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Abstract

We consider the identification and estimation of demand systems in models of imperfect
competition. Under the usual assumption of profit maximization, the bias that arises from
price endogeneity can be resolved without the use of instruments. In many standard de-
mand systems, we show that the biased coefficient from an ordinary least squares regression
of (transformed) quantity on price can be expressed as function of the structural demand
parameters. With a covariance restriction on unobservable shocks, these parameters can be
identified. Further, it can be possible to place bounds on the structural parameters without
imposing a covariance restriction. We illustrate the methodology with applications to the
cement industry and the airline industry.
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1 Introduction

A central challenge of demand estimation is price endogeneity. If prices reflect demand shocks
that are not observed by the econometrician, then ordinary least squares regression (OLS) does
not recover the casual demand curve (Working, 1927). In this paper, we reconsider whether
exogenous variation in prices is necessary to recover causal demand parameters. We show that
the supply-side assumptions already maintained in many structural models dictate how prices
respond to demand shocks. By leveraging these assumptions in estimation, it is possible to
correct for endogeneity bias without exogenous variation in prices. The consistent estimation
of empirical models has been a major focus of research in industrial organization and has,
thus far, relied heavily on instruments (e.g., Berry et al. (1995); Bresnahan (1996); Hausman
(1996); Berry and Haile (2014)).

Our methodology begins with an analysis of equilibrium variation in prices and (possibly
transformed) quantities. We show that, with many standard empirical models of imperfect
competition, the bias in OLS estimates is a function of data and demand parameters. Thus,
OLS estimates are informative, as they capture a blend of the demand curve and the endoge-
nous response by firms. The supply-side assumptions may be used to construct bounds on the
structural parameters and, with the addition of a surprisingly weak assumption, achieve point
identification. The methodology essentially uses economic theory as a substitute for exogenous
variation in prices, allowing for consistent estimates of structural parameters without the use
of instruments.

Consider a general case in which price is determined by additively separable markup and
marginal cost terms, and demand takes a semi-linear form that nests the discrete-choice models
common in empirical research (Berry, 1994). In this setting, the OLS bias can be decomposed
into two components: (i) the covariance between demand shocks and markups and (ii) the
covariance between demand shocks and marginal costs. Using the supply-side model, the first
component of bias can be recovered from the data. Therefore, the surprisingly weak assumption
needed for point identification relates to the covariance between the unobserved shocks to
demand and marginal costs. If the econometrician has prior knowledge of this covariance, then
typically the price parameter is identified.

We first develop intuition using a model of a monopolist with constant marginal costs and
linear demand (Section 2). Equilibrium variation in prices and quantities (p and ¢) is generated
by uncorrelated demand and cost shocks (£ and 7) that are unobservable to the econometrician.
We prove that consistent estimate of the price parameter, 3, is given by
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where 3915 is the price coefficient from an OLS regression of quantities on prices, and £9L5



is a vector of the OLS residuals. The information provided by OLS regression is sufficient
for the consistent identification of the structural parameters. This holds whether variation
arises predominately from demand shocks or from supply shocks—economic theory allows for
identification of the structural parameter even amidst a cloud of price-quantity pairs.

We obtain our baseline results (Section 3) under two common assumptions about demand
and supply. We assume that demand is semi-linear in prices after a known transformation.
This assumption nests many differentiated-products demand systems, including the random
coefficients logit (e.g., Berry et al. (1995)). On the supply side, we begin by assuming that firms
compete in prices a la Nash and have constant marginal costs. Our core identification result is
that the price parameter, (3, solves a quadratic equation in which the coefficients are functions
of the data and the covariance between unobserved shocks to demand and marginal costs,
Cov(&,n). We provide a sufficient condition under which 5 is the lower root of the quadratic;
if the condition holds then knowledge of this covariance point identifies 5. We then derive a
consistent three-stage estimator from the quadratic formula. The estimator is constructed from
the OLS coefficients and residuals, and, based on Monte Carlo experiments, performs well in
small samples.

Our three-stage estimator is developed under the assumption of uncorrelatedness: Cov(§,n) =
0. This restriction could, alternatively, be used to construct a method-of-moments estimator,
which obtains identical estimates with greater computational burden. Assuming orthogonality
between supply and demand shocks is not uncommon in empirical work, but the implications
for identification in models of imperfect competition have not previously been formalized.! In
other contexts, the use of covariance restrictions has been explored since early Cowles Founda-
tion research (Koopmans et al., 1950), as we describe later.

Even without exact knowledge of Couv(,n), supply-side restrictions can be used to place
bounds on 5. First, weaker assumptions about Cov(&, n) that are motivated by the economic
environment can be used to construct bounds on the causal parameters. For example, it may
be reasonable to assume that there is positive correlation between unobserved shocks to supply
and demand, in which case an upper bound on § is obtained. Second, certain values of 3
may be ruled out without any prior knowledge of Cov(&,n). We show how to construct these
prior-free bounds, which arise when the parameter values do not rationalize the data given the
assumptions of the model.

In Section 4, we relax the supply-side assumptions used to develop our baseline results.
We first prove that identification of § is preserved with non-constant marginal costs if the
non-constant portion can be brought into the model and estimated. We then consider multi-
product firms, which is a straightforward extension of the single-product case used to develop
notation earlier. Finally, we show that our approach is not dependent on the precise nature of

!See Thomadsen (2005), Cho et al. (2018), and Li et al. (2018) for examples in industrial organization. Tho-
madsen (2005) assumes no unobserved demand shocks, and Cho et al. (2018) assume no unobserved cost shocks;
both implicitly invoke uncorrelatedness.



the competitive game. Instead, it relies on the general property that prices can be structurally
decomposed into additively separable marginal costs and markup terms. Our identification
result and three-stage estimator are easily adapted to other models of competition, including
Cournot and consistent conjectures.

We provide two empirical applications in Section 5. The first examines the cement in-
dustry using the model and data of Fowlie et al. (2016) [“FRR”], extending the approach to
Cournot competition. In this setting, the institutional details allow for an assessment of the
uncorrelatedness assumption. Unobserved demand variation reflects local construction activity,
whereas marginal cost variation is due to capacity utilization and coal prices. After incorpora-
ting capacity constraints into the model, uncorrelatedness is a reasonable assumption if local
construction activity is orthogonal to coal prices. There is a theoretical basis for such an identi-
fying assumption: if coal suppliers have limited market power and roughly constant (realized)
marginal costs, then coal prices should not respond much to construction demand. Indeed, this
logic motivates the use of coal prices as an instrument in FRR. Not surprisingly, a three-stage
estimator obtains results similar to two-stage least squares using the FRR instruments. If capa-
city constraints are not incorporated into the model, then we expect that demand shocks drive
up marginal costs via the capacity constraints, leading to a positive correlation in unobserved
shocks. We show that an alternative assumption of Cov(£,n) > 0 is sufficient to place an upper
bound on the price parameter that is roughly 50 percent more negative than the OLS estimate.

The second empirical application examines the airline industry using the model and data of
Aguirregabiria and Ho (2012) [“AH”]. The nested logit demand system in the application has
a second endogenous regressor, corresponding to the nesting parameter . We show how to
incorporate additional restrictions to identify such parameters. Natural candidates include in-
struments and covariance restrictions that are generalized from the uncorrelatedness assump-
tion. For example, if shocks are uncorrelated at the product level, it may be reasonable to
assume that mean shocks are uncorrelated when aggregated by product group. Such supple-
mental moments are sufficient to point identify the demand system, and we show that different
specifications for our three-stage estimator all move the parameter estimates in the expected
direction relative to OLS. We then consider set identification under weaker assumptions. We
construct prior-free bounds and bounds under the assumption of (weakly) positive correlation
in shocks. In our application, we are able to rule out values of ¢ less than 0.599 for any va-
lue of 3, as these lower values cannot generate positive correlation in both product-level and
product-group-level shocks. We obtain an upper bound on 3 of -0.067 across all values of o.
Together, the three sets of bounds provide the identified set for (3, o).

Section 6 provides two discussions that help frame the methodology we introduce. First,
we argue that an understanding of institutional details can allow for an assessment of uncor-
relatedness even though the structural error terms are (by definition) unobserved. Indeed,
sometimes the institutional details will suggest that uncorrelatedness is unreasonable. Pro-



ducts with greater unobserved quality might be more expensive to produce, demand shocks
could raise or lower marginal costs (e.g., due to capacity constraints), or firms might invest
to lower the costs of their best-selling products. These cases are problematic unless the con-
founding variation can be absorbed by control variables or fixed effects. Second, we relate
uncorrelatedness to the instrumental variables approach. The most obvious similarity is that
both approaches rely on orthogonality conditions that are not verifiable empirically but can be
assessed with institutional details. This connection is especially clear with the so-called “Haus-
man” instruments—prices of the same good in other markets—for which consistency requires
orthogonality among demand shocks across markets. However, the assumptions embedded by
the two approaches are not generally nested: uncorrelatedness does not require any source of
exogenous variation but does require a correctly-specified supply-side model.

Our research builds on several strands of literature in economics. Early research at the
Cowles Foundation (Koopmans et al., 1950) examines the identifying power of covariance re-
strictions in linear systems of equations, and a number of articles pursued this agenda in sub-
sequent years (e.g., Fisher (1963, 1965); Wegge (1965); Rothenberg (1971); Hausman and
Taylor (1983)). The extension to semi-parametric models is provided in Matzkin (2016) and
Chiappori et al. (2017)), but market power is not considered. To help develop the connections
between methodologies, we provide a new identification proof for perfect competition that uses
the techniques developed herein (Appendix A).

A parallel literature examines the identification of supply and demand models using maxi-
mum likelihood techniques, under the assumptions that the distributions of demand and cost
shocks are known to the econometrician and independent. Leamer (1981) provides conditions
under which the price parameter can be bounded using only the endogenous variation in prices
and quantities. Feenstra (1994) extends the methodology to estimate a model of monopolistic
competition.? Using Bayesian techniques, Yang et al. (2003) further extends the approach to
oligopoly. Published comments on this article point out that it is unclear how to write a cohe-
rent likelihood function for oligopoly games because multiple equilibria can exist (Bajari, 2003;
Berry, 2003). By contrast, our approach does not require a likelihood function and provides
consistent estimates in the presence of multiple equilibria. Further, it allows the econometrician
to relax distributional assumptions. These advantages may make our approach relatively more
palatable for oligopoly models.>

Price endogeneity has been a major focus of modern empirical and econometric research
in industrial organization. Typically, the challenge is cast as a problem of finding valid instru-
ments. Many possibilities have been developed, including the attributes of competing products

2Leamer attributes an early version of his results to Schultz (1928). Broda and Weinstein (2006) and Hottman
et al. (2016) have extended this approach in models of international trade.

3For discussions and extensions of the Yang et al. (2003) approach in the marketing literature, see Rossi et al.
(2005), Dotson and Allenby (2010), and Otter et al. (2011). At least one seminal article in industrial organiza-
tion, Bresnahan (1987), estimates an oligopoly model of supply and demand with maximum likelihood under the
assumption of independent shocks.



(Berry et al., 1995; Gandhi and Houde, 2015), the prices of the same good in other markets
(e.g., Hausman (1996); Nevo (2001); Crawford and Yurukoglu (2012)), or shifts in the equili-
brium concept (e.g., Porter (1983); Miller and Weinberg (2017)).* When valid instruments are
available, the estimation techniques presented here may be used to construct overidentifying
restrictions and test the model.

2 A Motivating Example: Monopoly Pricing

We introduce the supply-side identification approach with a motivating example of monopoly
pricing, in the spirit of Rosse (1970). In each market ¢ = 1,...,7, the monopolist faces a
downward-sloping linear demand schedule, ¢; = o + Bp; + &, where ¢; and p; denote quantity
and price, respectively, 5 < 0 is the price parameter, and &; is mean-zero stochastic demand
shock. Marginal cost is given by the function ¢; = ~ + 7, where ~ is some constant and 7
is a mean-zero stochastic cost shock. Prices are set to maximize profit. The econometrician
observes vectors of prices, p = [p1,p2, ..., pr|, and quantities, ¢ = [q1, q2, - - ., g7’ The markets
can be conceptualized as geographically or temporally distinct.

An OLS regression of g on p obtains a biased estimate of /3 if the monopolist’s price reflects
the unobservable demand shock, as is the case here given profit maximization. Formally,

sors _ Cov(p,q)  »p Cou(&,p)
b ~ Var(p) — Pt V) Var(p) (1)

The monopolist’s profit-maximization conditions are such that price is equal to marginal cost
plus a markup term: p; = v+ n — (g—g>_1 q:- Thus, the numerator of the OLS bias can be
decomposed into the covariance between demand shocks and markups and the covariance
between demand shocks and marginal cost shocks. This leads to our first theoretical result,
which we obtain under the uncorrelatedness assumption that Cov(&,n) = 0:

Proposition 1. Let the OLS estimates of (., ) be (&°L°, BOLS) with probability limits (a9~ , BOL5),
aOLS _ gOLSp,  When demand

shocks and cost shocks are uncorrelated, the probability limit of the OLS estimate can be expres-

and denote the residuals at the limiting values as £°7° = ¢; —

sed as a function of the true price parameter, the residuals from the OLS regression, prices, and

quantities:
1 Cov(€9"%,q)

B+ St Var(p)

BOLS = plim <BOLS) —g— 2)

Proof: We provide the proofs in this section for illustrative purposes; most subse-

“Byrne et al. (2016) proposes a novel set of instruments that leverage the structure of a discrete choice demand
model with differentiated-products price competition. Nevo and Wolfram (2002) explores whether covariance
restrictions can bound parameters (see footnote 41 of that article).



quent proofs are confined to the appendix. Reformulate equation (1) as follows:

Cou(&,n — %q) 1 Cov(¢, q)
ors _ g~ BV _ g —ZNUSD
8 B+ )

Var(p) B Var(p

The first equality holds due to the first-order condition p = v + 7, — %q. The second

equality holds due to the uncorrelatedness assumption. As a + fp + & = o959 +

BOLSp 4 ¢OLS we have

Cov(€,q) = Cou(¢? — (B —B°%)p,q)
= Cov(e9% q) — (B — BOF5)Cov(p, q)

1 Cov(¢, q)
_ oLs .\ _ *
- COU(& 7Q) ,8 Var(p) CO’U([), q)
Collecting terms and rearranging implies
L000(6,0) = —— o Covl™g)
g oS D= 8 + Coulpa) ov 4

Var(p)

Plugging into the reformulation of equation (1) obtains the proposition. QED.

The proposition makes clear that, among the objects that characterize 3“2, only 3 does not

have a well understood sample analog. Further, as 59

can be estimated consistently, the
proposition suggests the possibility that 5 can be recovered from the data. Indeed, a closer

inspection of equation (2) reveals that 3 solves a quadratic equation:

Proposition 2. When demand shocks and marginal cost shocks are uncorrelated, (3 is point iden-
tified as the lower root of the quadratic equation

2 Cov(p,q) ,oLs Cov(§9F% q)  Cov(p,q) ,ors\ _
v +ﬁ< Var(p) © >+<_ Varp)  Var(p) © >_O ®

and a consistent estimate of 3 is given by

h3-Stage __ ) 2 COU(éOLSa Q)
FTE = _\/<BOLS) + Var(p) )

Proof: The quadratic equation is obtained as a re-expression of equation (2). An
application of the quadratic formula provides the following roots:

2
_ ([ Cov(pa) _ pOLS Cov(p,9) _ goLS Cov(€9LS ,q) | Cov(p,9) goLs
( Var(p) ﬂ ) * \/( Var(p) ﬁ ) +4 ( Var(p) + Var(p) 6 )

2
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Figure 1: Price and Quantity in the Monopoly Model
Notes: Figure displays equilibrium prices and quantities under four different spe-
cifications for the distribution of unobserved shocks to demand and marginal
costs. The line in each figure indicates the slope obtained by OLS regression.

In the univariate case, C{,O;’g’g) = BOLS  which cancels out terms and obtains

the probability limit analog of equation (4). It is easily verified that (894%)" +
Cov(€91% q) : i ;
Ve 0 so both roots are real numbers. The upper root is positive, so (3 is
point identified as the lower root. Equation (4) provides the empirical analog to
the lower root. As the sample estimates of covariance terms are consistent for the

limits, it provides a consistent estimate of 3.

The first part of the proposition states that S solves a quadratic equation. There are two real
roots, but only one is negative, so point identification is achieved. Further, an adjustment to the
OLS estimator is sufficient to correct for bias. We label the estimator 33-519¢ for reasons that
become evident with the more general treatment later in the paper.

An additional simplification is available. Because (2% = ¢ — a5 — pOL5p,, we have

C‘”‘J}E;O (;“:"I) = \KZ:E% — pOLs %’(’1’7‘%). Plugging into equation (4) obtains the following corollary:

Corollary 1. 33Stge — “jg:gl);

In the monopoly model, the price parameter is identified from the relative variation in prices
and quantities. To build intuition about this approach, we recast the monopoly problem in
terms of supply and demand in Appendix A.1, and derive the estimator building on Hayashi’s
(2000) textbook treatment of bias with simultaneous equations.

Consider the following numerical example. Let demand be given by ¢, = 10 — p; + & and
let marginal cost be ¢; = 7, so that («, 3,7) = (10,—1,0). Let the demand and cost shocks

7



Table 1: Numerical Illustration for the Monopoly Model

(1) (2) 3) 4)
poLs —0.89 —0.42  0.36 0.88
Var(q) 1.47 1.11 1.08 1.38
Var(p) 1.45 1.09 1.06 1.37
Cov(£919  q) 0.31 0.92 0.94 0.32
Cov(£9F5 q)/Var(p)  0.21 0.85 0.89 0.24
[33-Stage ~1.004 —1.009 —1.009  —1.004

Notes: Based on numerically generated data that conform to the motivating example of
monopoly pricing. The demand curve is ¢; = 10—p;+¢; and marginal costs are ¢; = 7,
so that (5o, 8,70) = (10,—1,0). In column (1), & ~ U(0,2) and n ~ U(0,8). In
column (2), £ ~ U(0,4) and n ~ U(0, 6). In column (3), £ ~ U(0,6) and n ~ U(0,4).
In column (4), £ ~ U(0,8) and n ~ U(0, 2). Thus, the support of the cost shocks are
largest (smallest) relative to the support of the demand shocks in the left-most (right-
most) column.

have independent uniform distributions. The monopolist sets price to maximize profit. As is
well known, if both cost and demand variation is present then equilibrium outcomes provide
a “cloud” of data points that do not necessarily correspond to the demand curve. To illustrate
this, we consider four cases with varying degrees of cost and demand variation. In case (1),
¢ ~U(0,2) and n ~ U(0,8). In case (2), £ ~ U(0,4) and n ~ U(0,6). In case (3), { ~ U(0,6)
and n ~ U(0,4). In case (4), £ ~ U(0,8) and  ~ U(0,2). We randomly take 1,000 draws for
each case and calculate the equilibrium prices and quantities.

The data are plotted in Figure 1 along with OLS fits. The experiment represents the classic
identification problem of demand estimation: the empirical relationship between equilibrium
prices and quantities can be quite misleading about the slope of the demand function. However,
Proposition 2 and Corollary 1 state that the structure of the model together with the OLS
estimates allow for consistent estimates of the price parameter. Table 1 provides the required

BOLS

empirical objects. The OLS estimates, , are negative when the cost shocks are relatively

more important and positive when the demand shocks are relatively more important, as also
is revealed in the scatterplots. By contrast, %O(L;’Q) is larger if the cost and demand shocks
have relatively more similar support. Incorporating this adjustment term following Proposition
1 yields estimates, 335%¢, that are nearly equal to the population value of —1.00. Note also
that the variance of price and quantity are similar in each column, consistent with Corollary 1

given the data generating process.

3 Methodology: Bounds and Three-Stage Estimation

We present our main results through the lens of differentiated-products Bertrand competition.
We provide identification conditions, show how bounds can be constructed without strong co-



variance restrictions, and then consider estimation under uncorrelatedness via the three-stage
approach and the method of moments. We illustrate small-sample properties with a numerical
simulation. For extensions and a discussion, see Sections 4 and 6.

3.1 Data Generating Process

Let there be ;7 = 1,2,...,J products in each of ¢ = 1,2,...,T markets, subject to downward-
sloping demands. The econometrician observes vectors of prices, p; = [p1¢,p2t, - - -, pst)’, and
quantities, ¢ = [q1¢, g2, - - - , pJt|’, corresponding to each market ¢, as well as a matrix of covaria-
tes X; = [x1; o ... zj¢]. The covariates are orthogonal to a pair of demand and marginal cost
shocks (i.e,. E[X¢] = E[Xn] = 0) that are common knowledge among firms but unobserved by
the econometrician.> We make the following assumptions on demand and supply:

Assumption 1 (Demand): The demand schedule for each product is determined by the following
semi-linear form:
hje = h(gje, wie; 0) = Bpje + T + it (5)

. h.
where (i) gq?:
J

derivatives of h(-) with respect to q exist as functions of the data and o.

> 0, (i) wj; is a vector of observables and o is a parameter vector, and (iii) the total

Example: For the logit demand system, h(gj:; wjt, o) = In(s;:/wj:), where quantities
are in shares (¢j; = s;;) and wj; is the share of the outside good (s(;). There are no
additional parameters in o.

The demand assumption restricts attention to systems for which, after a transformation of
quantities using observables (w;;) and nonlinear parameters (o), there is additive separability
in prices, covariates, and the demand shock. The vector w;; can be conceptualized as including
the price and non-price characteristics of products, in particular those of other products that
affect the demand of product j. Often, only a few observables are necessary to construct the
transformation, as in the logit discrete choice example above, where the share of the outside
good is a sufficient statistic to capture demand for other products.

Other typical demand systems also fit into this framework, including models with additional
endogenous covariates. For the nested logit demand model, w;; consists of two elements: the

outside share (so;) and the within-group share (5;,). One nonlinear parameter (o) is needed

719
for the transformation: h(sj¢; wj, 0) =Ins; — In sl)t — oln3j, ;. For the more flexible random
coefficients logit demand system, h(g;:; wj:, o) can be defined as the mean utility and calculated
using the contraction mapping of Berry et al. (1995) for any candidate o vector. The demand
assumption also nests monopolistic competition with linear demands (e.g., as in the motivating

example). We derive these connections in some detail in Appendix B.

>We make the usual assumption that prices and covariates are linearly independent to allow for OLS estimation.



The third condition on the demand system allows us to complete an identification proof
by constructing the first-order conditions implied by the demand system and the supply-side
assumptions, which we introduce next. The total derivative is given by

dhjt_(?hjt 8h]’t dwjt
dgjt  Oqjt  Owjr  dgj

When an outcome variable is used in w;; to construct the transformation, such as in the discrete

dw; .
;;7; depends upon what is
J

held fixed under the competitive assumptions (e.g. the prices of other firms at the Bertrand-

choice demand systems mentioned above, it may be the case that

Nash equilibrium.). This should be accounted for when constructing the derivatives.

. e oh;

Example: For the logit demand system at a Bertrand-Nash equilibrium, aq?f = i,
J J

Ohjt _ 1 dwjr _ dsot/dpjt __ sqq . dhjy 1

Fus = " s0r i = @y dps = " Tost Thus we obtain T = sii=sn” These

derivatives are calculated holding the prices of other products fixed.

Assumption 2 (Supply): Each firm sells a single product and sets its price to maximize profit
in each market. The firm takes the prices of other firms as given, knows the demand schedule in

equation (5), and has a linear constant marginal cost schedule given by
Cjt = x;-t’y + Njt- (6)

Under assumptions 1 and 2, there is a unique mapping from the data and parameters to the
structural error terms (£,7). The supply-side assumption is strong but allows for a base set of
identification results to be derived with minimal notation. In subsequent sections, we provide
the additional notation necessary for models with multi-product firms, non-constant marginal
costs, and Nash-Cournot competition. Note that supply and demand may depend on different
covariates; this is captured when non-identical components of « and ~ are equal to zero.

We further assume the existence of a Nash equilibrium in pure strategies, and that each firm
satisfies the first-order condition

1dhj

Pjt = Cjt — B@Qgt- 2

To obtain this expression, take the total derivative of h with respect to g;, re-arrange to obtain

% = %ZZ?:, and substitute into the more standard formulation of the first-order condition:
J J
p=c— %’q. First-order conditions that admit multiple equilibria are unproblematic. It must

be possible recover (£,7n) from the data and parameters, but the mapping to prices from the

parameters, exogenous covariates, and structural error terms need not be unique.
Our identification result relies on the markup being proportional to the reciprocal of the

price parameter, which arises here due to the semi-linear demand system.® When this is the

5Thus, the semi-linear structure may not be necessary. In practice, one could start with a known first-order

10



case, equilibrium prices respond to the demand shock through markup adjustments, which are
fully determined by £, the structure of the model, and observables. Thus, first-order conditions
may be useful in analyzing the covariance of demand shocks and prices, which is proportional
to the the bias of the OLS estimate. As in the monopoly example of Section 2, this provides a
basis to correct the bias from OLS estimation and solve for the true price parameter. We develop
this identification argument below and then derive implications for inference.

3.2 Identification

We now formalize the identification argument for (3, the price parameter. We assume the pa-
rameters in o are known to the econometrician. The linear non-price parameters («, ) can be
recovered trivially given 3 and ¢.” We start by characterizing the OLS estimate of the price pa-
rameter, which is obtained from a regression of 4(:) on p and z. The probability limit contains

the standard bias term: .
Cov(p*,§)

gous _ Cont. )
- Var(p*)

Var(p*) =8+

®

where p* = [I — x(2’x)"'2']p is a vector of residuals from a regression of p on x. Plugging in
for price on the right-hand-side of equation (8) using the first-order conditions yields

,BOLS — A3 _ lCO’U(%q,f) 000(7776)

B Var(p*) Var(p*) ©

We express the unobserved demand shock ¢ in terms of the OLS residuals and parameters
to obtain our first general result: 3 solves a quadratic equation in which the coefficients are
determined by Cov({,n) and objects with empirical analogs.

Proposition 3. Under assumptions 1 and 2, the probability limit of the OLS estimate can be writ-
ten as a function of the true price parameter, the residuals from the OLS regression, the covariance
between demand and supply shocks, prices, and quantities:

OLS dh
BOLS — ﬁ . 1 Cov (f ? dgq q) B 1 COU(&? 77) (10)
3 Cov(p*,q) Var(p*) 5 Cov(p*,9%q) Var(p*)
Var(p*) Var(p*)

condition and show that it takes the form p;: = c¢j: — % f;+ for some function of the data f;;.

7An alternative interpretation is that the econometrician is considering a candidate o and wishes to obtain
corresponding estimates of (3, «, ), as in the nested fixed-point estimation routine of Berry et al. (1995) and Nevo
(2001) for the random coefficients logit demand system.

11



The price parameter (3 solves the following quadratic equation:

0 = 62
C’o’u(p*,%Q) Cov(&,n) oLS
< Var) T Varpr) 7 )7 1D
+ _BOLS Cov(p*, %q) B Cov <£OLS’ %q>

Var(p*) Var(p*)

Proof. See appendix.

Proposition 3 provides our core identification result. There are two main implications. First,
the quadratic in equation (11) admits at most two solutions for a given value of Cov(§, 7). It
follows immediately that, with prior knowledge of Cov (&, n), the price parameter § is set iden-
tified with a maximum of two elements (points). Indeed, as we show next, conditions exist that
guarantee point identification. Second, if the econometrician does not have specific knowledge
of Couv(¢,n), it nonetheless can be possible to bound 5. We consider point identification first,
as the intuition behind point identification maps neatly into how to construct bounds.

Assumption 3’: The econometrician has prior knowledge of Cov(§,n).

Proposition 4. (Point Identification) Under assumptions 1 and 2, the price parameter (3 is the
lower root of equation (11) if the following condition holds:

Cov(p*, %q) Cov (fOL57 %Q)
+
Var(p*) Var(p*)

0< ,BOLS (12)

and, furthermore, 3 is the lower root of equation (11) if and only if the following condition holds:

1 Cov(&:n) < Cov (p*, _%Q L Cov (p*,n)

B Var(p) T Var(p) Var(p*) (13)

Therefore, under assumptions 1, 2 and 3’, 3 is point identified if either of these conditions holds.

Proof. See appendix.

The first (sufficient) condition is derived as a simple application of the quadratic formula:
if the constant term in the quadratic of equation (11) is negative then the upper root of the
quadratic is positive and S must be the lower root. For some model specifications, the condition
can be proven analytically.® Otherwise it can be evaluated empirically using the data and

8An example is a monopolist with a linear demand system. Following the logic of Corollary 1, we have

Var(p*) Var(p*) - Var(p) >0

* OLS dh
ﬁOLS Cov(p ) %Q) + Cov (g ’ qu) Var(q)
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assumptions 1 and 2. If the sufficient condition holds, then § is point identified with prior
knowledge of Cov(&,n) because all the terms in equation (11) are known or can be obtained
from the data. If the condition fails, point identification of 3 is not guaranteed even with prior
knowledge of Cov (&, n), though the econometrician has reduced the identified set to two points.

The necessary and sufficient condition is more nuanced. Even with prior knowledge of
Cov(&,n), condition (13) contains elements that are not observed by the econometrician. Still,
for some specifications, the condition can be verified analytically.® The condition holds under
the standard intuition that prices increase both with demand and marginal cost shocks, provi-
ded that Cov(€,n) is not too positive. To see this in the equation, note that the term —%5 is the
shock to the inverse demand curve. The condition can fail if the empirical variation is driven
predominately by demand shocks and the model dictates that prices decrease in the demand
shock, which is possible with log-convex demand (Fabinger and Weyl, 2014).

3.3 Bounds

The model implies two complementary sets of bounds, neither of which requires exact know-
ledge of Cov(&,n). We start by developing what we refer to as bounds with priors. If the econo-
metrician has a prior over the plausible range of Cov(&, 1)), along the lines of m < Cov(§,n) < n,
then a posterior set for 3 can be constructed from the quadratic of equation (11). Each plausible
Cov(§,n) maps into one or two valid (i.e., negative) roots. Further, a monotonicity result that
we formalize below establishes that, under either condition (12) or (13), there is a one-to-one

mapping between the value of Cov(¢,n) and the lower root:

Lemma 1. (Monotonicity) Under assumptions 1 and 2, a valid lower root of equation (11) (i.e.,
one that is negative) is decreasing in Cov(&,n). The range of the function is (0, —00).

Proof. See appendix.

It follows immediately that a convex prior over Cov(§,n) corresponds to convex posterior
set. We suspect that, in practice, most priors will take the form Cov(&,n) > 0 or Cov(£,n) <
0. For example, an econometrician have reason to believe that higher quality products are
more expensive to produce (yielding Couv(&,n) > 0) or that firms invest to lower the marginal
costs of their best-selling products (yielding Cov(&,n) < 0). Priors of this firm generate one-
sided bounds on . Let r(m) be the lower root of the quadratic evaluated at Cov(§,n) = m.

?Consider again the example of a monopoly facing a linear demand system with Cov(¢,n) = 0. In the proof of

.. .. .. . . Cov(p*#ﬁ) COU(P*quZQ)
Proposition 4, we show that the necessary and sufficient condition is equivalent to 8 <

Var(p*) Var(p*)
C *,@ ov(p* . . . ope
With linear demand, we have that Of/gi(p‘j‘)‘ q) = CVEEIEP f)’) = B9LS, Thus, the right-hand-side simplifies to —3

using equation (8). Because 8 < 0, 8 < —/3 and the necessary and sufficient condition holds.
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Then under either condition (12) or (13), the prior Cov(§,n) > m produces a posterior set of
(—oc,r(m)], and the prior Cov(&,n) < m produces a posterior set of [r(m),0).1°

We now develop what we refer to as prior-free bounds. Even if the econometrician has
no prior about Cov(§,n), certain values may be possible to rule out because they imply that
the observed data are incompatible with data generating process of the model. To see whyj it is
helpful to represent the quadratic of equation (11) as az2+ bz +c, keeping in mind that one root
is 5 < 0. Because a = 1, the quadratic forms a U-shaped parabola. If ¢ < 0 then the existence of
a negative root is guaranteed. However, if ¢ > 0 then b must be positive and sufficiently large
for a negative root to exist. By inspection of equation (11), this places restrictions on Cov(§, n).

We now state the result formally:

Proposition 5. (Prior-Free Bound) Under assumptions 1 and 2, the model and data may bound
Cov(&,n) from below. The bound is given by

« dh C OLS dh
v | et oo (e )

dh
COU(&, 77) > Var(p*)ﬁOLS - COU(p*, 5 V(LT(]D*) VCLT(p*)

dq

The bound exists if and only if the term inside the radical is non-negative.

Proof. See appendix.

From the monotonicity result above, we can use the excluded values of Cov({,n) from this
result to rule out values of 3 as well. If point identification can be shown via the necessary and
sufficient condition, then an prior-free upper bound for $ is obtained by evaluating the lower
root of equation (11) at the prior-free bound of Cov(¢, 17).11

3.4 Estimation

The consistent estimation of 3 is possible if the conditions for point identification hold. The
econometrician must have prior knowledge of Cov(§,n). For the purposes of exposition, we
proceed here under the uncorrelatedness assumption, C'ov(¢,n) = 0, though the mathematics
extend to alternative restrictions.

Assumption 3 (Uncorrelatedness): Cov(¢,n) = 0.

There are two natural approaches to estimation. The first is to apply the quadratic formula
directly to equation (11). The second is to recast uncorrelatedness as a moment restriction of
the form E[¢'n] = 0 and use the method of moments. Of these, the first is more novel, and so
we open this section with the relevant theoretical result:

YNevo and Rosen (2012) develop similar bounds for estimation with imperfect instruments, defined as instru-
ments that are less correlated with the structural error term than the endogenous regressor.

Ulnterestingly, prior-free bounds are available only if the sufficient condition for point identification (condition
(12)) fails. When this occurs the term inside the radical is non-negative.
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Corollary 2. (Three-Stage Estimator) Under assumptions 1, 2, and 3, a consistent estimate of
the price parameter 3 is given by

2
x dh « dh FOLS dh
BS—Stage _ 1 BOLS B Cov (p » dg q) 7 BOLS N Cov (P » dg q) n 4C’O'U (§ ’ dg C])
2 Var(p*) Var(p*) Var(p*)

if either condition (12) or condition (13) holds.

The estimator is the empirical lower root of equation (11). It can be calculated in three
stages: (i) regress h(q) on p and x with OLS, (ii) regress p on 2 with OLS and obtain the residuals
p*, and (iii) construct the estimator as shown. The computational burden of the estimator is
trivial, which may be especially beneficial in practice if it nested inside of a nonlinear routine
for other parameters.'?

We now develop a method-of-moments estimator that converges at the empirical root(s) of
equation (11). Consider that the three-stage estimator rests on the moment condition E[¢c] =
0, which represents the combination of E[¢'n] = 0, E[X¢] = 0, and E[¢] = 0. An alternative
approach to estimation is to search numerically for a 3 that satisfies the corresponding empirical
moment, yielding

2

. 11 - 3
BMM = argmin | % Y &e(Fiw, 0, X) - cje(Frw, 0, X)
g<o | T t [ J¢] jEJt

where £(B; w, 0, X) and ¢(B; w, o, X) are computed given the data and the candidate parameter
using equations (5)-(7), and the firms present in each market ¢ are indexed by the set J;. The
linear parameters («, ) are concentrated out of the nonlinear optimization problem. We have
confirmed in numerical experiments that 3351 and 3MM are equivalent to numerical preci-
sion. Some care must be taken with the method-of-moments: if condition (12) fails then the
optimizer reach the minimum (zero) at either the upper or lower root, and when the condition
holds a local minimum may exist at the boundary value of the parameter space (as the opti-
mizer attempts to reach the minimum for the positive root). Further, the three-stage estimator
may immediately reject that a solution exists at the assumed value of Cov(§,n), whereas the
optimizer will return a solution.

There are three situations in which the method-of-moments approach may be preferred
despite its greater computational burden. First, analytical solutions for % may be unavaila-
ble with some specifications of the model, which diminishes the computation advantage of the

three-stage estimator. Second, if valid instruments exist, then the additional moments suggest

121f condition (13) fails then the empirical analog to the upper root of equation (11) provides a consistent estimate.
A more precise two-stage estimator is available for special cases in which the observed cost and demand shifters are
uncorrelated. See Appendix C for details
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a generalized method of moments estimator, allowing for efficiency improvements and specifi-
cation tests (e.g., Hausman (1978); Hansen (1982)). Finally, the three-stage estimator requires
orthogonality between the unobserved demand shock and all the regressors (i.e., E[X¢] = 0).
The method-of-moments approach can be pursued under a weaker assumption that allows for
correlation between ¢ and regressors that enter the cost function only. In this case, one would
replace E[¢'c] = 0 with E[¢'n] = 0 in the objective function.

3.5 Small-Sample Properties

We generate Monte Carlo results to examine the small sample properties of the estimators. We
consider a profit-maximizing monopolist that prices against a logit demand curve and has a
constant marginal cost technology:

h(qi;we) = log(q) —log(l —qi) = —Bpr + &

ct = T+

For simplicity, we set 8 = 1 and simulate data for z, £, n using independent U|0, 1] distributions.
For each draw of the data, we compute profit-maximizing prices and quantities. The mean price
and margin are 2.20 and 0.56, respectively, and the mean price elasticity of demand is —1.86.
We construct samples with 25, 50, 100, and 500 observations and estimate demand with each.
We repeat this exercise 1,000 times and examine the average and standard deviation of the
estimates. The estimators are the 3-Stage estimator, two-stage least squares (2SLS) using x;
as an instrument, a method-of-moments (“MM”) estimator based on the alternative moment
E[¢'n] =0, and OLS.

Table 2 summarizes the results. The bias present in 3-Stage, 2SLS, and MM is small even
with the smallest sample sizes. However, 3-Stage more consistently provides accurate estimates
than 2SLS and MM, as evidenced by the smaller standard deviation of the estimates. The
reason is that 3-Stage utilizes orthogonality between unobserved demand and marginal cost,
whereas 2SLS and MM exploit the relationship between unobserved demand and marginal cost
shifters—either observed (x;) or unobserved (1;)—which provide noisy signals about marginal
cost. One might be tempted to run a "first-stage" regression to test for the power of the different
cost components to predict prices. However, such a test has no bearing on the asymptotic
properties of the 3-Stage and MM estimators because exogenous supply-side variation need not
be observed by the econometrician and indeed need not even exist. This is both a strength and
a weakness: relaxing the requirement of observed exogenous variation comes at the cost of a
greater reliance on assumptions about how firms set prices in equilibrium.
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Table 2: Small Sample Properties of Estimators

Panel A: Average Estimates (Truth is 5 = —1.00)
Sample Size 3-Stage 2SLS MM OLS

25 -1.002 -1.008 -1.005 -0.885
50 -1.004 -1.012 -1.002 -0.889
100 -1.004 -1.006 -1.005 -0.891
500 -1.000 -1.001 -0.999 -0.887

Panel B: Standard Deviation of Estimates
Sample Size 3-Stage 2SLS MM OLS

25 0.160 0.276 0.208 0.168
50 0.109 0.182 0.141 0.114
100 0.078 0.123 0.101 0.082
500 0.035 0.053 0.045 0.037

Notes: The moments used for 3-Stage, 2SLS, MM, and OLS are E[¢/c],
E[¢'z], E[¢'n), and E[¢'p], respectively. The methods-of-moments

(“MM”) estimator is implemented with a one-dimensional grid search.

4 Generalizations

The results developed thus far rely on an accurate model of the data generating process and
some relatively strong (though common) restrictions on the form of demand and supply. In this
section, we consider generalizations to non-constant marginal costs, multi-product firms, and

non-Bertrand competition.

4.1 Non-Constant Marginal Costs

If marginal costs are not constant in output, then unobserved demand shocks that change
quantity also affect marginal cost. For example, consider a special case in which marginal costs
take the form:

cit = @y + 9(gje; ) + njt (14)

Here ¢(gji; A) is some potentially nonlinear function that may (or may not) be known to the
econometrician. Maintaining Bertrand competition and the baseline demand assumption, the
first-order conditions of the firm are:

1 dhj;
Pt = Ty + 9(qje; A) + nje + <_5dqj-tqjt> :

Markup

~~

Marginal Cost

Thus, provided ¢'(-; \) # 0, markup adjustments are no longer the only mechanism through
with prices respond to demand shocks. Unless knowledge of g(g;:; A) can be brought to bear,
the identification results of the preceding section do not extend without additional restrictions.
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This also can be seen from the OLS regression of (g, w;; o) on p and x, which yields a price
coefficient with the following probability limit:

~1Cou(&, B2a) | Cov(€, g(a))
B Var(p?) Var(p)

plim (3945 = g

The third term on the right-hand-side shows that bias depends on how demand shocks affect
the non-constant potion of marginal costs.

There are two ways to make progress. First, if ¢/(-; A\) can be signed then it is possible to
bound the price parameter, 3, even if point identification remains infeasible. A lead example
is that of capacity constraints, for which it might be reasonable to assume that Cov(§,n) =
0 and ¢'(;A) > 0, and thus that Cov(§,n*) > 0 where 7}, = 7;: + g(g;; A) is a composite
error term. Bounds with priors then can be constructed. Second, the econometrician may be
able to estimate g(g¢;:; A), either in advance or simultaneously with the price coefficient. Prior
knowledge of Cov(&, n) is sufficient to at least set identify [ in such a situation:

Proposition 6. Under assumptions 1 and 3 and a modified assumption 2 in which marginal costs

take the semi-linear form of equation (14), the price parameter 3 solves the following quadratic

equation:
_ (1 G 9(@) Y g
V- <1 Var(p*) > 0
Cou(p", %Q) Cov(§,n) GOLS Cov(p*ug(Q))BOLS L Cov(£9%9, g(q)) 3
Var(p*) Var(p*) Var(p*) Var(p*)
. Coup", Ga) nops  Cov(€9HS, )
Var(p*) Var(p*)

where BOLS is the OLS estimate and £°%5 is a vector containing the OLS residuals.

Proof. See appendix.

With the above quadratic in hand, the remaining results of Section 3 extend naturally. Although
the estimation of g(g;:; A) is not our focus, we note that a three-stage estimator of /5 could be
obtained for any candidate parameters in )\, thereby facilitating computational efficiency.

4.2 Multi-Product Firms

We now provide the notation necessary to extend our results to the case of multi-product firms
under our maintained assumptions. Let K denote the set of products owned by multi-product
firm m. When the firm sets prices on each of its products to maximize joint profits, there are
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| K| first-order conditions, which can be expressed as

dq .
> (e - Ck)af]f =—q; Vje K™
kGK"L p]

The market subscript, ¢, is omitted to simplify notation. For demand systems satisfying Assump-

tion 1,
Oqi, 1
oy
J dqy

dhj _ Ohjdg; | Ohj dw;
dg. — 0Ogj dgr. ' Owj dgy
fixed. Therefore, the set of first-order conditions can be written as

where the derivative is calculated holding the prices of other products

1 1
Y h—c) i =—=¢; Vi€ K™
P dhj/dg.

Stack the first-order conditions, writing the left-hand side as the product of a vector of mar-
. . _ 1 . .
kups (p; — ¢;) and a matrix A™ of loading components, A?(lj%i(k) = T jdg where i(-) indexes
products within a firm. Next, invert the loading matrix to solve for markups as function of the
loading components and —%qm, where ¢ is a vector of the multi-product firm’s quantities.
Equilibrium prices equal marginal costs plus a markup, where the markup is determined by the
inverse of A™ ((A™)~! = A™), quantities, and the price parameter:
1 m

Pi=4—3 (A™"g™)y(j) - (15)
Here, (A™q™),;) provides the entry corresponding to product j in the vector A™q™. As the
matrix A™ is not a function of the price parameter after conditioning on observables, this form
of the first-order condition allows us to solve for § using a quadratic three-stage solution ana-

d

logous to that in equation (2).13 Letting h = (A™¢™) i) be the multi-product analog for d—Zq,

we obtain a quadratic in 3, and the remaining results of Section 3 then obtain easily:

Corollary 3. Under assumptions 1 and 3, along with a modified assumption 2 that allows for
multi-product firms, the price parameter (3 solves the following quadratic equation:
0 = §°

Cov(p*,fb) Cov(&,1) _ A0LS
( Var(p*) * Var(p*) ’ )6

COU(p*,iL) ~OLS Cov(éOLS,iL)
+ B Var(p*) b B Var(p*)

13At this point, the reader may be wondering where the prices of other firms are captured under the adjusted
first-order conditions for multi-product ownership. As is the case with single product firms, we expect prices of
other firm’s products to be included in w;, which is appropriate under Bertrand price competition.
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where h is constructed from the first-order conditions of multi-product firms.

4.3 Alternative Models of Competition

Though our main results are presented under Bertrand competition in prices, our method ap-
plies to a broader set of competitive assumptions. Consider, for example, Nash competition
among profit-maximizing firms that have a single choice variable, a, and constant marginal
costs. The individual firm’s objective function is:

max (pj(a) — ¢;)g;(a).
a; |a,i7]

This generalized model of Nash competition nests Bertrand (¢ = p) and Cournot (a = ¢). The
first-order condition, holding fixed the actions of the other firms, is given by:

pjla) =c¢;j —

In equilibrium, we obtain the structural decomposition p = ¢ + u, where p incorporates the
structure of demand and its parameters. This decomposition provides a restriction on how
prices move with demand shocks, aiding identification. It can be obtained in other contexts,
including consistent conjectures and competition in quantities with increasing marginal costs.!*
When the markup is proportional to the reciprocal of the price parameter, then it is straight-
forward to extend our core identification result and implement the three-stage estimator. We
provide one such extension in the empirical application to the cement industry.

5 Empirical Applications

5.1 The Portland Cement Industry

Our first empirical application uses the setting and data of Fowlie et al. (2016) [“FRR”], which
examines market power in the cement industry and its effects on the efficacy of environmental
regulation. The model features Cournot competition among undifferentiated cement plants
facing capacity constraints.!> As we describe below, institutional details about cement demand
and the production process support the reasonableness of uncorrelatedness in the model.

We begin by extending our results to Cournot competition with non-constant marginal costs.
Let j = 1,...,J firms produce a homogeneous product demanded by consumers according to

“Nonetheless, some models are excluded. For example, a monopolist facing a log-linear demand schedule sets
prices according to p = ¢y, where € < 0 is the elasticity of demand.

15A published report of the Environment Protection Agency (EPA) states that “consumers are likely to view cement
produced by different firms as very good substitutes.... there is little or no brand loyalty that allows firms to

differentiate their product” EPA (2009).
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hQ;w) = Bp + 'y + & where Q = 3. ¢g;, and p represents a price common to all firms in
the market. Marginal costs are semi-linear, as in equation (14), possibly reflecting capacity
constraints. Working with aggregated first-order conditions, it is possible to show that the OLS
regression of h(Q);w;;) on price and covariates yields:

11 C’ov({,% ) N Cov(&,9)

AOLS
B Bj Var(p*) Var(p*)

plim(

where J is the number of firms in the market and g = %Z}Ll g(g;; M) is the average contri-
bution of ¢g(¢, \) to marginal costs. Bias arises due to markup adjustments and the correlation
between unobserved demand and marginal costs generated through g(¢; \).'® The identifica-
tion result provided in Section 4.1 for models with non-constant marginal costs extends.

Corollary 4. In the Cournot model, the price parameter 3 solves the following quadratic equation:

0 — (1_000(13*79))52

Var(p*)
L (LGl @@ L Covl&m)  pors  Covlp™.9) sors Cov(g?.9)) 4
J  Var(p*) Var(p*) Var(p*) Var(p*)
+ 1000 5Q) sors 1 CovE", Q)
J  Var(p*) J Var(p*)

The derivation tracks exactly the proof of Proposition 6. For the purposes of the empirical

exercise, we compute the three-stage estimator as the empirical analog to the lower root.
Turning to the application, FRR examine 20 distinct geographic regions in the United States

annually over 1984-2009. Let the demand curve in region r and year ¢ have a logit form:

h(Qrt; w) = hl(Qrt) - ln(Mr - Qrt) = oy + Bprt + grt

where M, is the “market size” of the region. We assume M, = 2 x max;{Q,} for simplicity.!”
Further, let marginal costs take the “hockey stick” form of FRR:

Cirt = 7Y+ g(ert) + Njrt
g(qj,,t) = 2)\21{qu15/ij > Al}(ert/kjr - )\1)

where k;. and ¢;¢/kj, are capacity and utilization, respectively. Marginal costs are constant

®Bias due to markup adjustments dissipates as the number of firms grows large. Thus, if marginal costs are
constant then the OLS estimate is likely to be close to the population parameter in competitive markets. In Monte
Carlo experiments, we have found similar results for Bertrand competition and logit demand.

7We use logit demand rather than the constant elasticity demand of FRR because it fits easily into our framework.
The 2SLS results are unaffected by the choice. Similarly, the 3-Stage estimator with logit obtains virtually identical
results as a method-of-moments estimator with constant elasticity demand that imposes uncorrelatedness.
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Figure 2: Statistics on the Cement Industry

Notes: Total cement consumption in the United States and national average limes-
tone prices are from the Minerals Yearbook of the United States Geological Survey.
National average coal prices for industrial users are from the State Energy Data-
base System of the Energy Information Administration (EIA). National average
electricity prices for industrial users are from from the Annual Energy Review of
the EIA. All data are annual except the limestone price, which is available in even
years through the 1980s and annually thereafter. Prices are adjusted for inflation
with the GDP Deflator.

if utilization is less than the threshold A\; € [0, 1], and increasing linearly at rate determined
by A2 > 0 otherwise. The two unobservables, (£,7), capture demand shifts and shifts in the
constant portion of marginal costs.

The institutional details of the industry suggest that uncorrelatedness may be reasonable.
Demand is procyclical because cement is used in construction projects; given the demand spe-
cification this cyclicality enters through the unobserved demand shock. On the supply side, the
two largest cost components are “materials, parts, and packaging” and “fuels and electricity”
(EPA, 2009). Both depend on the price of coal. With regard to “fuels and electricity,” most
cement plants during the sample period rely on coal as their primary fuel, and electricity prices
are known to correlate with coal prices. With regard to “material, parts, and packaging,” the
main input in cement manufacture is limestone, which requires significant amounts of electri-
city to extract (National Stone Council, 2008). Thus, an assessment of uncorrelatedness hinges
largely on the relationship between construction activity and coal prices.

In this context, there is a theoretical basis for orthogonality: if coal suppliers have limi-
ted market power and roughly constant (realized) marginal costs, then coal prices should not
respond much to demand. To explore this possibility, Figure 2 plots cement consumption, li-
mestone prices, coal prices, and electricity prices. Consumption, which has a tight empirical
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Table 3: Point Estimates for Cement

Estimator: 3-Stage  2SLS OLS

Elasticity -1.15 -1.07 -0.47
of Demand (0.18) (0.19) (0.14)

Notes: The sample includes 520 region-year obser-
vations over 1984-2009. Bootstrapped standard er-
rors are based on 200 random samples constructed
by drawing regions with replacement.

connection to contruction activity, exhibits the aforementioned procyclicality.'® The cost statis-
tics, by contrast, decrease gradually over 1984-2003 and then increase over 2004-2009. The
stark differences between the consumption and input price patterns support an assumption al-
ong the lines of Cov(¢,77) = 0. Indeed, this is precisely the identification argument of FRR, as
both coal and electricity prices are included in the set of excluded instruments.!?

Table 3 summarizes the results of demand estimation. The 3-Stage estimator is implemented
taking as given the nonlinear cost parameters obtained in FRR: \; = 0.869 and Ay = 803.65. In
principle, these could be estimated simultaneously via the method of moments, provided some
demand shifters can be excluded from marginal costs, but estimation of these parameters is not
our focus. As shown, the mean price elasticity of demand obtained with the 3-Stage estimator
under uncorrelatedness is -1.15. This is statistically indistinguishable from the 2SLS elasticity
estimate of -1.07, which is obtained using the FRR instruments: coal prices, natural gas prices,
electricity prices, and wage rates. The closeness of the 3-Stage and 2SLS is not coincidental and
instead reflects that the identifying assumptions are quite similar. Indeed, the main difference
is whether the cost shifters are treated as observed (FRR) or unobserved (3-Stage).

If the econometrician does not know (and cannot identify) the nonlinear parameters in the
cost function, then consistent estimates cannot be obtained with our methodology. Further, one
can confirm that prior-free bounds are not available as the empirical upper root of the quadratic
in Corollary 4 is positive. Nonetheless, some progress can be made using posterior bounds.
Define the composite marginal cost shock, Mirt = 9(gjrt) + njre, as inclusive of the capacity
effects. Given the upward-sloping marginal costs, we have Cov(¢,77*) > 0 if Cov(€,7) = 0.
This restriction generates an upper bound on the demand elasticity of -0.69, ruling out the OLS
point estimate.

8Macher et al. (2018) report that data on construction employment and building permits are sufficient to explain
90 percent of the variation in state-level consumption.

1A close examination of Figure 2 may suggest a negative empirical correlation between the demand and cost
measures, and indeed this is the case: the correlation coefficient between consumption and coal prices is -0.20,
for example. One interpretation consistent with uncorrelatedness is that this arises due to the short sample. After
materials and fuel, the third largest cost component is labor, which may be partially fixed (EPA, 2009). The decline
of union power during the Reagan administration led to declining labor costs through the 1980s (Dunne et al.,
2009). FRR employ wage rates as an instrument.
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5.2 The Airline Industry

In our second empirical exercise, we estimate demand for airline travel using the setting and
data of Aguirregabiria and Ho (2012) [“AH”].2° AH explores why airlines form hub-and-spoke
networks; here, we focus on demand estimation only. The model features differentiated-
products Bertrand competition among multi-product firms facing a nested logit demand system.
To identify the demand system, we employ the multi-product variant of our theoretical results
developed in Section 4.2, proceeding under the assumption that 5 is obtained at the lower root.
We provide point estimates for demand parameters under uncorrelatedness and demonstrate
how weaker assumptions can be used to set identify key parameters.
The nested logit demand system can be expressed as

W8 jmt, Wimt; 0) = N Sjme — N Somt — 005419 = BPjme + T + Ejma (16)

where s, is the market share of product j in market m in period ¢. The conditional market
Silg
products, g, is selected. The outside good is indexed as j = 0. Higher values of o increase

share, = $j/ D_key Sk» 18 the the choice probability of product j given that its “group” of
within-group consumer substitution relative to across-group substitution. In contrast to the
typical expression for the demand system, we place o In5;,,,,, on the left-hand side so that the
right-hand side contains a single endogenous regressor: price.

Equation (16) results from a standard discrete-choice utility formulation where consumers
have correlated preferences for products within the same group. In the airline setting, mar-
kets are directional round trips between origin and destination cities in a particular quarter.
Consumers within a market choose among airlines and whether to take a nonstop or one-stop
itinerary. Thus, each airline offers zero, one, or two products per market. The nesting para-
meter, o, governs consumer substitution within each product group: nonstop flights, one-stop
flights, and the outside good. Marginal costs are linear in accordance with equation (6).

The data are drawn from the Airline Origin and Destination Survey (DB1B) survey, a ten
percent sample of airline itineraries, for the four quarters of 2004. Following AH, the covari-
ates include an indicator for nonstop itineraries, the distance between the origin and destina-
tion cities, and a measure of the airline’s “hub sizes” at the origin and destination cities. We
also include airline fixed effects and routexquarter fixed effects. The latter expands on the
cityxquarter fixed effects described by AH. Market size, which determines the market share of
the outside good, is equal to the total population in the origin and destination cities.

20We thank Victor Aguirregabiria for providing the data. Replication is not exact because the sample differs so-
mewhat from what is used in the AH publication and because we employ a different set of fixed effects in estimation.
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Point Identification and Estimation

We now consider identification of the nesting parameter, o. In the nested 