent and reference temperatures) across the United States for the third week in each calendar month. 69 

It shows substantial variation in exposure to temperature changes, both across space and within the 70 

year. This variation is what we use to test whether the response to historically-unusual weather 71 

conditions changes with repeated exposure to those conditions. 72 

 73 

Figure 1:  Spatial and seasonal variation in the change in average temperatures between the reference (1981-74 
1990) and recent (2011-2015) time periods (in degrees C). Values shown are averaged for the third week in each 75 
month. 76 
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 77 

Our principal empirical model regresses the logarithm of the number of weather tweets in each county-78 

week on functions of reference and recent temperatures. The model includes controls for precipitation, 79 

relative humidity, and cloud cover (in order to isolate the effect of temperature) as well as differences in 80 

Twitter use in counties and over time using the logarithm of the number of Twitter users. County 81 

indicator variables (fixed-effects) control for all time-invariant difference between counties while state 82 

by month-of-year indicator variables (e.g. December in California) flexibly control for any regional 83 

differences in seasonality. Finally, year fixed-effects control for common time trends across the US over 84 

the sample period. The residual variation used to identify the causal effect of temperature fluctuations 85 

on social media posts about weather is shown in Supplementary Figure 2. Standard errors are clustered 86 

at the state level, allowing for spatial and temporal autocorrelation within a state (more details and the 87 

regression equation are given in the Supplementary Methods). 88 

We first look at the importance of the historic reference temperatures (1981-1990) in determining the 89 

response to weather conditions. Figure 2a shows that the effect of temperature on social media posts 90 

differs depending on the reference temperature for that county and time of year. People are more likely 91 

to comment on weather that is unusual for a particular place and time-of-year then on the same 92 

weather if it is typical. At the median of the reference temperature distribution (22°C), the quadratic 93 

minimum is remarkably close to the reference temperature, meaning people comment least on 94 

temperatures close to these reference conditions. At both hotter and colder extremes of the 95 

temperature distribution, the response becomes more asymmetric, suggesting that a combination of 96 

unexpectedness and consequence might drive the remarkability of particular temperatures. Regression 97 

coefficients are given in Supplementary Table 2 and an F-test of the null hypothesis that reference 98 

temperatures do not moderate the response to temperature is strongly rejected (F-stat = 19.23, 4 and 99 

48 degrees of freedom, p<1e-5). The curves are also statistically different from each other over much of 100 

the temperature range (Supplementary Figure 3). Allowing for a more flexible (quartic) response shows 101 

a qualitatively similar effect, but with some evidence for a declining marginal effect at very hot 102 

temperatures (Supplementary Figure 4).  103 
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 104 

 105 

Figure 2: Effect of reference temperatures and recent changes on number of weather tweets. a) Effect of average 106 
weekly daytime temperature on tweeting for three different reference temperatures corresponding to the 25th, 50th, 107 
and 75th percentile of the sample. Curves are shown for +/- 8 degrees from reference, which includes >97.5% of the 108 
observed weekly average temperature anomalies in our sample. Because the dependent variable is logged, 109 
movement along the y axis can be interpreted as % change in the number of weather posts. The histogram shows 110 
the distribution of reference temperatures in the sample. b) Percent change in the number of weather tweets in 111 
response to contemporaneous temperatures (x-axis), shown for a location that has warmed from 22°C to 25°C 112 
(+3°C) between the reference (1981-1990) and recent (last 5 years) time periods. Dashed lines show the 95% 113 
confidence interval. Regression coefficients are given in Supplementary Table 2.  114 

a) 

b) 
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Having established that prior experiences alter reactions to realized temperature, we now investigate 115 

whether the historic reference period, more recent experience, or some mixture of the two best 116 

explains the volume of comments about the weather. We find that the change in temperature between 117 

reference (1981-1990) and recent (prior 5 years) time periods is a highly significant explanatory variable, 118 

moderating the response to particular temperatures (Supplementary Table 2). Figure 2b shows the 119 

effect of 3°C warming between these time periods in a county-week with an initial reference 120 

temperature of 22°C (and therefore a recent temperature of 25°C). The recent warming results in 1% 121 

more comments in response to unusually cool temperatures of 20°C than would have occurred without 122 

that warming. In other words, 20°C has become more remarkable because the recent warming has 123 

made it more unusual relative to the original reference period. 124 

Next, we employ a finite distributed lag model to more precisely estimate the temporal dynamics of 125 

subjective baseline adjustment. For each county-week in our sample we use its 15-year history of 126 

temperature anomalies, defined relative to the 1981-1990 reference period, to estimate how behavior 127 

adjusts in response to repeated exposure to altered temperatures. The model estimates the effect of 128 

previous temperature anomalies (experienced between 1 and 15 years ago) on current behavior, 129 

allowing for non-linear effects that change over time (for additional details see Supplementary 130 

Methods). We split our data and estimate responses separately for the hottest and coldest third of 131 

baseline temperatures (greater than 26.3° and less than 16.8° respectively). This is necessary because 132 

the asymmetry of the response curves shown in Figure 2a about the reference temperature means that 133 

the same temperature anomaly would be expected to have different effects at the hot and cold ends of 134 

the temperature distribution, which we allow for by splitting the sample. Model summaries are given in 135 

Supplementary Table 3 and additional model results are shown in Supplementary Figure 5. 136 

Figure 3 shows how the effect of hot and cold temperature anomalies on the volume of posts about 137 

weather varies as a function of length of exposure to those temperature anomalies, for the coolest third 138 

of our sample. We find the same downward-sloping response to instantaneous warmer temperatures as 139 

shown in Figure 2a (i.e. the volume of posts increases in response to cold anomalies and decreases in 140 

response to warm anomalies). However, this response also decays rapidly with longer-term changes in 141 

temperature. After 5-10 years of exposure to historically-unusual conditions, the response either 142 

disappears (for warm anomalies) or is even reversed (for cool anomalies). In other words, the kind of 143 

temperature considered remarkable changes rapidly in response to repeated exposure. Results for the 144 

hot third of the sample are shown in Supplementary Figure 6 but are not statistically significant. Results 145 
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for the full sample and for alternative specifications of the dynamic lag model are qualitatively similar to 146 

those shown in Figure 3 (Supplementary Figures 7 and 8). 147 

Reversal of the instantaneous effect, as seen in the upper panel of Figure 3 between 6 and 12 years of 148 

exposure, is robust to alternate model specifications and is consistent with a shifting-baseline model: 149 

after continuous exposure to cooler temperatures, reference temperatures (i.e. zero anomaly relative to 150 

1981-1990) are warm relative to recent experience and therefore result in a decreased response, 151 

consistent with the instantaneous response to warm anomalies shown in the lower panel. Given the 152 

curvature of the response curves for this temperature range (Figure 2a), the same effect for warm 153 

anomalies would be expected to be less well-defined, but the uncertainty bounds do not rule out a 154 

similar effect. 155 

 156 

 157 

Figure 3: Change in response to temperature anomalies with repeated exposure. Percent change in the number of 158 
weather posts in response to temperatures that are 6°C cooler (upper panel) or warmer (lower panel) than the 159 
reference period, as a function of the number of years of exposure to that temperature. A 6°C anomaly represents 160 
approximately the central 90% of the sample. Shaded areas give the 95% confidence interval based on standard 161 
errors clustered at the state level.  162 

 163 

Using the coefficients of the dynamic-lag model, we derive a learning model that describes how 164 

baselines adjust in response to experienced temperatures (Supplementary Methods). Some previous 165 
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work has hypothesized that recent weather should be particularly important in moderating responses to 166 

weather conditions and we find empirical support for this “recency-bias”6,20.  Temperatures experienced 167 

between 2 and 5 years ago appear to be particularly important in defining baselines against which 168 

current temperatures are evaluated (Supplementary Figure 9). We combine this learning model with the 169 

time-series of population-weighted annual temperatures over the continental United States in order to 170 

estimate how perceptions of “normal” temperatures have changed over the historical period. Based on 171 

this learning model, warming experienced between 1860 and 2016 has resulted in a shift of over 1°C in 172 

aggregate across the US public, suggesting that temperatures that would previously be considered warm 173 

are now perceived as normal (Supplementary Figure 10). 174 

Shifting temperature baselines also have implications for the experience of future warming under 175 

climate change. Figure 4 shows the population-weighted temperature anomalies under the RCP 8.5 176 

emissions scenario over the continental United States, for 40 realizations of internal variability21. 177 

Anomalies are defined relative to both a fixed 30-year baseline (1981-2010) and to a shifting baseline 178 

defined using our empirically-estimated learning model. While persistent warming over the 21st century 179 

results in temperatures that are increasingly unusual relative to a fixed, historically-defined baseline, the 180 

rapidly-shifting baseline that we find evidence for here results in perceived temperature anomalies on 181 

average only slightly above zero. Thus, although temperatures increase substantially in an absolute 182 

sense, because they do so only gradually relative to the rate at which people appear to update their 183 

baselines, even the substantial warming generated in a high emissions scenario may not produce 184 

perceptions of unusually warm conditions. 185 

 186 
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 187 
Figure 4: Effect of shifting baselines on the perception of temperature anomalies. Population-weighted annual 188 
average temperature anomalies over the continental U.S. under RCP 8.5 with 40 realizations of internal 189 
variability21. Anomalies are defined relative to a fixed 30-year period (1981-2010) and relative to a shifting baseline 190 
defined using our estimated learning process. Population-weighting uses population density fixed at 2015 values22.  191 

 192 

Here we show that the remarkability of temperature depends not just on its absolute value, but that it is 193 

affected by past experience and expectations. More specifically, the subjective baseline against which 194 

temperature is evaluated appears to be dominated by recent experience. Temperatures initially 195 

considered remarkable rapidly become unremarkable with repeated exposure over roughly a 5-year 196 

timescale. Since this is fast relative to the pace of anthropogenic climate change, this shifting subjective 197 

baseline has large implications for the perception of temperature anomalies as climate change 198 

progresses.  199 

There are a number of important considerations related to our conclusions. First, it is important to be 200 

specific about what we are and are not measuring: our metric of the volume of social media posts about 201 

weather measures - in a very literal way - the “remarkability” of temperature. We are not able to 202 

determine here precisely what makes a weather event remarkable, though it plausibly involves some 203 

combination of surprise and consequentiality. It may be that both are changing in response to repeated 204 

exposure, but we do not attempt to resolve their relative contributions.  205 
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Secondly, we do not link our conclusions directly to stated belief in anthropogenic climate change or 206 

support for mitigation policies. These stated positions appear to be influenced by a range of factors, 207 

including cultural worldviews, political affiliations, and the perceived legitimacy of message 208 

promotors23–25. Moreover, much of the spatial and seasonal variation in temperature trends that we use 209 

in our estimate (Figure 1) is likely a result of natural variability rather than anthropogenic climate 210 

change, meaning it is unclear how these changes should affect climate change beliefs. It is also possible 211 

that warmer temperatures could at once be socially unremarkable and yet still provide evidence for 212 

anthropogenic climate change, when processed on a deeper cognitive level than that used in posting on 213 

social media (i.e. using System 2 vs System 1 processing)26,27. Our conclusion is only that rising 214 

temperatures alone will not necessarily provide direct, experiential evidence of anthropogenic climate 215 

change if perceptions of normal adjust rapidly, as we find evidence for here. Though many studies have 216 

now identified a link between stated belief in global warming and temperature anomalies (typically 217 

defined relative to fixed reference periods)4,5,8,19,28, our results suggest that care should be taken in 218 

projecting these findings forward to infer increased public belief in climate change with warmer 219 

temperatures. 220 

Finally, we note that our results pertain only to ambient average temperatures. It may well be that more 221 

acute extreme events such as storms, droughts, wildfires, or floods may be both more consequential 222 

and salient and therefore less prone to normalization29. Previous work has found that other variables 223 

such as changes in phenology or snowfall might be more strongly attributed to climate change in the 224 

public consciousness.27 It is also possible that particular physical or biological thresholds beyond the 225 

range of our data may result in non-linear responses that are not accounted for in this study. 226 

The pre-industrial is often used as a standard reference point in both climate science and policy30, and 227 

unmitigated greenhouse gas emissions over the 21st century will result in large warming relative to this 228 

period. Understanding how these historically-unusual temperatures are perceived by people affected, 229 

and in particular whether they provide direct sensory evidence for the existence of climate change, 230 

requires knowing how weather is socially determined to be “normal” or “unusual”. Here we present 231 

evidence that the definition of normal adjusts rapidly in response to changed conditions, resulting in 232 

perceived temperature anomalies that are close to zero over the 21st century, even in a high emissions 233 

scenario. When coupled with results from the existing literature, our finding suggests it may be unlikely 234 

that rising temperatures alone will be sufficient to produce widespread support for mitigation policies. 235 

 236 
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Supplementary Methods 1 

1. Data Sources and Processing 2 
 3 

1.1 Weather Data 4 

Data on daily maximum temperature and total daily precipitation for the period 1981-2016 are from the 5 
PRISM data set, gridded at 0.25 degrees resolution1. Gridded data are aggregated to the county level 6 
(spatial weighting) and then averaged over weeks to give county by week observations. We focus on 7 
maximum temperature rather than average or minimum temperatures since they occur during the day 8 
and are therefore likely to be most salient to people and most relevant for explaining tweeting behavior, 9 
at both the hot and cold ends of the temperature distribution. We also  include data on percent cloud 10 
cover and relative humidity, also averaged to the county by week level, from the NCEP Reanalysis II2. 11 
Although the focus of our analysis is the effect of temperature variation, we include these other salient 12 
features of the weather that might be correlated with temperature (specifically, rainfall, cloud cover, 13 
and relative humidity) as control variables in the regression in order to isolate the effect of temperature 14 
itself. 15 

Average annual temperatures from 1850 to 2017 (used for Supplementary Figure 10) are calculated 16 
from gridded monthly data provided by Berkeley Earth3. Data are averaged over years and then 17 
aggregated to the national level using gridded 2015 population data from CIESIN4. Temperature 18 
projections under RCP 8.5 (used in Figure 4) are 40 realizations of the Community Earth System Model 19 
(CESM1) Large Ensemble Project5. Annual temperatures are aggregated to the national level using the 20 
same weighting by 2015 population. 21 

1.2 Twitter Data 22 

All tweets between March 2014 and the end of November 2016 geolocated within the continental 23 
United States were downloaded from the Twitter API (geolocated tweets exclude retweets). Tweets 24 
within the continental US were identified using a bounding box filter. Each tweet was allocated to a 25 
county using either the ‘geo.coordinates’ value from the tweet metadata or, if this was missing, the 26 
centroid of the ‘place’ bounding box. This gives a total of 2.18 billion tweets in the sample. The number 27 
of geolocated tweets is gradually increasing over this time-period, with the exception of a sharp drop in 28 
late 2014, likely associated with a change in the Twitter’s opt-in policy for geolocating tweets 29 
(Supplementary Figure 1).  30 

Tweets discussing weather were identified using a simple bag-of-words approach. If the tweet contained 31 
one of the following words it was classified as a ‘weather tweet’: 32 

arid, aridity, autumnal, balmy, barometric, blizzard, blizzards, blustering, blustery, blustery, breeze, 33 
breezes, breezy, celsius, chill, chilled, chillier, chilliest, chilly, cloud, cloudburst, cloudbursts, cloudier, 34 
cloudiest, clouds, cloudy, cold, colder, coldest, cooled, cooling, cools, cumulonimbus, cumulus, cyclone, 35 
cyclones, damp, damp, damper, damper, dampest, dampest, deluge, dew, dews, dewy, downdraft, 36 
downdrafts, downpour, downpours, drier, driest, drizzle, drizzled, drizzles, drizzly, drought, droughts, 37 
dry, dryline, fahrenheit, flood, flooded, flooding, floods, flurries, flurry, fog, fogbow, fogbows, fogged, 38 
fogging, foggy, fogs, forecast, forecasted, forecasting, forecasts, freeze, freezes, freezing, frigid, frost, 39 
frostier, frostiest, frosts, frosty, froze, frozen, gale, gales, galoshes, gust, gusting, gusts, gusty, haboob, 40 
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haboobs, hail, hailed, hailing, hails, haze, hazes, hazy, heat, heated, heating, heats, hoarfrost, hot, 41 
hotter, hottest, humid, humidity, hurricane, hurricanes, icy, inclement, landspout, landspouts, lightning, 42 
lightnings, macroburst, macrobursts, meteorologic, meteorologist, meteorologists, meteorology, 43 
microburst, microbursts, microclimate, microclimates, millibar, millibars, mist, misted, mists, misty, 44 
moist, moisture, monsoon, monsoons, mugginess, muggy, nor'easter, nor'easters, noreaster, noreasters, 45 
overcast, parched, parching, precipitation, rain, rainboots, rainbow, rainbows, raincoat, raincoats, 46 
rained, rainfall, rainier, rainiest, raining, rains, rainy, sandstorm, sandstorms, scorcher, scorching, 47 
shower, showering, showers, sleet, slicker, slickers, slush, smog, smoggier, smoggiest, smoggy, snow, 48 
snowed, snowier, snowiest, snowing, snowmageddon, snowpocalypse, snows, snowy, sprinkle, 49 
sprinkling, squall, squalls, squally, storm, stormed, stormier, stormiest, storming, storms, stormy, 50 
stratocumulus, stratus, subtropical, summery, sun, sunnier, sunniest, sunny, temperate, temperature, 51 
tempest, thaw, thawed, thawing, thaws, thermometer, thunder, thundering, thunderstorm, 52 
thunderstorms, tornadic, tornado, tornadoes, tropical, troposphere, tsunami, turbulent, twister, 53 
twisters, typhoon, typhoons, umbrella, umbrellas, vane, warm, warmed, warms, weather, wet, wetter, 54 
wettest, wind, windchill, windchills, windier, windiest, windspeed, windy, wintery, wintry 55 

A total of 60.1 million weather tweets were identified, representing 2.8% of the sample. Although our 56 
empirical analysis focuses on the effect of temperature, we sampled all possible words about weather 57 
and then controlled statistically for the effects of other weather variables (specifically precipitation, 58 
cloud cover, and relative humidity). This avoids trying to parse the specific subject of each tweet.  59 

We tested our classification using a manual classification of 6,000 tweets. We are particularly concerned 60 
with classification accuracy that varies systematically with the variation used to identify parameters in 61 
the regression analysis (i.e. the residual variation in temperature after regressing on all control variable 62 
and fixed-effects, shown graphically in Supplementary Figure 2). If classification accuracy is 63 
systematically different for tweets about unusually hot temperatures compared to unusually cold 64 
temperatures, then this could bias our coefficient estimates since correlation between the number of 65 
tweets about weather and temperature could be driven by changing classification accuracy not actual 66 
changes in the number of weather tweets. In contrast, classification errors that are uniform across the 67 
sample, conditional on regression fixed-effects and controls, will add noise but not bias to our 68 
estimation. 69 

Therefore, we used a stratified sampling scheme to identify tweets for validation. We first identify 70 
county-weeks associated with unusually hot or cold temperatures, conditional on all fixed-effects and 71 
controls by identifying county-weeks in the top and bottom 2.5% of the residual distribution from the 72 
following regression: 73 

ܶ௪௬௦ = തܶ௪௦ + ௪௬௦݅ܿ݁ݎܲ + ௪௬௦݀݅݉ݑܪ + ௪௬௦݀ݑ݈ܥ + log൫ܷݏݎ݁ݏ௪௬௦൯ + ௬ߠ + ߴ + +௦ߜ  ௪௬௦ߝ

Where ܶ௪௬௦ is the average maximum temperature in county c in state s in week-of-year w in month-74 
of-year m, in year y, തܶ௪௦ is the average over the reference period (1981-1990) for that county for that 75 
week, ܲ݅ܿ݁ݎ௪௬௦, ݀݅݉ݑܪ௪௬௦, and ݀ݑ݈ܥ௪௬௦ are controls for average precipitation, relative 76 
humidity, and cloud cover in that county in that week, ܷݏݎ݁ݏ௪௬௦ is a control for the number of 77 
Twitter users in that county week, ߠ௬ is a year fixed-effect, ߴ  is a county fixed-effect, and ߜ௦ is a state-78 
month fixed-effect. The county-weeks in the tails of this residual distribution are those with largest 79 
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influence in the estimation of the effect of temperatures and temperature anomalies on posting about 80 
the weather (Supplementary Methods, Section 2). Therefore, contrasting the classification accuracy for 81 
tweets from county-weeks in the hot and cold tails of this distribution allows us to identify any 82 
systematic errors that will bias estimation of the effect we are interested in. This is therefore the focus 83 
of our validation exercise. 84 

Using this sample of high leverage county-weeks, we randomly selected 3,000 tweets each from the set 85 
of hot and cold county-weeks, evenly divided between those we classified as weather tweets and those 86 
we classified as not about weather. This sample was classified manually into weather / not weather 87 
tweets using workers on Amazon Mechanical Turk. Each worker classified 150 unique tweets and each 88 
tweet was classified by 3 different workers (for a total of 18,000 classifications). The modal of the three 89 
classifications was used for the validation analysis. 90 

Supplementary Table 1 shows the results of this validation exercise. Although the fraction of false 91 
positives in our automated classification is high (~46%), there is no evidence for systematic differences 92 
in the classification accuracy for hot vs cold temperatures. This suggests that classification errors should 93 
not strongly bias our results, except in that they introduce measurement error and so may bias results 94 
towards zero, meaning we would be reporting under-estimates of the true effect. The false negative 95 
fraction is negligible (<0.5%) and is the same at both tails of the distribution. 96 

 97 

2. Regression Analysis 98 

The general regression specification used in this paper is as follows: 99 log	( ܹ௪௬௦) = ݂൫ ܶ௪௬௦, തܶ௪௦൯ + ௪௬௦݅ܿ݁ݎܲ + ௪௬௦݀݅݉ݑܪ + +௪௬௦݀ݑ݈ܥ log൫ܷݏݎ݁ݏ௪௬௦൯ + ௦ߜ + ௬ߠ + ߴ +  ௪௬௦ߝ

The dependent variable is the log of the number of weather tweets in county c, in week w, in month m, 100 
in year y, in state s. (For clarity in subsequent equations, the month and year subscripts are omitted). 101 
Using logs requires us to drop any county by week observations that have no weather tweets. In total 102 
this is 55,279 county weeks, or 12.9% of the initial sample. The remaining sample size is 373,625 county 103 
weeks. The logged dependent variable means the estimated coefficients have a proportional, not 104 
absolute effect, on the number of tweets (i.e. the estimated marginal effect is in terms of % change in 105 
the number of tweets). This is important given the very different number of tweets in different counties 106 
and weeks. 107 

The number of weather tweets is modeled as a function of maximum temperature ( ܶ௪௬௦) and an 108 
average of temperature in previous years in that county at that time of year ( തܶ௪௦). The exact 109 
functional form used varies and is described below. Additional control variables are the average daily 110 
precipitation (ܲ݅ܿ݁ݎ௪௬௦), the average relative humidity (݀݅݉ݑܪ௪௬௦), and the average % cloud 111 
cover (݀ݑ݈ܥ௪௬௦). We control for the large differences in the number of Twitter users across counties 112 
using log of the number of users in each county and week (ܷݏݎ݁ݏ௪௬௦). A set of fixed effects control 113 
for unobserved variation: state by month-of-year fixed effects (ߜ௦) control for any state-specific intra-114 
annual seasonal differences, year fixed-effects (ߠ௬) control for average differences across years in the 115 
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sample (2014, 2015, and 2016) related to, for instance, Twitter penetration, and county fixed-effects 116 
(  ) control for all unobserved, time-invariant differences between counties. Supplementary Figure 2 117ߴ
shows graphically how these fixed-effects determine the residual variation in temperature used to 118 
identify our model coefficients. 119 

The regressions are estimated using OLS using the lfe R package and residuals (ߝ௪௬௦) are clustered at 120 
the state level, allowing for both spatial correlation between counties in the same state and for 121 
correlation within a state over time. Control variables, fixed-effects and treatment of standard errors are 122 
common across all regressions presented in this paper. They are omitted for clarity in the description of 123 
specific functional forms of the temperature response below, but are included in all estimations.  124 

2.1 Interactions Model 125 

Our first set of models allow the effect of temperature to differ as a function of reference and recent 126 
temperatures using a set of interaction terms in the estimating equation. 127 

We allow the effect of temperatures to vary non-linearly with the reference (1981-1990) climatology, 128 
which accounts for the fact that people’s response to weather might be mediated by the kinds of 129 
conditions that might be expected in that location at that time of year: 130 log	( ܹ௪௬) = ଵߚ ܶ௪௬ + ଶܶଶ௪௬ߚ + ௪ܤଷߚ + ଶ௪ܤସߚ + ହߚ ܶ௪௬ܤ௪ + ௪ܤܶଶ௪௬ߚ + ߚ ܶ௪௬ܤଶ௪+  ଶ௪ܤଶ௪௬଼ܶߚ

Where ܤ௪ is the average temperature of county c in week-of-year w in the reference period and other 131 
variables are as defined above. This specification fully interacts both the linear and squared terms of the 132 
actual temperature ( ܶ௪௬) and the reference temperature (ܤ௪), allowing both the location of the 133 
quadratic minimum (or maximum) as well as its steepness to vary non-linearly with reference 134 
temperature. Results are shown in Figure 2a and Supplementary Table 2, column 2.  135 

A robustness check includes higher order temperature terms that allows for a more flexible response. 136 
Specifically, we fit a quadratic in observed temperature, and allow this quadratic to vary flexibly with 137 
reference temperature:  138 log	( ܹ௪௬) = ଵߚ ܶ௪௬ + ଶܶଶ௪௬ߚ + ଷܶଷ௪௬ߚ + ସܶସ௪௬ߚ + ௪ܤହߚ + ଶ௪ܤߚ + ଷ௪ܤߚ + ଼ߚ ܶ௪௬ܤ௪+ ௪ܤଽܶଶ௪௬ߚ + ௪ܤଵܶଷ௪௬ߚ + ଵଵߚ ܶ௪௬ܤଶ௪ + ଶ௪ܤଵଶܶଶ௪௬ߚ + ଵଷߚ+ ܶ௪௬ܤଷ௪ 

Results from this more flexible specification are shown in Supplementary Figure 3. Findings are 139 
qualitatively similar to that from the quadratic model in that we recover the same U-shape with minima 140 
relatively close to the reference value. The model does show some asymmetry in terms of declining 141 
marginal response at very hot temperatures (possibly consistent with air-conditioner penetration at hot 142 
temperatures). 143 

To test the effect of decadal climate trends in mediating the effect of observed temperatures, we add 144 
the difference between reference (1981-1990) and recent (average of the previous 5 years) periods as 145 
an explanatory variable to the quadratic model. This specification uses the exogenous variation shown in 146 
Figure 1 to test whether counties that have had recent experience of unusually hot or cold temperatures 147 
(relative to the reference period) respond to weather differently than counties that have not. Our 148 
specification is: 149 
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log	( ܹ௪௬) = ଵߚ ܶ௪௬ + ଶܶଶ௪௬ߚ + ௪ܤଷߚ + ଶ௪ܤସߚ + ହߚ ܶ௪௬ܤ௪ + ௪ܤܶଶ௪௬ߚ + ߚ ܶ௪௬ܤଶ௪+ ଶ௪ܤଶ௪௬଼ܶߚ + ଽ൫ܴ௪௬ߚ − ௪൯ܤ + ଵ൫ܴ௪௬ߚ − ௪ܤ௪൯ܤ + ଵଵ൫ܴ௪௬ߚ − ௪൯ܤ ܶ௪௬ 

Where ൫ܴ௪௬ −  ௪൯ is the difference in the county week temperature between the recent and 150ܤ
reference periods.  151 

Results of this model are shown in Supplementary Table 2, column 3. All estimated effects are 152 
statistically significant in the expected direction. Recent experience of warming (i.e. positive ൫ܴ௪௬  but decreases it at hot 154 (ଽߚ positive) ௪൯) increases the number of weather tweets at cold temperaturesܤ 153−
temperatures (negative ߚଵଵ) (i.e. cold temperatures have become more remarkable and hot 155 
temperatures less remarkable), with that effect mediated in the expected direction by reference 156 
temperatures (positive ߚଵ).  157 

 158 

2.2 Dynamic Non-Linear Model 159 

A finite-dynamic lag model is used to estimate the timescale on which perceptions of weather events 160 
adjust6,7. For this specification we focus on anomalies relative to the reference period (i.e. we defined 161 
the temperature anomaly as  ܣ௪௬ = ܶ௪௬-ܤ௪) and allow the response to vary flexibly as a function of 162 
the magnitude of the current temperature anomaly and the history of previous anomalies experienced 163 
in that county at that time of year. Because the response to particular temperature anomalies differs 164 
depending on whether the temperature is cool or warm (i.e. the response is not symmetric about the 165 
reference for all temperatures, see Figure 2a), our preferred model splits the data in order to estimate 166 
separate responses for the coolest and warmest third of the sample.  167 

The dynamic non-linear model estimates an interaction between two smooth functions – one of the 168 
magnitude of the anomaly and one of lagged history of exposure to anomalies: 169 log	( ܹ௪௬) = ݂൫ܣ,௪,௬ି൯ ∗ ݃(݇) 
Where ܣ,௪,௬ି is the temperature anomaly experienced in county c in week-of-year w, k years ago. 170 
Values of k range between 0 (i.e. current temperature) and 15 (i.e. temperature 15 years ago). Functions 171 
f() and g() are smooth, continuous functions and their interaction allows the for the effect of a particular 172 
temperature anomaly to vary non-linearly and to vary as a function of how long-ago it was experienced. 173 
Our preferred specification uses a cubic polynomial for f() and a cubic spline with two internal knots for 174 
g() (knots at 0, 1.3, 4.4 and 15). The former uses 3 degrees of freedom and the latter 4, so the 175 
interaction surface estimated in the regression uses 12 degrees of freedom. Decay of the effect of 176 
temperature anomalies that we identify in Figure 3, with opposite effects for warm and cold anomalies, 177 
is robust to these choices (Supplementary Figure 8). The model is estimated including all controls and 178 
fixed-effects described above and standard errors are clustered at the state level. 179 

 180 
3. Applying the Learning Model 181 

The dynamic non-linear model shows evidence of a relatively rapid decay in the influence of 182 
temperature anomalies as a function of repeated exposure to those anomalies, both for the full sample 183 
(Supplementary Figure 7) and for the cooler third of the reference temperatures (Figure 3). This is 184 
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consistent with people using relatively recent experience of temperature to set their expectations of, 185 
and consequently their response to, the current temperature. We define a learning model based on 186 
these empirical estimates that describes how previous temperatures appear to be weighted in current 187 
expectations, and therefore how expectations adjust dynamically in response to changing temperatures. 188 

We focus on results for the cooler temperatures to parameterize the learning model because they are 189 
both more precisely estimated and easier to interpret than results using the full sample. Supplementary 190 
Figure 5b shows the estimated lagged effect of hot and cold temperature anomalies (the cumulative 191 
sum of these coefficients are shown in Figure 3). We define the “learning period” as the years during 192 
which experience of past temperature anomalies reverses the effect of the current anomaly (i.e. during 193 
which there is evidence for adjustment of expectations). For both warm and cold anomalies, this is 194 
found to be the period between 2 and 8 years ago (Supplementary Figure 5b).1 195 

We parameterize our learning model as the weighted sum of temperature anomalies experienced 196 
during the learning period, with weights given by the relative magnitude of the estimated lagged 197 
coefficients. In other words, the subjectively-defined, moving baseline is given by: 198 

෨௪௬ܤ = ݓ ܶ,௪,௬ି଼
ୀଶ  

ݓ = ∑መߚ ఫ଼ୀଶߚ  

Where ߚመ  is the estimated effect of the temperature anomaly k years ago (Supplementary Figure 5b). 199 
Weights are calculated for both +6 and -6 degree temperature anomalies and are found to be almost 200 
identical. Weights based on the +6 degree coefficients are used for the analysis. Since ܤ෨௪௬ is a non-201 
linear function of regression coefficients, standard errors are calculated from the estimated variance-202 
covariance matrix using the delta method8. 203 

The learning model is applied to population-weighted (constant 2015 population distribution) annual 204 
average temperatures over the continental United States from 1850 – 20164 to give the average change 205 
over the industrial period. Because of the eight year lag required for calculating the shifting baseline, 206 
this gives perceptual baselines for the period 1858 – 2017 (Supplementary Figure 10).  207 

Temperature anomalies are calculated for the 21st century based on 40 simulations from 1920 to 2100 208 
with the CESM under RCP 8.59. Population-weighted averages are taken over the continental United 209 
States (2015 distribution). Rolling perceptual baselines are calculated for the period 1950 – 2100 based 210 
on the estimated learning model and then temperature anomalies are calculated on an annual basis 211 
relative both to the 1987-2017 average and to the rolling perceptual baseline. 212 

  213 

  214 

                                                            
1 In other words, experiencing a cold (hot) anomaly in just one year results in substantially more (less) weather 
posts relative to no temperature anomaly in that year. But if the same cold (hot) anomaly was also experienced 
during the “learning period” (i.e. between 2 and 8 years ago), the response is dampened, consistent with people 
learning from their experiences in this time period to set their expectations about current temperature. 
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Supplementary Material 215 

 216 

Supplementary Figure 1: Number of tweets per week geolocated in the continental United States 217 

 218 

 219 

 220 

Hot Anomalies  Manual Classification 
  Weather Not Weather  
Automated Classification Weather 806 694 

Not Weather 6 1494 
Cold Anomalies  Manual Classification 
  Weather Not Weather  
Automated Classification Weather 811 689 

Not Weather 5 1495 
 221 

Supplementary Table 1: Results of the manual validation of 6,000 tweet classifications. Tweets were randomly 222 
selected from county-weeks with unusually hot and cold temperatures after controlling for all regression controls 223 
as well as reference temperature. Each tweet was classified by three different people and the modal classification 224 
used in the validation. Additional information in Supplementary Methods. 225 

 226 
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 227 

Supplementary Figure 2: Graphical depiction of residual variation in temperature used in the regression model, for 228 
Cook County IL. Raw temperature values are shown in grey. County fixed-effects remove the mean for each county 229 
over the period of twitter data to center the temperatures around zero (green line). State by month-of-year fixed-230 
effects remove the seasonality for the state. This residual variation (purple line), interacted with average 231 
temperatures in the reference and recent time periods is used to identify model coefficients. 232 

  233 
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 234 

 Naïve Model Informed Model Change Model
Tmax      -2.952e-2***

(4.000e-3) 
    -1.800e-2***

(2.692e-3) 
   -1.808e-2***

(2.676e-3) 
Tmax2     6.941e-4***

(7.991e-5) 
 7.702e-4**
(2.431e-4) 

   8.663e-4***
(2.506e-4) 

Reference -4.707e-3
(4.054e-3) 

4.424e-3
(4.930e-3) 

Reference2  1.108e-3**
(3.989e-4) 

 1.064e-3*
(4.172e-4) 

Tmax * Reference   -3.496e-3***
(5.268e-4) 

   -3.839e-3***
(5.415e-04) 

Tmax2 * Reference   7.912e-5***
(1.073e-5) 

   8.124e-5***
(1.054e-5) 

Tmax * Reference2 5.065e-5*
(2.138e-5) 

 5.360e-5*
(2.112e-5) 

Tmax2 * Reference2   -1.887e-6***
(4.011e-7) 

   -1.915e-6***
(3.974-07) 

Change (Recent – 
Reference) 

   1.917e-2***
(3.967e-3) 

Tmax * Change    -1.670e-3***
(4.590e-4) 

Reference * Change  1.147e-3*
(4.977e-4) 

Adjusted R2
 (projected 

model): 
0.291 0.294 0.294

F-Test of Informed vs 
Naïve Model: 

    
 19.23***     (4, 48 dof) 

 

F-Test of Change vs 
Informed Model: 

  
    26.32***      (3, 48 dof) 

  
 235 

Supplementary Table 2: Regression results comparing a naïve model excluding the effect of reference 236 
temperatures, an informed model that allows the response to temperature to differ depending on reference 237 
temperatures for that county for that time of year, and a change model that adds the change in temperature 238 
between reference and recent periods as an explanatory variable. Dependent variable is the logged number of 239 
weather tweets. All specifications include controls for mean precipitation, relative humidity, % cloud cover, and 240 
the number of Twitter users (logged), as well as county, state by month-of-year, and year fixed effects. Standard 241 
errors are clustered at the state level. Significance codes: *p<0.05;  **p<0.01; ***p<0.001 242 

 243 



10 
 

 244 

Supplementary Figure 3: Marginal effect of 1 degree warmer temperatures on the number of weather tweets for 245 
three reference temperatures (approximately the 25th, 50th, and 75th percentiles of reference temperatures in our 246 
sample). This the gradient of the curves shown in Figure 2a. Dashed lines show the 95% confidence intervals. 247 

 248 

Supplementary Figure 4: As Figure 2a, response curves are from a model allowing for an asymmetric (quartic) 249 
response to temperature.  250 
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 251 

 Full Sample Coldest Third Hottest Third
Adjusted R2 (projected 
model):  

0.289 0.261 0.226

F Test Temperature Anomaly 
Terms: 

19.23     
(12, 48 dof, p<1e-12) 

49.33
(12, 48 dof, p<1e-12) 

6.46 
(12, 48 dof, p<1e-10) 

  
Number of Observations: 373,625 124,528 124,568
Spline Basis Temperature: Cubic, no internal knots Cubic, no internal knots Cubic, no internal knots

Lags: Cubic, 2 knots equally
spaced in log space 

Cubic, 2 knots equally 
spaced in log space 

Cubic, 2 knots equally 
spaced in log space 

Number of Temperature 
Anomaly Variables in Cross-
Basis: 

12 12 12 

Number of Lags: 15 15 15 
Supplementary Table 3: Summary of non-linear dynamic lag models fit using the dlnm package in R10. The same 252 
model is fit using the full sample and divided into the coolest third of reference temperatures and the hottest third 253 
of reference temperatures. Temperature anomalies are defined relative to the reference period (1981-1990). 254 
Dependent variable is the logged number of weather tweets. All specifications include controls for mean rainfall, 255 
relative humidity, % cloud cover, and the number of Twitter users (logged), as well as county, state by month-of-256 
year, and year fixed effects. Standard errors are clustered at the state level. 257 

 258 

 259 

 260 

a) 
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261 
Supplementary Figure 5: a) Three-dimensional representation of the fitted response surface for the cold sample of 262 
reference temperatures. Shows the fractional change in the number of tweets about weather, relative to an 263 
instantaneous zero anomaly as a function of both temperature anomaly (Realized Tmax – Reference) and lagged 264 
exposure. b) As Figure 3 in the main text except showing the estimated lagged effects rather than the cumulative 265 
sum of lagged effects with 95% confidence intervals. The marked areas show the period defined as the “learning 266 
period” and used to estimate the weights of the learning model. The learning period is defined as the period over 267 
which experience of temperature anomalies reduces the instantaneous effect of those anomalies. For both warm 268 
and cold anomalies, this is the period between 2 and 8 years ago. 269 

 270 

 271 

Supplementary Figure 6: As Figure 3 in main text, but estimated using the sample in the hottest third of reference 272 
temperatures.  273 

 274 

b) 
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 275 

Supplementary Figure 7: As Figure 3 in main text, but estimated using the full sample. 276 

 277 

Supplementary Figure 8: As Figure 3 in main text, but with additional results from alternative specifications of the 278 
dynamic lag model (dashed lines). The four alternative specifications include a quadratic rather than cubic 279 
response to the temperature anomaly and changing the number of internal knots in the lag spline from 2 to 1, 3, 280 
and 4. 281 
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 282 

Supplementary Figure 9: Weights in learning model based on coefficient values during the learning period defined 283 
using the estimated lag coefficients shown in Supplementary Figure 4. Standard errors show the 95% confidence 284 
interval calculated using the delta method.  285 

 286 

Supplementary Figure 10: Population-weighted annual average baseline temperatures over the continental United 287 
States, updated based on the learning process derived from the dynamic lag model and observed temperatures3. 288 
Shaded areas show the 95% confidence interval associated with statistical uncertainty in the coefficients of the lag 289 
model, calculated using the delta method. 290 



15 
 

 291 

References 292 

1. PRISM. Oregon State University. 293 

2. Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S., Hnilo, J. J., Fiorino, M. & Potter, G. L. NCEP-DOE AMIP-II 294 
Reanalysis (R2). Bull. Am. Meteorol. Soc. 83, 1631–1643 (2002). 295 

3. BEST. Berkeley Earth Data. (2018). Available at: http://berkeleyearth.org/data/. (Accessed: 5th March 296 
2018) 297 

4. CIESIN, University, C. & CIAT. Gridded Population of the World, Version 3: Population Density Grid. 298 

5. KNMI. Climate Explorer. (2015). Available at: climexp.knmi.nl. (Accessed: 1st July 2016) 299 

6. Gasparrini, A. Distributed Lag Linear and Non-Linear Models in R: The Package dlnm. J. Stat. Softw. 43, 1–300 
20 (2011). 301 

7. Almon, S. The Distributed Lag Between Capital Appropriations and Expenditures. Econometrica 33, 178–302 
196 (1965). 303 

8. Oehlert, G. W. A Note on the Delta Method. Am. Stat. 27–29 (1992). 304 

9. Kay, J. E., Deser, C., Philips, A. S., Mai, A., Hannay, C., Strand, G., Arblaster, J. M., Bates, S., Danabasoglu, G., 305 
Edwards, J., Holland, M., Kushner, P., Lamarque, J.-F., Lawrence, D., Lindsay, K., Middleton, A., Munoz, E., 306 
Neale, R., Oleson, K., et al. The Community Earth System Model (CESM) Large Ensemble Project: A 307 
Community Resource for Studying Climate Change in the Presence of Internal Climate Variability. Bull. Am. 308 
Meteorol. Soc. 96, 1333–1349 (2013). 309 

10. Gasparrini, A., Armstrong, B. & Scheipl, F. Package ‘dlnm’. (2017). Available at: https://cran.r-310 
project.org/web/packages/dlnm/dlnm.pdf.  311 

 312 


