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Abstract
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price endogeneity can be resolved without the use of instruments. In many standard de-
mand systems, we show that the biased coefficient from an ordinary least squares regression
of (transformed) quantity on price can be expressed as function of the structural demand
parameters. With a covariance restriction on unobservable shocks, these parameters can be
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1 Introduction

A central challenge of demand estimation is price endogeneity. If prices reflect demand shocks

that are not observed by the econometrician, then ordinary least squares regression (OLS) does

not recover the casual demand curve (Working, 1927). In this paper, we reconsider whether

exogenous variation in prices is necessary to recover causal demand parameters. We show that

the supply-side assumptions already maintained in many structural models dictate how prices

respond to demand shocks. By leveraging these assumptions in estimation, it is possible to

correct for endogeneity bias without exogenous variation in prices. The consistent estimation

of empirical models has been a major focus of research in industrial organization and has,

thus far, relied heavily on instruments (e.g., Berry et al. (1995); Bresnahan (1996); Hausman

(1996); Berry and Haile (2014)).

Our methodology begins with an analysis of equilibrium variation in prices and (possibly

transformed) quantities. We show that, with many standard empirical models of imperfect

competition, the bias in OLS estimates is a function of data and demand parameters. Thus,

OLS estimates are informative, as they capture a blend of the demand curve and the endoge-

nous response by firms. The supply-side assumptions may be used to construct bounds on the

structural parameters and, with the addition of a surprisingly weak assumption, achieve point

identification. The methodology essentially uses economic theory as a substitute for exogenous

variation in prices, allowing for consistent estimates of structural parameters without the use

of instruments.

Consider a general case in which price is determined by additively separable markup and

marginal cost terms, and demand takes a semi-linear form that nests the discrete-choice models

common in empirical research (Berry, 1994). In this setting, the OLS bias can be decomposed

into two components: (i) the covariance between demand shocks and markups and (ii) the

covariance between demand shocks and marginal costs. Using the supply-side model, the first

component of bias can be recovered from the data. Therefore, the surprisingly weak assumption

needed for point identification relates to the covariance between the unobserved shocks to

demand and marginal costs. If the econometrician has prior knowledge of this covariance, then

typically the price parameter is identified.

We first develop intuition using a model of a monopolist with constant marginal costs and

linear demand (Section 2). Equilibrium variation in prices and quantities (p and q) is generated

by uncorrelated demand and cost shocks (ξ and η) that are unobservable to the econometrician.

We prove that consistent estimate of the price parameter, β, is given by

β̂ = −

√(
β̂OLS

)2
+
Cov(ξ̂OLS , q)

V ar(p)

where β̂OLS is the price coefficient from an OLS regression of quantities on prices, and ξ̂OLS

1



is a vector of the OLS residuals. The information provided by OLS regression is sufficient

for the consistent identification of the structural parameters. This holds whether variation

arises predominately from demand shocks or from supply shocks—economic theory allows for

identification of the structural parameter even amidst a cloud of price-quantity pairs.

We obtain our baseline results (Section 3) under two common assumptions about demand

and supply. We assume that demand is semi-linear in prices after a known transformation.

This assumption nests many differentiated-products demand systems, including the random

coefficients logit (e.g., Berry et al. (1995)). On the supply side, we begin by assuming that firms

compete in prices à la Nash and have constant marginal costs. Our core identification result is

that the price parameter, β, solves a quadratic equation in which the coefficients are functions

of the data and the covariance between unobserved shocks to demand and marginal costs,

Cov(ξ, η). We provide a sufficient condition under which β is the lower root of the quadratic;

if the condition holds then knowledge of this covariance point identifies β. We then derive a

consistent three-stage estimator from the quadratic formula. The estimator is constructed from

the OLS coefficients and residuals, and, based on Monte Carlo experiments, performs well in

small samples.

Our three-stage estimator is developed under the assumption of uncorrelatedness: Cov(ξ, η) =

0. This restriction could, alternatively, be used to construct a method-of-moments estimator,

which obtains identical estimates with greater computational burden. Assuming orthogonality

between supply and demand shocks is not uncommon in empirical work, but the implications

for identification in models of imperfect competition have not previously been formalized.1 In

other contexts, the use of covariance restrictions has been explored since early Cowles Founda-

tion research (Koopmans et al., 1950), as we describe later.

Even without exact knowledge of Cov(ξ, η), supply-side restrictions can be used to place

bounds on β. First, weaker assumptions about Cov(ξ, η) that are motivated by the economic

environment can be used to construct bounds on the causal parameters. For example, it may

be reasonable to assume that there is positive correlation between unobserved shocks to supply

and demand, in which case an upper bound on β is obtained. Second, certain values of β

may be ruled out without any prior knowledge of Cov(ξ, η). We show how to construct these

prior-free bounds, which arise when the parameter values do not rationalize the data given the

assumptions of the model.

In Section 4, we relax the supply-side assumptions used to develop our baseline results.

We first prove that identification of β is preserved with non-constant marginal costs if the

non-constant portion can be brought into the model and estimated. We then consider multi-

product firms, which is a straightforward extension of the single-product case used to develop

notation earlier. Finally, we show that our approach is not dependent on the precise nature of
1See Thomadsen (2005), Cho et al. (2018), and Li et al. (2018) for examples in industrial organization. Tho-

madsen (2005) assumes no unobserved demand shocks, and Cho et al. (2018) assume no unobserved cost shocks;
both implicitly invoke uncorrelatedness.
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the competitive game. Instead, it relies on the general property that prices can be structurally

decomposed into additively separable marginal costs and markup terms. Our identification

result and three-stage estimator are easily adapted to other models of competition, including

Cournot and consistent conjectures.

We provide two empirical applications in Section 5. The first examines the cement in-

dustry using the model and data of Fowlie et al. (2016) [“FRR”], extending the approach to

Cournot competition. In this setting, the institutional details allow for an assessment of the

uncorrelatedness assumption. Unobserved demand variation reflects local construction activity,

whereas marginal cost variation is due to capacity utilization and coal prices. After incorpora-

ting capacity constraints into the model, uncorrelatedness is a reasonable assumption if local

construction activity is orthogonal to coal prices. There is a theoretical basis for such an identi-

fying assumption: if coal suppliers have limited market power and roughly constant (realized)

marginal costs, then coal prices should not respond much to construction demand. Indeed, this

logic motivates the use of coal prices as an instrument in FRR. Not surprisingly, a three-stage

estimator obtains results similar to two-stage least squares using the FRR instruments. If capa-

city constraints are not incorporated into the model, then we expect that demand shocks drive

up marginal costs via the capacity constraints, leading to a positive correlation in unobserved

shocks. We show that an alternative assumption of Cov(ξ, η) ≥ 0 is sufficient to place an upper

bound on the price parameter that is roughly 50 percent more negative than the OLS estimate.

The second empirical application examines the airline industry using the model and data of

Aguirregabiria and Ho (2012) [“AH”]. The nested logit demand system in the application has

a second endogenous regressor, corresponding to the nesting parameter σ. We show how to

incorporate additional restrictions to identify such parameters. Natural candidates include in-

struments and covariance restrictions that are generalized from the uncorrelatedness assump-

tion. For example, if shocks are uncorrelated at the product level, it may be reasonable to

assume that mean shocks are uncorrelated when aggregated by product group. Such supple-

mental moments are sufficient to point identify the demand system, and we show that different

specifications for our three-stage estimator all move the parameter estimates in the expected

direction relative to OLS. We then consider set identification under weaker assumptions. We

construct prior-free bounds and bounds under the assumption of (weakly) positive correlation

in shocks. In our application, we are able to rule out values of σ less than 0.599 for any va-

lue of β, as these lower values cannot generate positive correlation in both product-level and

product-group-level shocks. We obtain an upper bound on β of -0.067 across all values of σ.

Together, the three sets of bounds provide the identified set for (β, σ).

Section 6 provides two discussions that help frame the methodology we introduce. First,

we argue that an understanding of institutional details can allow for an assessment of uncor-

relatedness even though the structural error terms are (by definition) unobserved. Indeed,

sometimes the institutional details will suggest that uncorrelatedness is unreasonable. Pro-
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ducts with greater unobserved quality might be more expensive to produce, demand shocks

could raise or lower marginal costs (e.g., due to capacity constraints), or firms might invest

to lower the costs of their best-selling products. These cases are problematic unless the con-

founding variation can be absorbed by control variables or fixed effects. Second, we relate

uncorrelatedness to the instrumental variables approach. The most obvious similarity is that

both approaches rely on orthogonality conditions that are not verifiable empirically but can be

assessed with institutional details. This connection is especially clear with the so-called “Haus-

man” instruments—prices of the same good in other markets—for which consistency requires

orthogonality among demand shocks across markets. However, the assumptions embedded by

the two approaches are not generally nested: uncorrelatedness does not require any source of

exogenous variation but does require a correctly-specified supply-side model.

Our research builds on several strands of literature in economics. Early research at the

Cowles Foundation (Koopmans et al., 1950) examines the identifying power of covariance re-

strictions in linear systems of equations, and a number of articles pursued this agenda in sub-

sequent years (e.g., Fisher (1963, 1965); Wegge (1965); Rothenberg (1971); Hausman and

Taylor (1983)). The extension to semi-parametric models is provided in Matzkin (2016) and

Chiappori et al. (2017)), but market power is not considered. To help develop the connections

between methodologies, we provide a new identification proof for perfect competition that uses

the techniques developed herein (Appendix A).

A parallel literature examines the identification of supply and demand models using maxi-

mum likelihood techniques, under the assumptions that the distributions of demand and cost

shocks are known to the econometrician and independent. Leamer (1981) provides conditions

under which the price parameter can be bounded using only the endogenous variation in prices

and quantities. Feenstra (1994) extends the methodology to estimate a model of monopolistic

competition.2 Using Bayesian techniques, Yang et al. (2003) further extends the approach to

oligopoly. Published comments on this article point out that it is unclear how to write a cohe-

rent likelihood function for oligopoly games because multiple equilibria can exist (Bajari, 2003;

Berry, 2003). By contrast, our approach does not require a likelihood function and provides

consistent estimates in the presence of multiple equilibria. Further, it allows the econometrician

to relax distributional assumptions. These advantages may make our approach relatively more

palatable for oligopoly models.3

Price endogeneity has been a major focus of modern empirical and econometric research

in industrial organization. Typically, the challenge is cast as a problem of finding valid instru-

ments. Many possibilities have been developed, including the attributes of competing products
2Leamer attributes an early version of his results to Schultz (1928). Broda and Weinstein (2006) and Hottman

et al. (2016) have extended this approach in models of international trade.
3For discussions and extensions of the Yang et al. (2003) approach in the marketing literature, see Rossi et al.

(2005), Dotson and Allenby (2010), and Otter et al. (2011). At least one seminal article in industrial organiza-
tion, Bresnahan (1987), estimates an oligopoly model of supply and demand with maximum likelihood under the
assumption of independent shocks.
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(Berry et al., 1995; Gandhi and Houde, 2015), the prices of the same good in other markets

(e.g., Hausman (1996); Nevo (2001); Crawford and Yurukoglu (2012)), or shifts in the equili-

brium concept (e.g., Porter (1983); Miller and Weinberg (2017)).4 When valid instruments are

available, the estimation techniques presented here may be used to construct overidentifying

restrictions and test the model.

2 A Motivating Example: Monopoly Pricing

We introduce the supply-side identification approach with a motivating example of monopoly

pricing, in the spirit of Rosse (1970). In each market t = 1, . . . , T , the monopolist faces a

downward-sloping linear demand schedule, qt = α+ βpt + ξt, where qt and pt denote quantity

and price, respectively, β < 0 is the price parameter, and ξt is mean-zero stochastic demand

shock. Marginal cost is given by the function ct = γ + ηt, where γ is some constant and ηt

is a mean-zero stochastic cost shock. Prices are set to maximize profit. The econometrician

observes vectors of prices, p = [p1, p2, . . . , pT ]′, and quantities, q = [q1, q2, . . . , qT ]′. The markets

can be conceptualized as geographically or temporally distinct.

An OLS regression of q on p obtains a biased estimate of β if the monopolist’s price reflects

the unobservable demand shock, as is the case here given profit maximization. Formally,

β̂OLS =
Cov(p, q)

V ar(p)

p−→ β +
Cov(ξ, p)

V ar(p)
(1)

The monopolist’s profit-maximization conditions are such that price is equal to marginal cost

plus a markup term: pt = γ + ηt −
(
dq
dp

)−1
qt. Thus, the numerator of the OLS bias can be

decomposed into the covariance between demand shocks and markups and the covariance

between demand shocks and marginal cost shocks. This leads to our first theoretical result,

which we obtain under the uncorrelatedness assumption that Cov(ξ, η) = 0:

Proposition 1. Let the OLS estimates of (α, β) be (α̂OLS , β̂OLS) with probability limits (αOLS , βOLS),
and denote the residuals at the limiting values as ξOLSt = qt − αOLS − βOLSpt. When demand
shocks and cost shocks are uncorrelated, the probability limit of the OLS estimate can be expres-
sed as a function of the true price parameter, the residuals from the OLS regression, prices, and
quantities:

βOLS ≡ plim
(
β̂OLS

)
= β − 1

β + Cov(p,q)
V ar(p)

Cov(ξOLS , q)

V ar(p)
(2)

Proof: We provide the proofs in this section for illustrative purposes; most subse-
4Byrne et al. (2016) proposes a novel set of instruments that leverage the structure of a discrete choice demand

model with differentiated-products price competition. Nevo and Wolfram (2002) explores whether covariance
restrictions can bound parameters (see footnote 41 of that article).
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quent proofs are confined to the appendix. Reformulate equation (1) as follows:

βOLS = β +
Cov(ξ, η − 1

β q)

V ar(p)
= β − 1

β

Cov(ξ, q)

V ar(p)

The first equality holds due to the first-order condition p = γ + ηt − 1
β q. The second

equality holds due to the uncorrelatedness assumption. As α + βp + ξ = αOLS +

βOLSp+ ξOLS , we have

Cov(ξ, q) = Cov(ξOLS − (β − βOLS)p, q)

= Cov(ξOLS , q)− (β − βOLS)Cov(p, q)

= Cov(ξOLS , q)− 1

β

Cov(ξ, q)

V ar(p)
Cov(p, q)

Collecting terms and rearranging implies

1

β
Cov(ξ, q) =

1

β + Cov(p,q)
V ar(p)

Cov(ξOLS , q)

Plugging into the reformulation of equation (1) obtains the proposition. QED.

The proposition makes clear that, among the objects that characterize βOLS , only β does not

have a well understood sample analog. Further, as βOLS can be estimated consistently, the

proposition suggests the possibility that β can be recovered from the data. Indeed, a closer

inspection of equation (2) reveals that β solves a quadratic equation:

Proposition 2. When demand shocks and marginal cost shocks are uncorrelated, β is point iden-
tified as the lower root of the quadratic equation

β2 + β

(
Cov(p, q)

V ar(p)
− βOLS

)
+

(
−Cov(ξOLS , q)

V ar(p)
− Cov(p, q)

V ar(p)
βOLS

)
= 0 (3)

and a consistent estimate of β is given by

β̂3-Stage = −

√(
β̂OLS

)2
+
Cov(ξ̂OLS , q)

V ar(p)
(4)

Proof: The quadratic equation is obtained as a re-expression of equation (2). An

application of the quadratic formula provides the following roots:

−
(
Cov(p,q)
V ar(p)

− βOLS
)
+−

√(
Cov(p,q)
V ar(p)

− βOLS
)2

+ 4
(
Cov(ξOLS ,q)

V ar(p)
+ Cov(p,q)

V ar(p)
βOLS

)
2

.
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Figure 1: Price and Quantity in the Monopoly Model
Notes: Figure displays equilibrium prices and quantities under four different spe-
cifications for the distribution of unobserved shocks to demand and marginal
costs. The line in each figure indicates the slope obtained by OLS regression.

In the univariate case, Cov(p,q)
V ar(p) = βOLS , which cancels out terms and obtains

the probability limit analog of equation (4). It is easily verified that
(
βOLS

)2
+

Cov(ξOLS ,q)
V ar(p) > 0 so both roots are real numbers. The upper root is positive, so β is

point identified as the lower root. Equation (4) provides the empirical analog to

the lower root. As the sample estimates of covariance terms are consistent for the

limits, it provides a consistent estimate of β.

The first part of the proposition states that β solves a quadratic equation. There are two real

roots, but only one is negative, so point identification is achieved. Further, an adjustment to the

OLS estimator is sufficient to correct for bias. We label the estimator β̂3-Stage for reasons that

become evident with the more general treatment later in the paper.

An additional simplification is available. Because ξOLSt = qt − aOLS − bOLSpt, we have
Cov(ξOLSt ,q)
V ar(p) = V ar(q)

V ar(p) −β
OLS Cov(p,q)

V ar(p) . Plugging into equation (4) obtains the following corollary:

Corollary 1. β̂3-Stage = −
√

V ar(q)
V ar(p) .

In the monopoly model, the price parameter is identified from the relative variation in prices

and quantities. To build intuition about this approach, we recast the monopoly problem in

terms of supply and demand in Appendix A.1, and derive the estimator building on Hayashi’s

(2000) textbook treatment of bias with simultaneous equations.

Consider the following numerical example. Let demand be given by qt = 10 − pt + ξt and

let marginal cost be ct = ηt, so that (α, β, γ) = (10,−1, 0). Let the demand and cost shocks
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Table 1: Numerical Illustration for the Monopoly Model

(1) (2) (3) (4)

β̂OLS −0.89 −0.42 0.36 0.88
V ar(q) 1.47 1.11 1.08 1.38
V ar(p) 1.45 1.09 1.06 1.37

Cov(ξ̂OLS , q) 0.31 0.92 0.94 0.32

Cov(ξ̂OLS , q)/V ar(p) 0.21 0.85 0.89 0.24

β̂3-Stage −1.004 −1.009 −1.009 −1.004

Notes: Based on numerically generated data that conform to the motivating example of
monopoly pricing. The demand curve is qt = 10−pt+ξt and marginal costs are ct = ηt,
so that (β0, β, γ0) = (10,−1, 0). In column (1), ξ ∼ U(0, 2) and η ∼ U(0, 8). In
column (2), ξ ∼ U(0, 4) and η ∼ U(0, 6). In column (3), ξ ∼ U(0, 6) and η ∼ U(0, 4).
In column (4), ξ ∼ U(0, 8) and η ∼ U(0, 2). Thus, the support of the cost shocks are
largest (smallest) relative to the support of the demand shocks in the left-most (right-
most) column.

have independent uniform distributions. The monopolist sets price to maximize profit. As is

well known, if both cost and demand variation is present then equilibrium outcomes provide

a “cloud” of data points that do not necessarily correspond to the demand curve. To illustrate

this, we consider four cases with varying degrees of cost and demand variation. In case (1),

ξ ∼ U(0, 2) and η ∼ U(0, 8). In case (2), ξ ∼ U(0, 4) and η ∼ U(0, 6). In case (3), ξ ∼ U(0, 6)

and η ∼ U(0, 4). In case (4), ξ ∼ U(0, 8) and η ∼ U(0, 2). We randomly take 1,000 draws for

each case and calculate the equilibrium prices and quantities.

The data are plotted in Figure 1 along with OLS fits. The experiment represents the classic

identification problem of demand estimation: the empirical relationship between equilibrium

prices and quantities can be quite misleading about the slope of the demand function. However,

Proposition 2 and Corollary 1 state that the structure of the model together with the OLS

estimates allow for consistent estimates of the price parameter. Table 1 provides the required

empirical objects. The OLS estimates, β̂OLS , are negative when the cost shocks are relatively

more important and positive when the demand shocks are relatively more important, as also

is revealed in the scatterplots. By contrast, Cov(ξ̂OLS ,q)
V ar(p) is larger if the cost and demand shocks

have relatively more similar support. Incorporating this adjustment term following Proposition

1 yields estimates, β̂3-Stage, that are nearly equal to the population value of −1.00. Note also

that the variance of price and quantity are similar in each column, consistent with Corollary 1

given the data generating process.

3 Methodology: Bounds and Three-Stage Estimation

We present our main results through the lens of differentiated-products Bertrand competition.

We provide identification conditions, show how bounds can be constructed without strong co-
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variance restrictions, and then consider estimation under uncorrelatedness via the three-stage

approach and the method of moments. We illustrate small-sample properties with a numerical

simulation. For extensions and a discussion, see Sections 4 and 6.

3.1 Data Generating Process

Let there be j = 1, 2, . . . , J products in each of t = 1, 2, . . . , T markets, subject to downward-

sloping demands. The econometrician observes vectors of prices, pt = [p1t, p2t, . . . , pJt]
′, and

quantities, q = [q1t, q2t, . . . , pJt]
′, corresponding to each market t, as well as a matrix of covaria-

tes Xt = [x1t x2t . . . xJt]. The covariates are orthogonal to a pair of demand and marginal cost

shocks (i.e,. E[Xξ] = E[Xη] = 0) that are common knowledge among firms but unobserved by

the econometrician.5 We make the following assumptions on demand and supply:

Assumption 1 (Demand): The demand schedule for each product is determined by the following
semi-linear form:

hjt ≡ h(qjt, wjt;σ) = βpjt + x′jtα+ ξjt (5)

where (i) ∂hjt
∂qjt

> 0, (ii) wjt is a vector of observables and σ is a parameter vector, and (iii) the total
derivatives of h(·) with respect to q exist as functions of the data and σ.

Example: For the logit demand system, h(qjt;wjt, σ) ≡ ln(sjt/wjt), where quantities

are in shares (qjt = sjt) and wjt is the share of the outside good (s0t). There are no

additional parameters in σ.

The demand assumption restricts attention to systems for which, after a transformation of

quantities using observables (wjt) and nonlinear parameters (σ), there is additive separability

in prices, covariates, and the demand shock. The vector wjt can be conceptualized as including

the price and non-price characteristics of products, in particular those of other products that

affect the demand of product j. Often, only a few observables are necessary to construct the

transformation, as in the logit discrete choice example above, where the share of the outside

good is a sufficient statistic to capture demand for other products.

Other typical demand systems also fit into this framework, including models with additional

endogenous covariates. For the nested logit demand model, wjt consists of two elements: the

outside share (s0t) and the within-group share (sj|g). One nonlinear parameter (σ) is needed

for the transformation: h(sjt;wjt, σ) ≡ ln sjt − ln s0t − σ ln sj|g,t. For the more flexible random

coefficients logit demand system, h(qjt;wjt, σ) can be defined as the mean utility and calculated

using the contraction mapping of Berry et al. (1995) for any candidate σ vector. The demand

assumption also nests monopolistic competition with linear demands (e.g., as in the motivating

example). We derive these connections in some detail in Appendix B.
5We make the usual assumption that prices and covariates are linearly independent to allow for OLS estimation.
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The third condition on the demand system allows us to complete an identification proof

by constructing the first-order conditions implied by the demand system and the supply-side

assumptions, which we introduce next. The total derivative is given by

dhjt
dqjt

=
∂hjt
∂qjt

+
∂hjt
∂wjt

· dwjt
dqjt

When an outcome variable is used in wjt to construct the transformation, such as in the discrete

choice demand systems mentioned above, it may be the case that dwjt
dqjt

depends upon what is

held fixed under the competitive assumptions (e.g. the prices of other firms at the Bertrand-

Nash equilibrium.). This should be accounted for when constructing the derivatives.

Example: For the logit demand system at a Bertrand-Nash equilibrium, ∂hjt
∂qjt

= 1
sjt

,
∂hjt
∂wjt

= − 1
s0t

, and dwjt
dqjt

=
ds0t/dpjt
dsjt/dpjt

= − s0t
1−sjt . Thus we obtain dhjt

dqjt
= 1

sjt(1−sjt) . These

derivatives are calculated holding the prices of other products fixed.

Assumption 2 (Supply): Each firm sells a single product and sets its price to maximize profit
in each market. The firm takes the prices of other firms as given, knows the demand schedule in
equation (5), and has a linear constant marginal cost schedule given by

cjt = x′jtγ + ηjt. (6)

Under assumptions 1 and 2, there is a unique mapping from the data and parameters to the

structural error terms (ξ, η). The supply-side assumption is strong but allows for a base set of

identification results to be derived with minimal notation. In subsequent sections, we provide

the additional notation necessary for models with multi-product firms, non-constant marginal

costs, and Nash-Cournot competition. Note that supply and demand may depend on different

covariates; this is captured when non-identical components of α and γ are equal to zero.

We further assume the existence of a Nash equilibrium in pure strategies, and that each firm

satisfies the first-order condition

pjt = cjt −
1

β

dhjt
dqjt

qjt. (7)

To obtain this expression, take the total derivative of h with respect to qjt, re-arrange to obtain
dpjt
dqjt

= 1
β
dhjt
dqjt

, and substitute into the more standard formulation of the first-order condition:

p = c − dp
dq q. First-order conditions that admit multiple equilibria are unproblematic. It must

be possible recover (ξ, η) from the data and parameters, but the mapping to prices from the

parameters, exogenous covariates, and structural error terms need not be unique.

Our identification result relies on the markup being proportional to the reciprocal of the

price parameter, which arises here due to the semi-linear demand system.6 When this is the
6Thus, the semi-linear structure may not be necessary. In practice, one could start with a known first-order
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case, equilibrium prices respond to the demand shock through markup adjustments, which are

fully determined by β, the structure of the model, and observables. Thus, first-order conditions

may be useful in analyzing the covariance of demand shocks and prices, which is proportional

to the the bias of the OLS estimate. As in the monopoly example of Section 2, this provides a

basis to correct the bias from OLS estimation and solve for the true price parameter. We develop

this identification argument below and then derive implications for inference.

3.2 Identification

We now formalize the identification argument for β, the price parameter. We assume the pa-

rameters in σ are known to the econometrician. The linear non-price parameters (α, γ) can be

recovered trivially given β and σ.7 We start by characterizing the OLS estimate of the price pa-

rameter, which is obtained from a regression of h(·) on p and x. The probability limit contains

the standard bias term:

βOLS ≡ Cov(p∗, h)

V ar(p∗)
= β +

Cov(p∗, ξ)

V ar(p∗)
(8)

where p∗ = [I − x(x′x)−1x′]p is a vector of residuals from a regression of p on x. Plugging in

for price on the right-hand-side of equation (8) using the first-order conditions yields

βOLS = β − 1

β

Cov(dhdq q, ξ)

V ar(p∗)
+
Cov(η, ξ)

V ar(p∗)
. (9)

We express the unobserved demand shock ξ in terms of the OLS residuals and parameters

to obtain our first general result: β solves a quadratic equation in which the coefficients are

determined by Cov(ξ, η) and objects with empirical analogs.

Proposition 3. Under assumptions 1 and 2, the probability limit of the OLS estimate can be writ-
ten as a function of the true price parameter, the residuals from the OLS regression, the covariance
between demand and supply shocks, prices, and quantities:

βOLS = β − 1

β +
Cov(p∗, dh

dq
q)

V ar(p∗)

Cov
(
ξOLS , dhdq q

)
V ar(p∗)

+ β
1

β +
Cov(p∗, dh

dq
q)

V ar(p∗)

Cov(ξ, η)

V ar(p∗)
. (10)

condition and show that it takes the form pjt = cjt − 1
β
fjt for some function of the data fjt.

7An alternative interpretation is that the econometrician is considering a candidate σ and wishes to obtain
corresponding estimates of (β, α, γ), as in the nested fixed-point estimation routine of Berry et al. (1995) and Nevo
(2001) for the random coefficients logit demand system.
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The price parameter β solves the following quadratic equation:

0 = β2

+

(
Cov(p∗, dhdq q)

V ar(p∗)
+
Cov(ξ, η)

V ar(p∗)
− βOLS

)
β (11)

+

−βOLSCov(p∗, dhdq q)

V ar(p∗)
−
Cov

(
ξOLS , dhdq q

)
V ar(p∗)

 .

Proof. See appendix.

Proposition 3 provides our core identification result. There are two main implications. First,

the quadratic in equation (11) admits at most two solutions for a given value of Cov(ξ, η). It

follows immediately that, with prior knowledge of Cov(ξ, η), the price parameter β is set iden-

tified with a maximum of two elements (points). Indeed, as we show next, conditions exist that

guarantee point identification. Second, if the econometrician does not have specific knowledge

of Cov(ξ, η), it nonetheless can be possible to bound β. We consider point identification first,

as the intuition behind point identification maps neatly into how to construct bounds.

Assumption 3’: The econometrician has prior knowledge of Cov(ξ, η).

Proposition 4. (Point Identification) Under assumptions 1 and 2, the price parameter β is the
lower root of equation (11) if the following condition holds:

0 ≤ βOLS
Cov(p∗, dhdq q)

V ar(p∗)
+
Cov

(
ξOLS , dhdq q

)
V ar(p∗)

(12)

and, furthermore, β is the lower root of equation (11) if and only if the following condition holds:

− 1

β

Cov(ξ, η)

V ar(p∗)
≤
Cov

(
p∗,− 1

β ξ
)

V ar(p∗)
+
Cov (p∗, η)

V ar(p∗)
(13)

Therefore, under assumptions 1, 2 and 3’, β is point identified if either of these conditions holds.

Proof. See appendix.

The first (sufficient) condition is derived as a simple application of the quadratic formula:

if the constant term in the quadratic of equation (11) is negative then the upper root of the

quadratic is positive and β must be the lower root. For some model specifications, the condition

can be proven analytically.8 Otherwise it can be evaluated empirically using the data and
8An example is a monopolist with a linear demand system. Following the logic of Corollary 1, we have

βOLS
Cov(p∗, dh

dq
q)

V ar(p∗)
+
Cov

(
ξOLS , dh

dq
q
)

V ar(p∗)
=

V ar(q)

V ar(p)
> 0
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assumptions 1 and 2. If the sufficient condition holds, then β is point identified with prior

knowledge of Cov(ξ, η) because all the terms in equation (11) are known or can be obtained

from the data. If the condition fails, point identification of β is not guaranteed even with prior

knowledge of Cov(ξ, η), though the econometrician has reduced the identified set to two points.

The necessary and sufficient condition is more nuanced. Even with prior knowledge of

Cov(ξ, η), condition (13) contains elements that are not observed by the econometrician. Still,

for some specifications, the condition can be verified analytically.9 The condition holds under

the standard intuition that prices increase both with demand and marginal cost shocks, provi-

ded that Cov(ξ, η) is not too positive. To see this in the equation, note that the term − 1
β ξ is the

shock to the inverse demand curve. The condition can fail if the empirical variation is driven

predominately by demand shocks and the model dictates that prices decrease in the demand

shock, which is possible with log-convex demand (Fabinger and Weyl, 2014).

3.3 Bounds

The model implies two complementary sets of bounds, neither of which requires exact know-

ledge of Cov(ξ, η). We start by developing what we refer to as bounds with priors. If the econo-

metrician has a prior over the plausible range of Cov(ξ, η), along the lines ofm ≤ Cov(ξ, η) ≤ n,

then a posterior set for β can be constructed from the quadratic of equation (11). Each plausible

Cov(ξ, η) maps into one or two valid (i.e., negative) roots. Further, a monotonicity result that

we formalize below establishes that, under either condition (12) or (13), there is a one-to-one

mapping between the value of Cov(ξ, η) and the lower root:

Lemma 1. (Monotonicity) Under assumptions 1 and 2, a valid lower root of equation (11) (i.e.,
one that is negative) is decreasing in Cov(ξ, η). The range of the function is (0,−∞).

Proof. See appendix.

It follows immediately that a convex prior over Cov(ξ, η) corresponds to convex posterior

set. We suspect that, in practice, most priors will take the form Cov(ξ, η) ≥ 0 or Cov(ξ, η) ≤
0. For example, an econometrician have reason to believe that higher quality products are

more expensive to produce (yielding Cov(ξ, η) ≥ 0) or that firms invest to lower the marginal

costs of their best-selling products (yielding Cov(ξ, η) ≤ 0). Priors of this firm generate one-

sided bounds on β. Let r(m) be the lower root of the quadratic evaluated at Cov(ξ, η) = m.

9Consider again the example of a monopoly facing a linear demand system with Cov(ξ, η) = 0. In the proof of

Proposition 4, we show that the necessary and sufficient condition is equivalent to β <
Cov(p∗,ξ)
V ar(p∗) −

Cov
(
p∗, dh

dq
q
)

V ar(p∗) .

With linear demand, we have that
Cov

(
p∗, dh

dq
q
)

V ar(p∗) =
Cov(p∗,q)
V ar(p∗) = βOLS . Thus, the right-hand-side simplifies to −β

using equation (8). Because β < 0, β < −β and the necessary and sufficient condition holds.
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Then under either condition (12) or (13), the prior Cov(ξ, η) ≥ m produces a posterior set of

(−∞, r(m)], and the prior Cov(ξ, η) ≤ m produces a posterior set of [r(m), 0).10

We now develop what we refer to as prior-free bounds. Even if the econometrician has

no prior about Cov(ξ, η), certain values may be possible to rule out because they imply that

the observed data are incompatible with data generating process of the model. To see why, it is

helpful to represent the quadratic of equation (11) as az2+bz+c, keeping in mind that one root

is β < 0. Because a = 1, the quadratic forms a ∪-shaped parabola. If c < 0 then the existence of

a negative root is guaranteed. However, if c > 0 then b must be positive and sufficiently large

for a negative root to exist. By inspection of equation (11), this places restrictions on Cov(ξ, η).

We now state the result formally:

Proposition 5. (Prior-Free Bound) Under assumptions 1 and 2, the model and data may bound
Cov(ξ, η) from below. The bound is given by

Cov(ξ, η) > V ar(p∗)βOLS − Cov(p∗,
dh

dq
q) + 2V ar(p∗)

√√√√√
−βOLS

Cov(p∗, dhdq q)

V ar(p∗)
−
Cov

(
ξOLS , dhdq q

)
V ar(p∗)

.
The bound exists if and only if the term inside the radical is non-negative.

Proof. See appendix.

From the monotonicity result above, we can use the excluded values of Cov(ξ, η) from this

result to rule out values of β as well. If point identification can be shown via the necessary and

sufficient condition, then an prior-free upper bound for β is obtained by evaluating the lower

root of equation (11) at the prior-free bound of Cov(ξ, η).11

3.4 Estimation

The consistent estimation of β is possible if the conditions for point identification hold. The

econometrician must have prior knowledge of Cov(ξ, η). For the purposes of exposition, we

proceed here under the uncorrelatedness assumption, Cov(ξ, η) = 0, though the mathematics

extend to alternative restrictions.

Assumption 3 (Uncorrelatedness): Cov(ξ, η) = 0.

There are two natural approaches to estimation. The first is to apply the quadratic formula

directly to equation (11). The second is to recast uncorrelatedness as a moment restriction of

the form E[ξ′η] = 0 and use the method of moments. Of these, the first is more novel, and so

we open this section with the relevant theoretical result:
10Nevo and Rosen (2012) develop similar bounds for estimation with imperfect instruments, defined as instru-

ments that are less correlated with the structural error term than the endogenous regressor.
11Interestingly, prior-free bounds are available only if the sufficient condition for point identification (condition

(12)) fails. When this occurs the term inside the radical is non-negative.
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Corollary 2. (Three-Stage Estimator) Under assumptions 1, 2, and 3, a consistent estimate of
the price parameter β is given by

β̂3-Stage =
1

2

β̂OLS −
Cov

(
p∗, dhdq q

)
V ar(p∗)

−

√√√√√β̂OLS +
Cov

(
p∗, dhdq q

)
V ar(p∗)

2

+ 4
Cov

(
ξ̂OLS , dhdq q

)
V ar(p∗)


if either condition (12) or condition (13) holds.

The estimator is the empirical lower root of equation (11). It can be calculated in three

stages: (i) regress h(q) on p and xwith OLS, (ii) regress p on xwith OLS and obtain the residuals

p∗, and (iii) construct the estimator as shown. The computational burden of the estimator is

trivial, which may be especially beneficial in practice if it nested inside of a nonlinear routine

for other parameters.12

We now develop a method-of-moments estimator that converges at the empirical root(s) of

equation (11). Consider that the three-stage estimator rests on the moment condition E[ξ′c] =

0, which represents the combination of E[ξ′η] = 0, E[Xξ] = 0, and E[ξ] = 0. An alternative

approach to estimation is to search numerically for a β̃ that satisfies the corresponding empirical

moment, yielding

β̂MM = arg min
β̃<0

 1

T

∑
t

1

|Jt|
∑
j∈Jt

ξjt(β̃;w, σ,X) · cjt(β̃;w, σ,X)

2

where ξ(β̃;w, σ,X) and c(β̃;w, σ,X) are computed given the data and the candidate parameter

using equations (5)-(7), and the firms present in each market t are indexed by the set Jt. The

linear parameters (α, γ) are concentrated out of the nonlinear optimization problem. We have

confirmed in numerical experiments that β̂3-Stage and β̂MM are equivalent to numerical preci-

sion. Some care must be taken with the method-of-moments: if condition (12) fails then the

optimizer reach the minimum (zero) at either the upper or lower root, and when the condition

holds a local minimum may exist at the boundary value of the parameter space (as the opti-

mizer attempts to reach the minimum for the positive root). Further, the three-stage estimator

may immediately reject that a solution exists at the assumed value of Cov(ξ, η), whereas the

optimizer will return a solution.

There are three situations in which the method-of-moments approach may be preferred

despite its greater computational burden. First, analytical solutions for dh
dq may be unavaila-

ble with some specifications of the model, which diminishes the computation advantage of the

three-stage estimator. Second, if valid instruments exist, then the additional moments suggest
12If condition (13) fails then the empirical analog to the upper root of equation (11) provides a consistent estimate.

A more precise two-stage estimator is available for special cases in which the observed cost and demand shifters are
uncorrelated. See Appendix C for details
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a generalized method of moments estimator, allowing for efficiency improvements and specifi-

cation tests (e.g., Hausman (1978); Hansen (1982)). Finally, the three-stage estimator requires

orthogonality between the unobserved demand shock and all the regressors (i.e., E[Xξ] = 0).

The method-of-moments approach can be pursued under a weaker assumption that allows for

correlation between ξ and regressors that enter the cost function only. In this case, one would

replace E[ξ′c] = 0 with E[ξ′η] = 0 in the objective function.

3.5 Small-Sample Properties

We generate Monte Carlo results to examine the small sample properties of the estimators. We

consider a profit-maximizing monopolist that prices against a logit demand curve and has a

constant marginal cost technology:

h(qt;wt) ≡ log(qt)− log(1− qt) = −βpt + ξt

ct = xt + ηt

For simplicity, we set β = 1 and simulate data for x, ξ, η using independent U [0, 1] distributions.

For each draw of the data, we compute profit-maximizing prices and quantities. The mean price

and margin are 2.20 and 0.56, respectively, and the mean price elasticity of demand is −1.86.

We construct samples with 25, 50, 100, and 500 observations and estimate demand with each.

We repeat this exercise 1,000 times and examine the average and standard deviation of the

estimates. The estimators are the 3-Stage estimator, two-stage least squares (2SLS) using xt

as an instrument, a method-of-moments (“MM”) estimator based on the alternative moment

E[ξ′η] = 0, and OLS.

Table 2 summarizes the results. The bias present in 3-Stage, 2SLS, and MM is small even

with the smallest sample sizes. However, 3-Stage more consistently provides accurate estimates

than 2SLS and MM, as evidenced by the smaller standard deviation of the estimates. The

reason is that 3-Stage utilizes orthogonality between unobserved demand and marginal cost,

whereas 2SLS and MM exploit the relationship between unobserved demand and marginal cost

shifters—either observed (xt) or unobserved (ηt)—which provide noisy signals about marginal

cost. One might be tempted to run a "first-stage" regression to test for the power of the different

cost components to predict prices. However, such a test has no bearing on the asymptotic

properties of the 3-Stage and MM estimators because exogenous supply-side variation need not

be observed by the econometrician and indeed need not even exist. This is both a strength and

a weakness: relaxing the requirement of observed exogenous variation comes at the cost of a

greater reliance on assumptions about how firms set prices in equilibrium.
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Table 2: Small Sample Properties of Estimators

Panel A: Average Estimates (Truth is β = −1.00)
Sample Size 3-Stage 2SLS MM OLS

25 -1.002 -1.008 -1.005 -0.885
50 -1.004 -1.012 -1.002 -0.889

100 -1.004 -1.006 -1.005 -0.891
500 -1.000 -1.001 -0.999 -0.887

Panel B: Standard Deviation of Estimates
Sample Size 3-Stage 2SLS MM OLS

25 0.160 0.276 0.208 0.168
50 0.109 0.182 0.141 0.114

100 0.078 0.123 0.101 0.082
500 0.035 0.053 0.045 0.037

Notes: The moments used for 3-Stage, 2SLS, MM, and OLS are E[ξ′c],

E[ξ′x], E[ξ′η], and E[ξ′p], respectively. The methods-of-moments

(“MM”) estimator is implemented with a one-dimensional grid search.

4 Generalizations

The results developed thus far rely on an accurate model of the data generating process and

some relatively strong (though common) restrictions on the form of demand and supply. In this

section, we consider generalizations to non-constant marginal costs, multi-product firms, and

non-Bertrand competition.

4.1 Non-Constant Marginal Costs

If marginal costs are not constant in output, then unobserved demand shocks that change

quantity also affect marginal cost. For example, consider a special case in which marginal costs

take the form:

cjt = x′jtγ + g(qjt;λ) + ηjt (14)

Here g(qjt;λ) is some potentially nonlinear function that may (or may not) be known to the

econometrician. Maintaining Bertrand competition and the baseline demand assumption, the

first-order conditions of the firm are:

pjt = x′jtγ + g(qjt;λ) + ηjt︸ ︷︷ ︸
Marginal Cost

+

(
− 1

β

dhjt
dqjt

qjt

)
︸ ︷︷ ︸

Markup

.

Thus, provided g′(·;λ) 6= 0, markup adjustments are no longer the only mechanism through

with prices respond to demand shocks. Unless knowledge of g(qjt;λ) can be brought to bear,

the identification results of the preceding section do not extend without additional restrictions.
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This also can be seen from the OLS regression of h(qjt, wjt;σ) on p and x, which yields a price

coefficient with the following probability limit:

plim(β̂OLS) = β − 1

β

Cov(ξ, dhdq q)

V ar(p∗)
+
Cov(ξ, g(q))

V ar(p∗)

The third term on the right-hand-side shows that bias depends on how demand shocks affect

the non-constant potion of marginal costs.

There are two ways to make progress. First, if g′(·;λ) can be signed then it is possible to

bound the price parameter, β, even if point identification remains infeasible. A lead example

is that of capacity constraints, for which it might be reasonable to assume that Cov(ξ, η) =

0 and g′(·;λ) ≥ 0, and thus that Cov(ξ, η∗) ≥ 0 where η∗jt ≡ ηjt + g(qjt;λ) is a composite

error term. Bounds with priors then can be constructed. Second, the econometrician may be

able to estimate g(qjt;λ), either in advance or simultaneously with the price coefficient. Prior

knowledge of Cov(ξ, η) is sufficient to at least set identify β in such a situation:

Proposition 6. Under assumptions 1 and 3 and a modified assumption 2 in which marginal costs
take the semi-linear form of equation (14), the price parameter β solves the following quadratic
equation:

0 =

(
1− Cov(p∗, g(q))

V ar(p∗)

)
β2

+

(
Cov(p∗, dhdq q)

V ar(p∗)
+
Cov(ξ, η)

V ar(p∗)
− β̂OLS +

Cov(p∗, g(q))

V ar(p∗)
β̂OLS +

Cov(ξ̂OLS , g(q))

V ar(p∗)

)
β

+

(
−
Cov(p∗, dhdq q)

V ar(p∗)
β̂OLS −

Cov(ξ̂OLS , dhdq q)

V ar(p∗)

)

where β̂OLS is the OLS estimate and ξ̂OLS is a vector containing the OLS residuals.

Proof. See appendix.

With the above quadratic in hand, the remaining results of Section 3 extend naturally. Although

the estimation of g(qjt;λ) is not our focus, we note that a three-stage estimator of β could be

obtained for any candidate parameters in λ, thereby facilitating computational efficiency.

4.2 Multi-Product Firms

We now provide the notation necessary to extend our results to the case of multi-product firms

under our maintained assumptions. Let Km denote the set of products owned by multi-product

firm m. When the firm sets prices on each of its products to maximize joint profits, there are
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|Km| first-order conditions, which can be expressed as

∑
k∈Km

(pk − ck)
∂qk
∂pj

= −qj ∀j ∈ Km.

The market subscript, t, is omitted to simplify notation. For demand systems satisfying Assump-

tion 1,
∂qk
∂pj

= β
1
dhj
dqk

.

where the derivative dhj
dqk

=
∂hj
∂qj

dqj
dqk

+
∂hj
∂wj

dwj
dqk

is calculated holding the prices of other products

fixed. Therefore, the set of first-order conditions can be written as∑
k∈Km

(pk − ck)
1

dhj/dqk
= − 1

β
qj ∀j ∈ Km.

Stack the first-order conditions, writing the left-hand side as the product of a vector of mar-

kups (pj − cj) and a matrix Am of loading components, Ami(j),i(k) = 1
dhj/dqk

, where i(·) indexes

products within a firm. Next, invert the loading matrix to solve for markups as function of the

loading components and − 1
βq

m, where qm is a vector of the multi-product firm’s quantities.

Equilibrium prices equal marginal costs plus a markup, where the markup is determined by the

inverse of Am ((Am)−1 ≡ Λm), quantities, and the price parameter:

pj = cj −
1

β
(Λmqm)i(j) . (15)

Here, (Λmqm)i(j) provides the entry corresponding to product j in the vector Λmqm. As the

matrix Λm is not a function of the price parameter after conditioning on observables, this form

of the first-order condition allows us to solve for β using a quadratic three-stage solution ana-

logous to that in equation (2).13 Letting h̃ ≡ (Λmqm)i(j) be the multi-product analog for dh
dq q,

we obtain a quadratic in β, and the remaining results of Section 3 then obtain easily:

Corollary 3. Under assumptions 1 and 3, along with a modified assumption 2 that allows for
multi-product firms, the price parameter β solves the following quadratic equation:

0 = β2

+

(
Cov(p∗, h̃)

V ar(p∗)
+
Cov(ξ, η)

V ar(p∗)
− β̂OLS

)
β

+

(
−Cov(p∗, h̃)

V ar(p∗)
β̂OLS − Cov(ξ̂OLS , h̃)

V ar(p∗)

)
.

13At this point, the reader may be wondering where the prices of other firms are captured under the adjusted
first-order conditions for multi-product ownership. As is the case with single product firms, we expect prices of
other firm’s products to be included in wj , which is appropriate under Bertrand price competition.
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where h̃ is constructed from the first-order conditions of multi-product firms.

4.3 Alternative Models of Competition

Though our main results are presented under Bertrand competition in prices, our method ap-

plies to a broader set of competitive assumptions. Consider, for example, Nash competition

among profit-maximizing firms that have a single choice variable, a, and constant marginal

costs. The individual firm’s objective function is:

max
aj |ai,i 6=j

(pj(a)− cj)qj(a).

This generalized model of Nash competition nests Bertrand (a = p) and Cournot (a = q). The

first-order condition, holding fixed the actions of the other firms, is given by:

pj(a) = cj −
pj
′(a)

qj ′(a)
qj(a).

In equilibrium, we obtain the structural decomposition p = c + µ, where µ incorporates the

structure of demand and its parameters. This decomposition provides a restriction on how

prices move with demand shocks, aiding identification. It can be obtained in other contexts,

including consistent conjectures and competition in quantities with increasing marginal costs.14

When the markup is proportional to the reciprocal of the price parameter, then it is straight-

forward to extend our core identification result and implement the three-stage estimator. We

provide one such extension in the empirical application to the cement industry.

5 Empirical Applications

5.1 The Portland Cement Industry

Our first empirical application uses the setting and data of Fowlie et al. (2016) [“FRR”], which

examines market power in the cement industry and its effects on the efficacy of environmental

regulation. The model features Cournot competition among undifferentiated cement plants

facing capacity constraints.15 As we describe below, institutional details about cement demand

and the production process support the reasonableness of uncorrelatedness in the model.

We begin by extending our results to Cournot competition with non-constant marginal costs.

Let j = 1, . . . , J firms produce a homogeneous product demanded by consumers according to
14Nonetheless, some models are excluded. For example, a monopolist facing a log-linear demand schedule sets

prices according to p = c ε
1+ε

where ε < 0 is the elasticity of demand.
15A published report of the Environment Protection Agency (EPA) states that “consumers are likely to view cement

produced by different firms as very good substitutes.... there is little or no brand loyalty that allows firms to
differentiate their product” EPA (2009).
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h(Q;w) = βp + x′γ + ξ, where Q =
∑

j qj , and p represents a price common to all firms in

the market. Marginal costs are semi-linear, as in equation (14), possibly reflecting capacity

constraints. Working with aggregated first-order conditions, it is possible to show that the OLS

regression of h(Q;wjt) on price and covariates yields:

plim(β̂OLS) = β − 1

β

1

J

Cov(ξ, dhdqQ)

V ar(p∗)
+
Cov(ξ, g)

V ar(p∗)

where J is the number of firms in the market and g = 1
J

∑J
j=1 g(qj ;λ) is the average contri-

bution of g(q, λ) to marginal costs. Bias arises due to markup adjustments and the correlation

between unobserved demand and marginal costs generated through g(q;λ).16 The identifica-

tion result provided in Section 4.1 for models with non-constant marginal costs extends.

Corollary 4. In the Cournot model, the price parameter β solves the following quadratic equation:

0 =

(
1− Cov(p∗, g)

V ar(p∗)

)
β2

+

(
1

J

Cov(p∗, dhdqQ)

V ar(p∗)
+
Cov(ξ, η)

V ar(p∗)
− β̂OLS +

Cov(p∗, g)

V ar(p∗)
β̂OLS +

Cov(ξ̂OLS , g)

V ar(p∗)

)
β

+

(
− 1

J

Cov(p∗, dhdqQ)

V ar(p∗)
β̂OLS − 1

J

Cov(ξ̂OLS , dhdqQ)

V ar(p∗)

)

The derivation tracks exactly the proof of Proposition 6. For the purposes of the empirical

exercise, we compute the three-stage estimator as the empirical analog to the lower root.

Turning to the application, FRR examine 20 distinct geographic regions in the United States

annually over 1984-2009. Let the demand curve in region r and year t have a logit form:

h(Qrt;w) ≡ ln(Qrt)− ln(Mr −Qrt) = αr + βprt + ξrt

where Mr is the “market size” of the region. We assume Mr = 2 ×maxt{Qrt} for simplicity.17

Further, let marginal costs take the “hockey stick” form of FRR:

cjrt = γ + g(qjrt) + ηjrt

g(qjrt) = 2λ21{qjrt/kjr > λ1}(qjrt/kjr − λ1)

where kjr and qjrt/kjr are capacity and utilization, respectively. Marginal costs are constant

16Bias due to markup adjustments dissipates as the number of firms grows large. Thus, if marginal costs are
constant then the OLS estimate is likely to be close to the population parameter in competitive markets. In Monte
Carlo experiments, we have found similar results for Bertrand competition and logit demand.

17We use logit demand rather than the constant elasticity demand of FRR because it fits easily into our framework.
The 2SLS results are unaffected by the choice. Similarly, the 3-Stage estimator with logit obtains virtually identical
results as a method-of-moments estimator with constant elasticity demand that imposes uncorrelatedness.
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Figure 2: Statistics on the Cement Industry
Notes: Total cement consumption in the United States and national average limes-
tone prices are from the Minerals Yearbook of the United States Geological Survey.
National average coal prices for industrial users are from the State Energy Data-
base System of the Energy Information Administration (EIA). National average
electricity prices for industrial users are from from the Annual Energy Review of
the EIA. All data are annual except the limestone price, which is available in even
years through the 1980s and annually thereafter. Prices are adjusted for inflation
with the GDP Deflator.

if utilization is less than the threshold λ1 ∈ [0, 1], and increasing linearly at rate determined

by λ2 ≥ 0 otherwise. The two unobservables, (ξ, η), capture demand shifts and shifts in the

constant portion of marginal costs.

The institutional details of the industry suggest that uncorrelatedness may be reasonable.

Demand is procyclical because cement is used in construction projects; given the demand spe-

cification this cyclicality enters through the unobserved demand shock. On the supply side, the

two largest cost components are “materials, parts, and packaging” and “fuels and electricity”

(EPA, 2009). Both depend on the price of coal. With regard to “fuels and electricity,” most

cement plants during the sample period rely on coal as their primary fuel, and electricity prices

are known to correlate with coal prices. With regard to “material, parts, and packaging,” the

main input in cement manufacture is limestone, which requires significant amounts of electri-

city to extract (National Stone Council, 2008). Thus, an assessment of uncorrelatedness hinges

largely on the relationship between construction activity and coal prices.

In this context, there is a theoretical basis for orthogonality: if coal suppliers have limi-

ted market power and roughly constant (realized) marginal costs, then coal prices should not

respond much to demand. To explore this possibility, Figure 2 plots cement consumption, li-

mestone prices, coal prices, and electricity prices. Consumption, which has a tight empirical
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Table 3: Point Estimates for Cement

Estimator: 3-Stage 2SLS OLS
Elasticity -1.15 -1.07 -0.47
of Demand (0.18) (0.19) (0.14)

Notes: The sample includes 520 region-year obser-
vations over 1984-2009. Bootstrapped standard er-
rors are based on 200 random samples constructed
by drawing regions with replacement.

connection to contruction activity, exhibits the aforementioned procyclicality.18 The cost statis-

tics, by contrast, decrease gradually over 1984-2003 and then increase over 2004-2009. The

stark differences between the consumption and input price patterns support an assumption al-

ong the lines of Cov(ξ, η) = 0. Indeed, this is precisely the identification argument of FRR, as

both coal and electricity prices are included in the set of excluded instruments.19

Table 3 summarizes the results of demand estimation. The 3-Stage estimator is implemented

taking as given the nonlinear cost parameters obtained in FRR: λ1 = 0.869 and λ2 = 803.65. In

principle, these could be estimated simultaneously via the method of moments, provided some

demand shifters can be excluded from marginal costs, but estimation of these parameters is not

our focus. As shown, the mean price elasticity of demand obtained with the 3-Stage estimator

under uncorrelatedness is -1.15. This is statistically indistinguishable from the 2SLS elasticity

estimate of -1.07, which is obtained using the FRR instruments: coal prices, natural gas prices,

electricity prices, and wage rates. The closeness of the 3-Stage and 2SLS is not coincidental and

instead reflects that the identifying assumptions are quite similar. Indeed, the main difference

is whether the cost shifters are treated as observed (FRR) or unobserved (3-Stage).

If the econometrician does not know (and cannot identify) the nonlinear parameters in the

cost function, then consistent estimates cannot be obtained with our methodology. Further, one

can confirm that prior-free bounds are not available as the empirical upper root of the quadratic

in Corollary 4 is positive. Nonetheless, some progress can be made using posterior bounds.

Define the composite marginal cost shock, η∗jrt = g(qjrt) + ηjrt, as inclusive of the capacity

effects. Given the upward-sloping marginal costs, we have Cov(ξ, η∗) ≥ 0 if Cov(ξ, η) = 0.

This restriction generates an upper bound on the demand elasticity of -0.69, ruling out the OLS

point estimate.
18Macher et al. (2018) report that data on construction employment and building permits are sufficient to explain

90 percent of the variation in state-level consumption.
19A close examination of Figure 2 may suggest a negative empirical correlation between the demand and cost

measures, and indeed this is the case: the correlation coefficient between consumption and coal prices is -0.20,
for example. One interpretation consistent with uncorrelatedness is that this arises due to the short sample. After
materials and fuel, the third largest cost component is labor, which may be partially fixed (EPA, 2009). The decline
of union power during the Reagan administration led to declining labor costs through the 1980s (Dunne et al.,
2009). FRR employ wage rates as an instrument.
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5.2 The Airline Industry

In our second empirical exercise, we estimate demand for airline travel using the setting and

data of Aguirregabiria and Ho (2012) [“AH”].20 AH explores why airlines form hub-and-spoke

networks; here, we focus on demand estimation only. The model features differentiated-

products Bertrand competition among multi-product firms facing a nested logit demand system.

To identify the demand system, we employ the multi-product variant of our theoretical results

developed in Section 4.2, proceeding under the assumption that β is obtained at the lower root.

We provide point estimates for demand parameters under uncorrelatedness and demonstrate

how weaker assumptions can be used to set identify key parameters.

The nested logit demand system can be expressed as

h(sjmt, wjmt;σ) ≡ ln sjmt − ln s0mt − σ ln sjmt|g = βpjmt + x′jmtα+ ξjmt (16)

where sjmt is the market share of product j in market m in period t. The conditional market

share, sj|g = sj/
∑

k∈g sk, is the the choice probability of product j given that its “group” of

products, g, is selected. The outside good is indexed as j = 0. Higher values of σ increase

within-group consumer substitution relative to across-group substitution. In contrast to the

typical expression for the demand system, we place σ ln sjmt|g on the left-hand side so that the

right-hand side contains a single endogenous regressor: price.

Equation (16) results from a standard discrete-choice utility formulation where consumers

have correlated preferences for products within the same group. In the airline setting, mar-

kets are directional round trips between origin and destination cities in a particular quarter.

Consumers within a market choose among airlines and whether to take a nonstop or one-stop

itinerary. Thus, each airline offers zero, one, or two products per market. The nesting para-

meter, σ, governs consumer substitution within each product group: nonstop flights, one-stop

flights, and the outside good. Marginal costs are linear in accordance with equation (6).

The data are drawn from the Airline Origin and Destination Survey (DB1B) survey, a ten

percent sample of airline itineraries, for the four quarters of 2004. Following AH, the covari-

ates include an indicator for nonstop itineraries, the distance between the origin and destina-

tion cities, and a measure of the airline’s “hub sizes” at the origin and destination cities. We

also include airline fixed effects and route×quarter fixed effects. The latter expands on the

city×quarter fixed effects described by AH. Market size, which determines the market share of

the outside good, is equal to the total population in the origin and destination cities.
20We thank Victor Aguirregabiria for providing the data. Replication is not exact because the sample differs so-

mewhat from what is used in the AH publication and because we employ a different set of fixed effects in estimation.
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Point Identification and Estimation

We now consider identification of the nesting parameter, σ. In the nested logit model, condi-

tional shares respond to the unobserved demand shock, which creates a second endogenous

variable in addition to price. As the assumptions generating the three-stage estimator provide

a single restriction, additional moments are required to pin down β and σ simultaneously. Un-

correlatedness alone provides an identified set through a function that maps σ to β. For the

purpose of discussing point identification, we take uncorrelatedness as given, and we return to

the subject when we discuss bounds.

Combining a single supplemental moment, E[f ] = 0, with the uncorrelatedness assumption

E[ξ′η] = 0 is sufficient to identify the additional parameter.21 Provided these two moments, the

econometrician could pursue a method-of-moments estimator, searching over the parameter

space for the pair (β,σ) that minimizes a weighted sum of the moments (squared). Since the

three-stage estimator is consistent for β conditional on σ, the econometrician could instead

conduct a single-dimensional search, obtaining β̂3−Stage(σ̃) for each candidate parameter σ̃

while minimizing the objective (E[f ] − 0)2. As this approach has a distinct computational

advantage, we follow it throughout this section.

The supplemental moments E[f ] = 0 may be a vector and can be obtained from standard

instrumental variable assumptions (E[Zξ] = 0). To construct these moments, we use covariates

from the AH marginal cost function that are excluded from demand.22 These instruments differ

from the AH instruments included in 2SLS estimation, which we describe below.

In addition to supplementing the covariance restriction with instruments, the econome-

trician could derive additional covariance restrictions based on reasonable extensions of the

notion of uncorrelatedness. For example, if product-level shocks are uncorrelated, it may be

reasonable to assume that shocks are uncorrelated when aggregated by product group. This ap-

proach does not require the econometrician to be able to isolate exogenous variation in prices

and conditional shares. We consider two supplementary covariance restrictions:

• Cov(ξ, η) = 0 where ξgt = 1
|g|
∑

j∈g ξjt and ηgt = 1
|g|
∑

j∈g ηjt are the mean demand and

cost shocks within a group-market pair. This is a simple refinement of uncorrelatedness:

the mean shocks within a product group are uncorrelated across groups and markets.

• Cov(ξ2, η) = 0 and Cov(ξ, η2) = 0. These identifying assumptions state that the variance

of one shock is uncorrelated with the level of the other shock.

Note that the latter assumption does not provide independent identifying power if (ξ, η) are

jointly normal, because it would be implied by orthogonality.
21We assume the moment meets the necessary support conditions.
22In the demand equation, hub size of any given city-airline pair is the sum of population in other cities that

the airline connects with direct itineraries from the city. In the supply equation, this is replaced with an analogous
measure based on the number of connections rather than population.
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Table 4: Application to U.S. Airlines

Parameter 3-Stage-I 3-Stage-II 3-Stage-III 2SLS OLS
β -0.182 -0.153 -0.131 -0.189 -0.106

(0.042) (0.031) (0.031) (0.053) (0.004)

σ 0.525 0.599 0.639 0.822 0.891
(0.110) (0.113) (0.140) (0.087) (0.003)

Notes: The first two columns of results use the three-stage methodology with different
supplemental moments. The next column use 2SLS and OLS, respectively, following
Aguirregabiria and Ho (2012). Standard errors are constructed via subsamples of 100
market-periods. There are 93,199 observations and 11,474 market-periods in the full
sample.

Table 4 summarizes the results of estimation. The left three columns are obtained with the

three-stage methodology sketched above, using firstE[Zξ] = 0 as a supplemental moment, then

using Cov(ξ, η) = 0, and finally using Cov(ξ2, η) = 0 and Cov(ξ, η2) = 0. The fourth column

is obtained with 2SLS using the AH instruments that are not absorbed by route×quarter fixed

effects: the average hub-sizes (origin and destination) of all other airlines on the route and

the average value of the nonstop indicator for all the other carriers on the route. The final

column is obtained with OLS. The 3-Stage estimators and 2SLS all move the parameters in the

expected direction relative to OLS. Comparing the estimates, 3-Stage produces less negative

price parameters and smaller nesting parameters than 2SLS. We do not seek to ascertain which

set of estimates is more in line with real-world behavior.23

Bounds and Set Identification

In many settings, the econometrician might prefer to proceed under weaker assumptions about

the correlation between unobservables in a structural model. As discussed earlier, our results

can be used to place bounds on the parameter space. Without imposing additional restrictions

on the correlation structure, the econometrician can obtain prior-free bounds to reject parame-

ter values that are inconsistent with the observed data, conditional on the model.24 To further

narrow the identified set, the econometrician can invoke knowledge of institutional details of

the industry under study.

For an airline, the marginal cost of an additional passenger is small and roughly constant

until the plane nears capacity. Each additional passenger has a little impact on the inputs

needed to fly the plane from one airport to another. However, the airline bears an opportunity
23Ciliberto et al. (2016) partially identify a correlation coefficient of Cor(ξ, η) ∈ [0.38, 0.40] based on similar

data from 2012, and this potentially calls into question the reasonableness of the uncorrelatedness assumption in
the airlines industry. Alternatively, their result could be an artifact of the demand specification, which does not
incorporate fixed effects.

24For an illustration of the link between rejected values of Cov(ξ, η) and rejected values of β in this application,
see Figure E.1 in the Appendix.
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Figure 3: Identified Parameter Set Under Priors
Notes: Figure displays candidate parameter values for (σ, β). The gray region
indicates the set of parameters that cannot generate the observed data from the
assumptions of the model. The red region indicates the set of parameters that
generate Cov(ξ, η) < 0, and the blue region indicates parameters that generate
Cov(ξ, η) < 0. The identified set is obtained by rejecting values in the above
regions under the assumption of (weakly) positive correlation. For context, the
OLS and the 2SLS estimates are plotted, along with 3-Stage estimates I-IV. The
parameter σ can only take values on [0, 1).

cost for each sold seat, as they can no longer sell the seat at a higher price to another passenger

(Williams, 2017). When only a few seats are left to sell, this opportunity cost may become large,

approximating the “hockey-stick” cost function that describes the cement industry. As positive

shocks to demand result in more full flights, it is reasonable to assume that the correlation

between demand shocks and marginal cost shocks is weakly positive across markets and also

for individual firms.25

Under this assumption, it is possible to reject values (β,σ) that produce negative correla-

tion. The econometrician can combine this prior with the prior-free bounds developed earlier.

Finally, one can consider reasonable extensions of the priors over the correlation between de-

mand and supply shocks. Following the logic above, if the correlation in product-level shocks

is weakly positive, one can assume that the group-level shocks are also weakly positive. By

rejecting parameter values that fail to generate the data or that deliver negative correlation,

the econometrician can narrow the identified set.

Figure 3 displays the rejected regions based on the model and above priors on unobserved

shocks. The gray region corresponds to the parameter values rejected by the prior-free bounds.
25The shocks many not be strictly positive, given the fixed effects we included in demand and the fact that the

data are aggregated to the quarterly level.
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Some values of β can be rejected if σ ≥ 0.62. As σ becomes larger, a more negative β is

required to rationalize the data within the context of the model. If σ = 0.80 then it must be

that β ≤ −0.11. The dark red region corresponds to parameter values that generate negative

correlation between demand and supply shocks. These can be rejected under the prior that

Cov(ξ, η) ≥ 0. The dark blue region provides the corresponding set for the prior Cov(ξ, η) ≥ 0.

The three regions overlap, but no region is a strict subset of the other. In this manner, the

econometrician can impose additional restrictions on the covariance structure to rule out para-

meter values. The remaining non-rejected values provide the identified set. In our application,

we are able to rule out values of σ less than 0.599 for any value of β, as these lower values

cannot generate positive correlation in both product-level and product-group-level shocks. Si-

milarly, we obtain an upper bound on β of -0.067 across all values of σ.

For context, we plot the OLS and the 2SLS estimates in Figure 3. The OLS estimate falls in

a rejected region and can be ruled out by the structure of the model alone. The 2SLS estimate,

in contrast, falls within the identified set. As the assumptions underlying the bounds do not

correspond to the IV assumptions, it is possible that IV point estimates may be ruled out with

this approach in other applications.

6 Discussion

6.1 Assessing Covariance Restrictions

In many applications, econometricians may have detailed knowledge of the determinants of

demand and marginal cost, even if many determinants are unobserved in the data. Such kno-

wledge allows the econometrician to assess whether covariance restrictions along the lines of

Cov(ξ, η) = 0 are reasonable. Covariance restrictions need not (and should not) be a “black

box” that provides identification. The distinction between observed and understood is important,

as the econometrician may have reasonable priors about the relationships between structural

error terms even though they are (by definition) unobserved. For a constructive example, see

the discussion about the cement industry in Section 5.1.

Sometimes knowledge of institutional details suggests that uncorrelatedness may be unrea-
sonable as an identifying assumption. Products with greater unobserved quality might be more

expensive to produce, demand shocks could raise or lower marginal costs (e.g., due to capacity

constraints), or firms might invest to lower the costs of their best-selling products. In these

cases, 3-Stage estimates under uncorrelatedness would be inconsistent unless the confounding

variation can be absorbed by control variables or fixed effects. Rich panel data provides the

econometrician with the means to correct for several first-order determinants of correlation, as

we show below. Even without these controls, it may be possible to sign Cov(ξ, η), allowing the

econometrician to set identify parameters using bounds with priors. As with any identification

strategy, careful attention must be paid to the institutional details.

28



We highlight that econometricians with panel data may be able to incorporate fixed effects

that absorb otherwise confounding correlations. To illustrate, consider the following generali-

zed demand and cost functions:

h(qjt, wjt;σ) = βpjt + x′jtα+Dj + Ft + Ejt

cjt = g(qjt;λ) + x′jtγ + Uj + Vt +Wjt

with Cov(Ejt,Wjt) = 0. Let the unobserved shocks be ξjt = Dj + Ft + Ejt and ηjt = Uj +

Vt +Wjt. Further, let h(·) and g(·) be known up to parameters. If products with higher quality

have higher marginal costs then Cov(Uj , Dj) > 0. The econometrician can account for the

relationship by estimating Dj for each firm; the residual ξ∗jt = ξjt −Dj is uncorrelated with Uj .

Similarly, if costs are higher (or lower) in markets with high demand then market fixed effects

can be incorporated. In this manner, panel data reduce the remaining unobserved correlation

to product-specific deviations within a market, Ejt and Wjt, allowing the econometrician to

proceed with the three-stage approach. Of course, the econometrician must assess whether the

restriction Cov(Ejt,Wjt) = 0 is appropriate in the empirical setting.

6.2 Relation to Instruments

To further build intuition on covariance restrictions, we draw some connections between esti-

mation under uncorrelatedness and the instrumental variation approach. In our view, the most

obvious similarity is that both approaches rely on orthogonality conditions—E[ξ′η] or E[ξ′Z]

for instruments Z—that are not verifiable empirically but can be assessed with knowledge of

institutional details. A stylized model makes this connection clear: Suppose marginal costs are

determined by a single variable w that is orthogonal to the demand-side structural error term.

If the variable is observed, then IV estimation can proceed under E[ξ′Z] with Z = w and if it is

unobserved than E[ξ′η] with η = w allows for estimation via uncorrelatedness. Indeed, some

existing articles on covariance restrictions refer to the supply-side structural error term as pro-

viding an “unobserved instrument” that identifies demand (e.g., Hausman and Taylor (1983);

Matzkin (2016)).26

In general, the assumptions embedded by the two approaches are not nested. Consider the

case where marginal costs are the sum of an observed and unobserved variable: c = Z + η.

When Cov(η, ξ) 6= 0, the IV conditions may still be satisfied, whereas three-stage estimation

requires both Z and η to be orthogonal to ξ. On the other hand, the conditions needed for

consistent three-stage estimation are not sufficient for IV, as IV requires that Z does not enter the
26Hausman and Taylor (1983) proposes a two-stage approach for the estimation of supply and demand models of

perfect competition: First, the supply equation is estimated with 2SLS using an instrument taken from the demand-
side of the model. Second, the supply-side error term is recovered and, under the assumption of uncorrelatedness
(Cov(ξ, η) = 0), it serves as a valid instrument for the estimation of demand.
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demand equation.27 Satisfying this assumption is one of the key challenges in finding a plausible

instrument and is not necessary for estimation under uncorrelatedness. In addition to this

theoretical distinction, the IV approach has an additional empirical requirement related to the

weak instruments problem: the instrumental variables approach requires sufficient variation in

the observed instrument Z, whereas estimation under uncorrelatedness can proceed even if the

cost determinants (Z and η) exhibit no variation.

Finally, estimation with uncorrelatedness requires a correctly-specified supply side, whereas

IV requires a less formal theory of supply. Of course, many research articles that estimate de-

mand maintain supply-side specifications for counterfactual experiments, and some articles also

use supply-side moments to improve efficiency in demand estimation (e.g., Berry et al. (1995)).

Nonetheless, researchers sometimes express a preference for demand to estimated separately,

which ensures that at least the demand estimates are not influenced by misspecification on the

supply side (e.g., Dubé and Chintagunta (2003)). Econometricians relying on uncorrelated-

ness for identification do not have that option—demand and supply must be estimated jointly,

increasing the importance of efforts to validate the supply-side assumptions.

7 Conclusion

Our objective has been to evaluate the identifying power of typical supply-side restrictions in

models of imperfect competition. Our main result is that price endogeneity can be resolved

by interpreting an OLS estimate through the lens of a theoretical model. With a covariance

restriction, the demand system is point identified, and weaker assumptions generate bounds

on the structural parameters. Thus, causal demand parameters can be recovered without the

availability of exogenous price variation. We hope that the methods we introduce help facilitate

research in areas for which strong instruments are unavailable or difficult to find.

Though we focus our results on specific, widely-used assumptions about demand and sup-

ply, we view our method as not particular to these assumptions. Rather, the main insight is that

information about supply-side behavior can be modeled to adjust the observed relationships

between quantity and price. Price can be decomposed into marginal cost and a markup; our

method provides a direct way to correct for endogeneity arising from the latter component. In

a more general sense, this insight has a similar flavor to control function estimation procedu-

res (e.g., Heckman (1979)). Our method may be thought of a bias correction procedure for

empirical applications with models of imperfect competition.

27If it does, it would violate either the relevance condition or the exclusion restriction, depending on interpreta-
tion.
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A Linear Models of Supply and Demand

In this appendix we recast the monopoly model of Section 2 in terms of supply and demand,
providing an alternative proof for Proposition 2 that builds explicitly on Hayashi’s (2000, chap-
ter 3) canonical textbook treatment of simultaneous equation bias. We then develop the case
of perfect competition with linear demand and marginal costs, which has many similarities
to monopoly and one critical difference. The model was a primary focus of previous articles
addressing demand identification using covariance restrictions (e.g., Koopmans et al. (1950);
Hausman and Taylor (1983); Matzkin (2016)).

A.1 Intuition from Simultaneous Equations: A Link to Hayashi

To start, given the first-order conditions of the monopolist, pt + (dqdp)−1qt = γ + ηt for dq
dp = β,

equilibrium in the model can be characterized as follows:

qdt = α+ βpt + ξt (demand)

qst = βγ − βpt + νt (supply) (A.1)

qdt = qst (equilibrium)

where νt ≡ βηt. The only distinction between this model and that of Hayashi is that slope of the
supply schedule is determined (solely) by the price parameter of the demand equation, rather
than by the increasing marginal cost schedules of perfect competitors.28

If market power is the reason that the supply schedule slopes upwards, as it is with our
monopoly example, then uncorrelatedness suffices for identification because the model fully
pins down how firms adjust prices with demand shocks. Repeating the steps of Hayashi, we
have:

βOLS ≡ plim
(
β̂OLS

)
= β

(
V ar(ν)− V ar(ξ)
V ar(ν) + V ar(ξ)

)
(A.2)

If variation in the data arises solely due to cost shocks (i.e., V ar(ξ) = 0) then the OLS estimator
is consistent for β. If instead variation arises solely due to demand shocks (i.e., V ar(ν) = 0)
then the OLS estimator is consistent for −β. A third special case arises if the demand and
cost shocks have equal variance (i.e., V ar(ν) = V ar(ξ)). Then βOLS = 0, exactly halfway
between the demand slope (β) and the supply slope (−β). Thus the adjustment required to
bring the OLS coefficient in line with either the demand or supply slope is maximized, in terms
of absolute value.

It is when variation in the data arises due both cost and demand shocks that the OLS es-
timate is difficult to interpret. With uncorrelatedness, however, the OLS residuals provide the
information required to correct bias. A few lines of algebra obtain:

Lemma A.1. Under uncorrelatedness, we have

β2 =
(
βOLS

)2
+
Cov(q, ξOLS)

V ar(p)
. (A.3)

28A implication of equation (A.1) is that it can be possible to estimate demand parameters by estimating the
supply-side of the model, taking as given the demand system and the nature of competition. We are aware of
precisely one article that employs such a method: Thomadsen (2005) estimates a model of price competition among
spatially-differentiated duopolists with (importantly) constant marginal costs.
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and

Cov(q, ξOLS) =
V ar(ν)V ar(ξ)

V ar(ν) + V ar(ξ)
. (A.4)

Proof: See appendix D.

The first equation is a restatement of Proposition 2. The second equation expresses the cor-
rection term as function of V ar(ν) and V ar(ξ). Notice that the correction term equals zero if
variation in the data arises solely due to either cost or demand shocks—precisely the cases for
which OLS estimator obtains β and −β, respectively. Further, the correction term is maximized
if V ar(ν) = V ar(ξ) which, as developed above, is when the largest adjustment is required
because βOLS = 0.

A.2 Perfect Competition

As a point of comparison, consider perfect competition with linear demand and supply curves.
The model is used elsewhere to illustrate the identifying power of covariance restrictions (e.g.,
Koopmans et al. (1950); Hausman and Taylor (1983); Matzkin (2016)). Let marginal costs be
given by c = x′γ + λq + η. Firms are price-takers and each has a first-order condition given by
p = x′γ + λq + η. The firm-specific supply curve is qs = − 1

λx
′γ + 1

λp −
η
λ . Aggregating across

firms and assuming with linearity in demand, we have the following market-level system of
equations:

QD = βp+ x′α+ ξ (Demand)

QS =
J

λ
p− J

λ
x′γ − J

λ
η (Supply) (A.5)

QD = QS (Equilibrium)

where QD and QS represent market quantity demanded and supplied, respectively. The supply
slope depends on the number of firms and the slope of the marginal costs—in stark relief to the
monopoly problem in which the supply slope was fully determined by the demand parameter
(equation (A.1)).

In this setting, uncorrelatedness allows for the consistent estimation of the price coefficient,
but only if the supply slope J

λ is known. This mimics our result for oligopoly with constant
marginal costs, which, in the limit of perfect competition, yields a flat supply curve. Hausman
and Taylor (1983) propose the following methodology: (i) estimate the supply-schedule using
an exclusion restriction γ[k] = 0 for some k; (ii) recover estimates of the supply-side shock;
(iii) use these estimated supply-side errors as instruments in demand estimation. Under un-
correlatedness these supply-side errors are orthogonal to demand-shock. (Though it is now
understood that a method-of-moments estimator that combines uncorrelatedness with the ex-
clusion restriction would be more efficient.) Matzkin (2016) proposes a similar procedure but
relaxes the assumption of linearity.

It is possible demonstrate identification using the methods developed above for models
with market power. Indeed, this can be seen as an extension of Corollary 4 because Cournot
converges to perfect competition as J →∞. The OLS estimation of demand yields:

βOLS ≡ plim(β̂OLS) = β +
Cov(ξ, p∗)

V ar(p∗)
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Tracing the steps provided in Section 2 for the monopoly model, uncorrelatedness implies

Cov(ξ,Q) = Cov(ξOLS , Q) +
λ

J

Cov(ξ,Q)

V ar(p∗)
Cov(p∗, Q)

where ξOLS is a vector of OLS residuals. Solving for Cov(ξ,Q) and plugging into the probability
limit of the OLS estimator yields

β = βOLS − 1
J
λ − βOLS

Cov(ξOLS , Q) (A.6)

It follows that β is point identified if the supply slope J
λ is known. With an exclusion restriction,

γ[k] = 0, an estimator could be developed using equation (A.6). It would be asymptotically equi-
valent to the Hausman and Taylor (1983) estimator, and less efficient than the corresponding
method-of-moments estimator.

B Generality of Demand

The demand system of equation (5) is sufficiently flexible to nest monopolistic competition with
linear demands (e.g., as in the motivating example) and the discrete choice demand models
that support much of the empirical research in industrial organization. We illustrate with some
typical examples:

1. Nested logit demand: Following the exposition of Cardell (1997), let the firms be grouped
into g = 0, 1, . . . , G mutually exclusive and exhaustive sets, and denote the set of firms in
group g as Jg. An outside good, indexed by j = 0, is the only member of group 0. Then
the left-hand-side of equation (5) takes the form

h(sj , wj ;σ) ≡ ln(sj)− ln(s0)− σ ln(sj|g)

where sj|g =
∑

j∈Jg

sj∑
j∈Jg

sj
is the market share of firm j within its group. The para-

meter σ ∈ [0, 1) determines the extent to which consumers substitute disproportionately
among firms within the same group. If σ = 0 then the logit model obtains. We can
construct the markup by calculating the total derivative of h with respect to s. At the
Bertrand-Nash equilibrium,

dhj
dsj

=
1

sj

(
1

1−σ − sj + σ
1−σ s̄j|g

) .
Thus, we verify that the derivatives can be expressed as a function of data and the non-
linear parameters, allowing for three-step estimation. As we show in our second appli-
cation, if uncorrelatedness is combined with a supplemental moment then the full set of
parameters can be recovered (Section 5.2).

2. Random coefficients logit demand: Modifying slightly the notation of Berry (1994), let the
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indirect utility that consumer i = 1, . . . , I receives from product j be

uij = βpj + x′jα+ ξj +

[∑
k

xjkσkζik

]
+ εij

where xjk is the kth element of xj , ζik is a mean-zero consumer-specific demographic
characteristic, and εij is a logit error. We have suppressed market subscripts for notational
simplicity. Decomposing the right-hand side of the indirect utility equation into δj =
βpj +x′jα+ ξj and µij =

∑
k xjkσkζik, the probability that consumer i selects product j is

given by the standard logit formula

sij =
exp(δj + µij)∑
k exp(δk + µik)

.

Integrating yields the market shares: sj = 1
I

∑
i sij . Berry et al. (1995) prove that a

contraction mapping recovers, for any candidate parameter vector σ̃, the vector δ(s, σ̃)
that equates these market shares to those observed in the data. This “mean valuation” is
h(sj , wj ; σ̃) in our notation. The three-stage estimator can be applied to recover the price
coefficient, again taking some σ̃ as given. At the Bertrand-Nash equilibrium, dhj/dsj takes
the form

dhj
dsj

=
1

1
I

∑
i sij(1− sij)

.

Thus, with the uncorrelatedness assumption the linear parameters can be recovered given
the candidate parameter vector σ̃. The identification of σ is a distinct issue that has
received a great deal of attention from theoretical and applied research (e.g., Waldfogel
(2003); Romeo (2010); Berry and Haile (2014); Gandhi and Houde (2015); Miller and
Weinberg (2017)).

3. Constant elasticity demand: With a substitution of f(pjt) for pjt into equation (5), the
constant elasticity of substitution (CES) demand model of Dixit and Stiglitz (1977) also
can be incorporated:

ln(qjt/qt) = α+ β ln

(
pjt
Πt

)
+ ξjt

where qt is an observed demand shifter, Πt is a price index, and β provides the constant
elasticity of demand. This model is often used in empirical research on international trade
and firm productivity (e.g., De Loecker (2011); Doraszelski and Jaumandreeu (2013)).
Due to the constant elasticity, profit-maximization implies Cov(p, ξ) = 0, and OLS produ-
ces unbiased estimates of the demand parameters. Indeed, this is an excellent illustration
of our basic argument: so long as the data generating process is sufficiently well un-
derstood, it is possible to characterize the bias of OLS estimates. We opt to focus on
semi-linear demand throughout this paper for analytical tractability.

Some demand systems are more difficult to reconcile with equation (5). Consider the linear
demand system, qjt = αj +

∑
k βjkpk + ξjt, which sometimes appears in identification proofs

(e.g., Nevo (1998)) but is seldom applied empirically due to the large number of price coeffi-
cients. In principle, the system could be formulated such that h(qjt, wjt;σ) ≡ qjt −

∑
k 6=j βjkpk

and uncorrelatedness assumptions could be used to identify the βjj and αj coefficients. This
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would require, however, that the econometrician have other sources of identification for the
βjk (j 6= k) coefficients, which seems unlikely. The same problem arises with the almost ideal
demand system of Deaton and Muellbauer (1980).

C Two-Stage Estimation

In the presence of an additional restriction, we can produce a more precise estimator that
can be calculated with one fewer stage. When the observed cost and demand shifters are
uncorrelated, there is no need to project the price on demand covariates when constructing a
consistent estimate, and one can proceed immediately using the OLS regression. We formalize
the additional restriction and the estimator below.

Assumption 5: Let the parameters α(k) and γ(k) correspond to the demand and supply coefficients
for covariate k in X. For any two covariates k and l, Cov(α(k)x(k), γ(l)x(l)) = 0.

Proposition C.1. Under assumptions 1-3 and 5, a consistent estimate of the price parameter β is
given by

β̂2-Stage =
1

2

β̂OLS − ˆCov
(
p, dh

dq
q
)

ˆV ar(p)
−

√√√√√β̂OLS +

ˆCov
(
p, dh

dq
q
)

ˆV ar(p)

2

+ 4

ˆCov
(
ξ̂OLS , dh

dq
q
)

ˆV ar(p)

 (C.1)

when the auxiliary condition, β < Cov(p∗,ξ)
V ar(p∗)

V ar(p)
V ar(p∗) −

Cov
(
p∗, dh

dq
q
)

V ar(p∗) , holds.

The estimator can be expressed entirely in terms of the data, the OLS coefficient, and the OLS
residuals. The first stage is an OLS regression of h(q; ·) on p and x, and the second stage is the
construction of the estimator as in equation (C.1). Thus, we eliminate the step of projecting p on
x. This estimator will be consistent under the assumption that any covariate affecting demand
does not covary with marginal cost. The auxiliary condition parallels that of the three-stage
estimator, and we expect that it will hold in typical cases.

D Proofs

Lemma: A Consistent and Unbiased Estimate for ξ

The following proof shows a consistent and unbiased estimate for the unobserved term in a
linear regression when one of the covariates is endogenous. Though demonstrated in the con-
text of semi-linear demand, the proof also applies for any endogenous covariate, including
when (transformed) quantity depends on a known transformation of price, as no supply-side
assumptions are required. For example, we may replace p with ln p everywhere and obtain the
same results.

Lemma D.1. A consistent and unbiased estimate of ξ is given by ξ1 = ξOLS +
(
βOLS − β

)
p∗

We can construct both the true demand shock and the OLS residuals as:

ξ = h(q)− βp− x′α
ξOLS = h(q)− βOLSp− x′αOLS
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where this holds even in small samples. Without loss of generality, we assume E[ξ] = 0. The
true demand shock is given by ξ0 = ξOLS + (βOLS − β)p + x′(αOLS − α). We desire to show
that an alternative estimate of the demand shock, ξ1 = ξOLS + (βOLS − β)p∗, is consistent and
unbiased. (This eliminates the need to estimate the true α parameters). It suffices to show that
(βOLS − β)p∗ → (βOLS − β)p+ x′(αOLS − α). Consider the projection matrices

Q = I − P (P ′P )−1P ′

M = I −X(X ′X)−1X ′,

where P is an N × 1 matrix of prices and X is the N × k matrix of covariates x. Denote
Y ≡ h(q) = Pβ +Xα+ ξ. Our OLS estimators can be constructed by a residualized regression

αOLS =
(
(XQ)′QX

)−1
(XQ)′ Y

βOLS =
(
(PM)′MP

)−1
(PM)′ Y.

Therefore

αOLS =
(
X ′QX

)−1 (
X ′QPβ +X ′QXα+X ′Qξ

)
=α+

(
X ′QX

)−1
X ′Qξ.

Similarly,

βOLS =
(
P ′MP

)−1 (
P ′MPβ + P ′MXα+ P ′Mξ

)
=β +

(
P ′MP

)−1
P ′Mξ.

We desire to show
P ∗(βOLS − β)→ P (βOLS − β) +X(αOLS − α).

Note that P ∗ = MP . Then

P ∗(βOLS − β)→P (βOLS − β) +X(αOLS − α)

MP
(
P ′MP

)−1
P ′Mξ →P

(
P ′MP

)−1
P ′Mξ +X

(
X ′QX

)−1
X ′Qξ

−X(X ′X)−1X ′P
(
P ′MP

)−1
P ′Mξ →X

(
X ′QX

)−1
X ′Qξ

−X(X ′X)−1X ′P
(
P ′MP

)−1
P ′
[
I −X(X ′X)−1X ′

]
ξ →X

(
X ′QX

)−1
X ′
[
I − P (P ′P )−1P ′

]
ξ

−X(X ′X)−1X ′P
(
P ′MP

)−1
P ′ξ →X

(
X ′QX

)−1
X ′ξ

+X(X ′X)−1X ′P
(
P ′MP

)−1
P ′X(X ′X)−1X ′ξ −X

(
X ′QX

)−1
X ′P (P ′P )−1P ′ξ.

We will show that the following two relations hold, which proves consistency and completes
the proof.

1. X(X ′X)−1X ′P (P ′MP )−1 P ′ξ = X (X ′QX)−1X ′P (P ′P )−1P ′ξ

2. X(X ′X)−1X ′P (P ′MP )−1 P ′X(XX (X ′QX)−1X ′X)−1X ′ξ → X (X ′QX)−1X ′ξ
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Part 1: Equivalence

It suffices to show that X(X ′X)−1X ′P (P ′MP )−1 = X (X ′QX)−1X ′P (P ′P )−1.

X(X ′X)−1X ′P
(
P ′MP

)−1
=X

(
X ′QX

)−1
X ′P (P ′P )−1

X(X ′X)−1X ′P =X
(
X ′QX

)−1
X ′P (P ′P )−1

(
P ′MP

)
X(X ′X)−1X ′P =X

(
X ′QX

)−1
X ′P (P ′P )−1

(
P ′P

)
−X

(
X ′QX

)−1
X ′P (P ′P )−1

(
P ′X(X ′X)−1X ′P

)
X(X ′X)−1X ′P =X

(
X ′QX

)−1
X ′P

−X
(
X ′QX

)−1
X ′ [I −Q]X(X ′X)−1X ′P

X(X ′X)−1X ′P =X
(
X ′QX

)−1
X ′P

−X
(
X ′QX

)−1
X ′X(X ′X)−1X ′P

+X
(
X ′QX

)−1
X ′QX(X ′X)−1X ′P

X(X ′X)−1X ′P =X(X ′X)−1X ′P

QED.

Part 2: Consistency (and Unbiasedness)

Because X(X ′X)−1X ′P = X (X ′QX)−1X ′P (P ′P )−1 (P ′MP ), as shown above:

X(X ′X)−1X ′P
(
P ′MP

)−1
P ′X(X ′X)−1X ′ξ → X

(
X ′QX

)−1
X ′ξ

X
(
X ′QX

)−1
X ′P (P ′P )−1P ′X(X ′X)−1X ′ξ → X

(
X ′QX

)−1
X ′ξ

X
(
X ′QX

)−1
X ′ [I −Q]X(X ′X)−1X ′ξ → X

(
X ′QX

)−1
X ′ξ

X
(
X ′QX

)−1
X ′X(X ′X)−1X ′ξ → X

(
X ′QX

)−1
X ′ξ

−X(X ′X)−1X ′ξ

X
(
X ′QX

)−1
X ′ξ −X(X ′X)−1X ′ξ → X

(
X ′QX

)−1
X ′ξ

X(X ′X)−1X ′ξ → 0.

The last line, where the projection of ξ onto the exogenous covariates X converges to zero,
holds by assumption. We say that two vectors converge if the mean absolute deviation goes
to zero as the sample size gets large. Note that also E[X(X ′X)−1X ′ξ] = 0, so ξ1 is both a
consistent and unbiased estimate for ξ0. QED.

Proof of Proposition 3 (Set Identification)

From the text, we have β̂OLS
p−→ β+Cov(p∗,ξ)

V ar(p∗) . The general form for a firm’s first-order condition
is p = c+ µ, where c is the marginal cost and µ is the markup. We can write p = p∗ + p̂, where
p̂ is the projection of p onto the exogenous demand variables, X. By assumption, c = Xγ + η.
If we substitute the first-order condition p∗ = Xγ + η + µ − p̂ into the bias term from the OLS
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regression, we obtain

Cov(p∗, ξ)

V ar(p∗)
=
Cov(ξ,Xγ + η + µ− p̂)

V ar(p∗)

=
Cov(ξ, η)

V ar(p∗)
+
Cov(ξ, µ)

V ar(p∗)

where the second line follows from the exogeneity assumption (E[Xξ] = 0). Under our demand
assumption, the unobserved demand shock may be written as ξ = h(q) − xα − βp. At the
probability limit of the OLS estimator, we can construct a consistent estimate of the unobserved
demand shock as ξ = ξOLS +

(
βOLS − β

)
p∗ (see Lemma D.1 above). From the prior step in

this proof, βOLS − β = Cov(ξ,η)
V ar(p∗) + Cov(ξ,µ)

V ar(p∗) . Therefore, ξ = ξOLS +
(
Cov(η,ξ)
V ar(p∗) + Cov(µ,ξ)

V ar(p∗)

)
p∗. This

implies

Cov (ξ, µ)

V ar(p∗)
=
Cov

(
ξOLS , µ

)
V ar(p∗)

+

(
Cov(ξ, η)

V ar(p∗)
+
Cov (ξ, µ)

V ar(p∗)

)
Cov(p∗, µ)

V ar(p∗)

Cov (ξ, µ)

V ar(p∗)

(
1− Cov(p∗, µ)

V ar(p∗)

)
=
Cov

(
ξOLS , µ

)
V ar(p∗)

+
Cov(ξ, η)

V ar(p∗)

Cov(p∗, µ)

V ar(p∗)

Cov (ξ, µ)

V ar(p∗)
=

1

1− Cov(p∗,µ)
V ar(p∗)

Cov
(
ξOLS , µ

)
V ar(p∗)

+
1

1− Cov(p∗,µ)
V ar(p∗)

Cov(ξ, η)

V ar(p∗)

Cov(p∗, µ)

V ar(p∗)

When we substitute this expression in for βOLS , we obtain

βOLS = β +
Cov(ξ, η)

V ar(p∗)
+

1

1− Cov(p∗,µ)
V ar(p∗)

Cov
(
ξOLS , µ

)
V ar(p∗)

+

Cov(p∗,µ)
V ar(p∗)

1− Cov(p∗,µ)
V ar(p∗)

Cov(ξ, η)

V ar(p∗)

βOLS = β +
1

1− Cov(p∗,µ)
V ar(p∗)

Cov
(
ξOLS , µ

)
V ar(p∗)

+
1

1− Cov(p∗,µ)
V ar(p∗)

Cov(ξ, η)

V ar(p∗)

Thus, we obtain an expression for the OLS estimator in terms of the OLS residuals, the residu-
alized prices, the markup, and the correlation between unobserved demand and cost shocks.
If the markup can be parameterized in terms of observables and the correlation in unobserved
shocks can be calibrated, we have a method to estimate β from the OLS regression. Under our
supply and demand assumptions, µ = − 1

β
dh
dq q, and plugging in obtains the first equation of the

proposition:

βOLS = β − 1

β +
Cov(p∗, dh

dq
q)

V ar(p∗)

Cov
(
ξOLS , dhdq q

)
V ar(p∗)

+ β
1

β +
Cov(p∗, dh

dq
q)

V ar(p∗)

Cov(ξ, η)

V ar(p∗)
.

The second equation in the proposition is obtained by rearranging terms. QED.
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Proof of Proposition 4 (Point Identification)

Part (1). We first prove the sufficient condition, i.e., that under assumptions 1 and 2, β is the
lower root of equation (11) if the following condition holds:

0 ≤ βOLS
Cov(p∗, dhdq q)

V ar(p∗)
+
Cov

(
ξOLS , dhdq q

)
V ar(p∗)

(D.1)

Consider a generic quadratic, ax2 + bx+ c. The roots of the quadratic are 1
2a

(
−b±

√
b2 − 4ac

)
.

Thus, if 4ac < 0 and a > 0 then the upper root is positive and the lower root is negative. In
equation (11), a = 1, and 4ac < 0 if and only if equation (D.1) holds. Because the upper root
is positive, β < 0 must be the lower root, and point identification is achieved given knowledge
of Cov(ξ, η). QED.

Part (2). In order to prove the necessary and sufficient condition for point identification, we
first state and prove a lemma:

Lemma D.2. The roots of equation (11) are β and Cov(p∗,ξ)
V ar(p∗) −

Cov(p∗, dh
dq
q)

V ar(p∗) − Cov(ξ,η)
V ar(p∗) .

Proof of Lemma D.2. We first provide equation (11) for reference:

0 = β2

+

(
Cov(p∗, dhdq q)

V ar(p∗)
+
Cov(ξ, η)

V ar(p∗)
− βOLS

)
β

+

−βOLSCov(p∗, dhdq q)

V ar(p∗)
−
Cov

(
ξOLS , dhdq q

)
V ar(p∗)


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To find the roots, begin by applying the quadratic formula

(r1, r2) =
1

2

(
−B ±

√
B2 − 4AC

)
=

1

2

(
βOLS −

Cov(p∗, dh
dq
q)

V ar(p∗)
−
Cov(ξ, η)

V ar(p∗)

±

√√√√√(βOLS − Cov(p∗, dh
dq
q)

V ar(p∗)
−
Cov(ξ, η)

V ar(p∗)

)2

+ 4βOLS
Cov(p∗, dh

dq
q)

V ar(p∗)
+ 4

Cov
(
ξOLS , dh

dq
q
)

V ar(p∗)


=

1

2

[
βOLS −

Cov(p∗, dh
dq
q)

V ar(p∗)
−
Cov(ξ, η)

V ar(p∗)

±

(βOLS − Cov(p∗, dh
dq
q)

V ar(p∗)

)2

+

(
Cov(ξ, η)

V ar(p∗)

)2

− 2
Cov(ξ, η)

V ar(p∗)

(
βOLS −

Cov(p∗, dh
dq
q)

V ar(p∗)

)

+4βOLS
Cov(p∗, dh

dq
q)

V ar(p∗)
+ 4

Cov
(
ξOLS , dh

dq
q
)

V ar(p∗)


1
2 ]

=
1

2

(
βOLS −

Cov(p∗, dh
dq
q)

V ar(p∗)
−
Cov(ξ, η)

V ar(p∗)
(D.2)

±

√√√√√(βOLS +
Cov(p∗, dh

dq
q)

V ar(p∗)

)2

+ 4
Cov

(
ξOLS , dh

dq
q
)

V ar(p∗)
+

(
Cov(ξ, η)

V ar(p∗)

)2

− 2
Cov(ξ, η)

V ar(p∗)

(
βOLS −

Cov(p∗, dh
dq
q)

V ar(p∗)

)

Looking inside the radical, consider the first part:
(
βOLS +

Cov(p∗, dh
dq
q)

V ar(p∗)

)2

+ 4
Cov

(
ξOLS , dh

dq
q
)

V ar(p∗)

(
βOLS +

Cov(p∗, dh
dq
q)

V ar(p∗)

)2

+ 4
Cov

(
ξOLS , dh

dq
q
)

V ar(p∗)

=

(
βOLS +

Cov(p∗, dh
dq
q)

V ar(p∗)

)2

+ 4
Cov

(
ξ − p∗(βOLS − β), dh

dq
q
)

V ar(p∗)

=

(
βOLS +

Cov(p∗, dh
dq
q)

V ar(p∗)

)2

+ 4
Cov

(
ξ, dh

dq
q
)

V ar(p∗)
− 4

Cov(p∗, ξ)

V ar(p∗)

Cov
(
p∗, dh

dq
q
)

V ar(p∗)

=

(
βOLS +

Cov(p∗, dh
dq
q)

V ar(p∗)

)2

+ 4
Cov

(
ξ, dh

dq
q
)

V ar(p∗)
− 4

(
Cov(ξ, η)

V ar(p∗)
+
Cov(ξ,− 1

β
dh
dq
q)

V ar(p∗)

)
Cov

(
p∗, dh

dq
q
)

V ar(p∗)

=

(
βOLS +

Cov(p∗, dh
dq
q)

V ar(p∗)

)2

+ 4
Cov

(
ξ, dh

dq
q
)

V ar(p∗)

1 +
1

β

Cov
(
p∗, dh

dq
q
)

V ar(p∗)

− 4
Cov(ξ, η)

V ar(p∗)

Cov
(
p∗, dh

dq
q
)

V ar(p∗)
(D.3)

To simplify this expression, it is helpful to use the general form for a firm’s first-order condition,
p = c+ µ, where c is the marginal cost and µ is the markup. We can write p = p∗ + p̂, where p̂
is the projection of p onto the exogenous demand variables, X. By assumption, c = Xγ + η. It
follows that

p∗ = Xγ + η + µ− p̂

= Xγ + η − 1

β

dh

dq
q − p̂
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Therefore
Cov(p∗, ξ) = Cov(ξ, η)− 1

β
Cov(ξ,

dh

dq
q)

and

Cov(ξ,
dh

dq
q) = −β (Cov(p∗, ξ)− Cov(ξ, η))

Cov(ξ, dhdq q)

V ar(p∗)
= −β

(
Cov(p∗, ξ)

V ar(p∗)
− Cov(ξ, η)

V ar(p∗)

)
(D.4)

Returning to equation (D.3), we can substitute using equation (D.4) and simplify:(
βOLS +

Cov(p∗, dh
dq
q)

V ar(p∗)

)2

+ 4
Cov

(
ξ, dh

dq
q
)

V ar(p∗)

1 +
1

β

Cov
(
p∗, dh

dq
q
)

V ar(p∗)

− 4
Cov(ξ, η)

V ar(p∗)

Cov
(
p∗, dh

dq
q
)

V ar(p∗)

=
(
βOLS

)2
+

Cov
(
p∗, dh

dq
q
)

V ar(p∗)

2

+ 2βOLS
Cov

(
p∗, dh

dq
q
)

V ar(p∗)
− 4

Cov(ξ, η)

V ar(p∗)

Cov
(
p∗, dh

dq
q
)

V ar(p∗)

+ 4
Cov

(
ξ, dh

dq
q
)

V ar(p∗)
+ 4

1

β

Cov
(
ξ, dh

dq
q
)

V ar(p∗)

Cov
(
p∗, dh

dq
q
)

V ar(p∗)

=

(
β +

Cov (p∗, ξ)

V ar(p∗)

)2

+

Cov
(
p∗, dh

dq
q
)

V ar(p∗)

2

+ 2

(
β +

Cov (p∗, ξ)

V ar(p∗)

) Cov
(
p∗, dh

dq
q
)

V ar(p∗)
− 4

Cov(ξ, η)

V ar(p∗)

Cov
(
p∗, dh

dq
q
)

V ar(p∗)

− 4β

(
Cov(p∗, ξ)

V ar(p∗)
− Cov(ξ, η)

V ar(p∗)

)
− 4

(
Cov(p∗, ξ)

V ar(p∗)
− Cov(ξ, η)

V ar(p∗)

) Cov
(
p∗, dh

dq
q
)

V ar(p∗)

=

(
β +

Cov (p∗, ξ)

V ar(p∗)

)2

+

Cov
(
p∗, dh

dq
q
)

V ar(p∗)

2

+ 2

(
β +

Cov (p∗, ξ)

V ar(p∗)

) Cov
(
p∗, dh

dq
q
)

V ar(p∗)

− 4β

(
Cov(p∗, ξ)

V ar(p∗)

)
− 4

(
Cov(p∗, ξ)

V ar(p∗)

) Cov
(
p∗, dh

dq
q
)

V ar(p∗)
+ 4β

Cov(ξ, η)

V ar(p∗)

=β2 +

(
Cov (p∗, ξ)

V ar(p∗)

)2

+

Cov
(
p∗, dh

dq
q
)

V ar(p∗)

2

+ 2β
Cov

(
p∗, dh

dq
q
)

V ar(p∗)

− 2β
Cov (p∗, ξ)

V ar(p∗)
− 2

Cov (p∗, ξ)

V ar(p∗)

Cov
(
p∗, dh

dq
q
)

V ar(p∗)
+ 4β

Cov(ξ, η)

V ar(p∗)

=

β +
Cov

(
p∗, dh

dq
q
)

V ar(p∗)

− Cov (p∗, ξ)

V ar(p∗)

2

+ 4β
Cov(ξ, η)

V ar(p∗)

45



Now, consider the second part inside of the radical in equation (D.2):(
Cov(ξ, η)

V ar(p∗)

)2

− 2
Cov(ξ, η)

V ar(p∗)

(
βOLS −

Cov(p∗, dh
dq
q)

V ar(p∗)

)

=

(
Cov(ξ, η)

V ar(p∗)

)2

− 2
Cov(ξ, η)

V ar(p∗)

(
β +

Cov(ξ, η)

V ar(p∗)
− 1

β

Cov(ξ, dh
dq
q)

V ar(p∗)
−
Cov(p∗, dh

dq
q)

V ar(p∗)

)

=

(
Cov(ξ, η)

V ar(p∗)

)2

− 2β
Cov(ξ, η)

V ar(p∗)
− 2

(
Cov(ξ, η)

V ar(p∗)

)2

+ 2
1

β

Cov(ξ, η)

V ar(p∗)

Cov(ξ, dh
dq
q)

V ar(p∗)
+ 2

Cov(ξ, η)

V ar(p∗)

Cov(p∗, dh
dq
q)

V ar(p∗)

=−
(
Cov(ξ, η)

V ar(p∗)

)2

− 2β
Cov(ξ, η)

V ar(p∗)
− 2

Cov(ξ, η)

V ar(p∗)

(
Cov(p∗, ξ)

V ar(p∗)
− Cov(ξ, η)

V ar(p∗)

)
+ 2

Cov(ξ, η)

V ar(p∗)

Cov(p∗, dh
dq
q)

V ar(p∗)

=

(
Cov(ξ, η)

V ar(p∗)

)2

− 2
Cov(ξ, η)

V ar(p∗)
β − 2

Cov(ξ, η)

V ar(p∗)

Cov(p∗, ξ)

V ar(p∗)
+ 2

Cov(ξ, η)

V ar(p∗)

Cov(p∗, dh
dq
q)

V ar(p∗)

Combining yields a simpler expression for the terms inside the radical of equation (D.2):β +
Cov

(
p∗, dhdq q

)
V ar(p∗)

− Cov (p∗, ξ)

V ar(p∗)

2

+ 4β
Cov(ξ, η)

V ar(p∗)

+

(
Cov(ξ, η)

V ar(p∗)

)2

− 2
Cov(ξ, η)

V ar(p∗)
β − 2

Cov(ξ, η)

V ar(p∗)

Cov(p∗, ξ)

V ar(p∗)
+ 2

Cov(ξ, η)

V ar(p∗)

Cov(p∗, dhdq q)

V ar(p∗)

=

β +
Cov

(
p∗, dhdq q

)
V ar(p∗)

− Cov (p∗, ξ)

V ar(p∗)

2

+

(
Cov(ξ, η)

V ar(p∗)

)2

+ 2β
Cov(ξ, η)

V ar(p∗)
− 2

Cov(ξ, η)

V ar(p∗)

Cov(p∗, ξ)

V ar(p∗)
+ 2

Cov(ξ, η)

V ar(p∗)

Cov(p∗, dhdq q)

V ar(p∗)

=

β +
Cov

(
p∗, dhdq q

)
V ar(p∗)

− Cov (p∗, ξ)

V ar(p∗)
+
Cov(ξ, η)

V ar(p∗)

2

Plugging this back into equation (D.2), we have:

(r1, r2) =
1

2

(
βOLS −

Cov(p∗, dhdq q)

V ar(p∗)
− Cov(ξ, η)

V ar(p∗)

±

√√√√√β +
Cov

(
p∗, dhdq q

)
V ar(p∗)

− Cov (p∗, ξ)

V ar(p∗)
+
Cov(ξ, η)

V ar(p∗)

2


=
1

2

(
β +

Cov (p∗, ξ)

V ar(p∗)
−
Cov(p∗, dhdq q)

V ar(p∗)
− Cov(ξ, η)

V ar(p∗)

±

√√√√√β +
Cov

(
p∗, dhdq q

)
V ar(p∗)

− Cov (p∗, ξ)

V ar(p∗)
+
Cov(ξ, η)

V ar(p∗)

2

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The roots are given by

1

2

β +
Cov (p∗, ξ)

V ar(p∗)
−
Cov(p∗, dhdq q)

V ar(p∗)
− Cov(ξ, η)

V ar(p∗)
+ β +

Cov
(
p∗, dhdq q

)
V ar(p∗)

− Cov (p∗, ξ)

V ar(p∗)
+
Cov(ξ, η)

V ar(p∗)


=β

and

1

2

β +
Cov (p∗, ξ)

V ar(p∗)
−
Cov(p∗, dhdq q)

V ar(p∗)
− Cov(ξ, η)

V ar(p∗)
− β −

Cov
(
p∗, dhdq q

)
V ar(p∗)

+
Cov (p∗, ξ)

V ar(p∗)
− Cov(ξ, η)

V ar(p∗)


=
Cov (p∗, ξ)

V ar(p∗)
−
Cov(p∗, dhdq q)

V ar(p∗)
− Cov(ξ, η)

V ar(p∗)

which completes the proof of the intermediate result. QED.

Part (3). Consider the roots of equation (11), β and Cov(p∗,ξ)
V ar(p∗) −

Cov(p∗, dh
dq
q)

V ar(p∗) − Cov(ξ,η)
V ar(p∗) . The price
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parameter β may or may not be the lower root.29 However, β is the lower root iff

β <
Cov(p∗, ξ)

V ar(p∗)
−
Cov(p∗, dhdq q)

V ar(p∗)
− Cov(ξ, η)

V ar(p∗)

β < −β
Cov(p∗,− 1

β ξ)

V ar(p∗)
+ β

Cov(p∗,− 1
β
dh
dq q)

V ar(p∗)
− Cov(ξ, η)

V ar(p∗)

β < −β
Cov(p∗,− 1

β ξ)

V ar(p∗)
+ β

Cov(p∗, p∗ − c)
V ar(p∗)

− Cov(ξ, η)

V ar(p∗)

β < β
V ar(p∗)

V ar(p∗)
− β

Cov(p∗,− 1
β ξ)

V ar(p∗)
− βCov(p∗, η)

V ar(p∗)
− Cov(ξ, η)

V ar(p∗)

0 < −β
Cov(p∗,− 1

β ξ)

V ar(p∗)
− βCov(p∗, η)

V ar(p∗)
− Cov(ξ, η)

V ar(p∗)

0 <
Cov(p∗,− 1

β ξ)

V ar(p∗)
+
Cov(p∗, η)

V ar(p∗)
+

1

β

Cov(ξ, η)

V ar(p∗)

The third line relies on the expression for the markup, p − c = − 1
β
dh
dq q. The final line holds

because β < 0 so −β > 0. It follows that β is the lower root of (11) iff

− 1

β

Cov(ξ, η)

V ar(p∗)
≤
Cov

(
p∗,− 1

β ξ
)

V ar(p∗)
+
Cov (p∗, η)

V ar(p∗)

in which case β is point identified given knowledge of Cov(ξ, η). QED.

Proof of Lemma 1 (Monotonicity in Cov(ξ, η))

We return to the quadratic formula for the proof. The lower root of a quadratic ax2 + bx+ c is
L ≡ 1

2

(
−b−

√
b2 − 4ac

)
. In our case, a = 1.

29Consider that the first root is the upper root if

β +
Cov

(
p∗, dh

dq
q
)

V ar(p∗)
− Cov (p∗, ξ)

V ar(p∗)
+
Cov(ξ, η)

V ar(p∗)
> 0

because, in that case,√√√√√β +
Cov

(
p∗, dh

dq
q
)

V ar(p∗)
− Cov (p∗, ξ)

V ar(p∗)
+
Cov(ξ, η)

V ar(p∗)

2

= β +
Cov

(
p∗, dh

dq
q
)

V ar(p∗)
− Cov (p∗, ξ)

V ar(p∗)
+
Cov(ξ, η)

V ar(p∗)

When β +
Cov

(
p∗, dh

dq
q
)

V ar(p∗) − Cov(p∗,ξ)
V ar(p∗) + Cov(ξ,η)

V ar(p∗) < 0, then

√(
β +

Cov
(
p∗, dh

dq
q
)

V ar(p∗) − Cov(p∗,ξ)
V ar(p∗) + Cov(ξ,η)

V ar(p∗)

)2

=

−
(
β +

Cov
(
p∗, dh

dq
q
)

V ar(p∗) − Cov(p∗,ξ)
V ar(p∗) + Cov(ξ,η)

V ar(p∗)

)
, and the first root is then the lower root (i.e., minus the negative

value).
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We wish to show that ∂L
∂γ < 0, where γ = Cov(ξ, η). We evaluate the derivative to obtain

∂L

∂γ
= −1

2

(
1 +

b

(b2 − 4c)
1
2

)
∂b

∂γ
.

We observe that, in our setting, ∂b
∂γ = 1

V ar(p∗) is always positive. Therefore, it suffices to
show that

1 +
b

(b2 − 4c)
1
2

> 0. (D.5)

We have two cases. First, when c < 0, we know that
∣∣∣∣ b

(b2−4c)
1
2

∣∣∣∣ < 1, which satisfies (D.5).

Second, when c > 0, it must be the case that b > 0 also. Otherwise, both roots will be positive,
invalidating the model. When b > 0, it is evident that the left-hand side of (D.5) is positive.
This demonstrates monotonicity.

Finally, we obtain the range of values for L by examining the limits as γ →∞ and γ → −∞.
From the expression for L and the result that ∂b

∂γ is a constant, we obtain

lim
γ→−∞

L = 0

lim
γ→∞

L = −∞

When c < 0, the domain of the quadratic function is (−∞,∞), which, along with monotonicity,
implies the range for L of (0,−∞). When c > 0, the domain is not defined on the interval
(−2
√
c, 2
√
c), but L is equal in value at the boundaries of the domain. QED.

Additionally, we note that the upper root, U ≡ 1
2

(
−b+

√
b2 − 4ac

)
will be increasing in γ.

When the upper root is a valid solution (i.e., negative), it must be the case that c > 0 and b > 0,
and it is straightforward to follow the above arguments to show that ∂U∂γ > 0 and that the range
of the upper root is [−1

2b, 0).

Proof of Proposition 5 (Prior-Free Bounds)

The proof is again an application of the quadratic formula. Any generic quadratic, ax2 + bx +

c, with roots 1
2

(
−b±

√
b2 − 4ac

)
, admits a real solution if and only if b2 > 4ac. Given the

formulation of (11), real solutions satisfy the condition:(
Cov(p∗, dhdq q)

V ar(p∗)
+
Cov(ξ, η)

V ar(p∗)
− βOLS

)2

> 4

−βOLSCov(p∗, dhdq q)

V ar(p∗)
−
Cov

(
ξOLS , dhdq q

)
V ar(p∗)

 .

As a = 1, a solution is always possible if c < 0. This is the sufficient condition for point
identification from the text. If c > 0, it must be the case that b > 0; otherwise, both roots will
be positive. Therefore, a real solution is obtained if and only if b > 2

√
c, that is
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(
Cov(p∗, dhdq q)

V ar(p∗)
+
Cov(ξ, η)

V ar(p∗)
− βOLS

)
> 2

√√√√√
−βOLSCov(p∗, dhdq q)

V ar(p∗)
−
Cov

(
ξOLS , dhdq q

)
V ar(p∗)

.
Solving for Cov(ξ, η), we obtain the prior-free bound,

Cov(ξ, η) > V ar(p∗)βOLS − Cov(p∗,
dh

dq
q) + 2V ar(p∗)

√√√√√
−βOLS

Cov(p∗, dhdq q)

V ar(p∗)
−
Cov

(
ξOLS , dhdq q

)
V ar(p∗)

.
This bound exists if the expression inside the radicals is positive, which is the case if and only
if the sufficient condition for point identification from Proposition 4 fails. QED.

Proof of Proposition 6 (Non-Constant Marginal Costs)

Under the semi-linear marginal cost schedule of equation (14), the plim of the OLS estimator
is equal to

plimβ̂OLS = β +
Cov(ξ, g(q))

V ar(p∗)
− 1

β

Cov
(
ξ, dhdq q

)
V ar(p∗)

.

This is obtain directly by plugging in the first–order condition for p: Cov(p∗, ξ) = Cov(g(q) +
η − 1

β
dh
dq q − p̂, ξ) = Cov(ξ, g(q))− 1

βCov(ξ, dhdq q)under the assumptions. Next, we re-express the
terms including the unobserved demand shocks in in terms of OLS residuals. The unobserved
demand shock may be written as ξ = h(q) − xβx − βp. The estimated residuals are given

by ξOLS = ξ +
(
β − βOLS

)
p∗. As β − βOLS = 1

β

Cov
(
ξ, dh
dq
q
)

V ar(p∗) − Cov(ξ,g(q))
V ar(p∗) , we obtain ξOLS =

ξ +

(
1
β

Cov
(
ξ, dh
dq
q
)

V ar(p∗) − Cov(ξ,g(q))
V ar(p∗)

)
p∗. This implies

Cov

(
ξOLS ,

dh

dq
q

)
=

(
1 +

1

β

Cov(p∗, dhdq q)

V ar(p∗)

)
Cov(ξ,

dh

dq
q)−

Cov(p∗, dhdq q)

V ar(p∗)
Cov(ξ, g(q))

Cov
(
ξOLS , g(q)

)
=

1

β

Cov(p∗, g(q))

V ar(p∗)
Cov

(
ξ,
dh

dq
q

)
+

(
1− Cov(p∗, g(q))

V ar(p∗)

)
Cov(ξ, g(q))

We write the system of equations in matrix form and invert to solve for the covariance terms
that include the unobserved demand shock:

[
Cov(ξ, dhdq q)

Cov(ξ, g(q))

]
=

 1 + 1
β

Cov(p∗, dh
dq
q)

V ar(p∗) −
Cov(p∗, dh

dq
q)

V ar(p∗)
1
β
Cov(p∗,g(q))
V ar(p∗) 1− Cov(p∗,g(q))

V ar(p∗)

−1 [ Cov(ξOLS , dhdq q)

Cov(ξOLS , g(q))

]
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where  1 + 1
β

Cov(p∗, dh
dq
q)

V ar(p∗) −
Cov(p∗, dh

dq
q)

V ar(p∗)
1
β
Cov(p∗,g(q))
V ar(p∗) 1− Cov(p∗,g(q))

V ar(p∗)

−1 =

1

1 + 1
β

Cov(p∗, dh
dq
q)

V ar(p∗) − Cov(p∗,g(q))
V ar(p∗)

 1− Cov(p∗,g(q))
V ar(p∗)

Cov(p∗, dh
dq
q)

V ar(p∗)

− 1
β
Cov(p∗,g(q))
V ar(p∗) 1 + 1

β

Cov(p∗, dh
dq
q)

V ar(p∗)

 .
Therefore, we obtain the relations

Cov(ξ,
dh

dq
q) =

(
1− Cov(p∗,g(q))

V ar(p∗)

)
Cov(ξOLS , dhdq q) +

Cov(p∗, dh
dq
q)

V ar(p∗) Cov(ξOLS , g(q))

1 + 1
β

Cov(p∗, dh
dq
q)

V ar(p∗) − Cov(p∗,g(q))
V ar(p∗)

Cov(ξ, g(q)) =

− 1
β
Cov(p∗,g(q))
V ar(p∗) Cov(ξOLS , dhdq q) +

(
1 + 1

β

Cov(p∗, dh
dq
q)

V ar(p∗)

)
Cov(ξOLS , g(q))

1 + 1
β

Cov(p∗, dh
dq
q)

V ar(p∗) − Cov(p∗,g(q))
V ar(p∗)

.

In terms of observables, we can substitute in for Cov(ξ, g(q))− 1
βCov

(
ξ, dhdq q

)
in the plim of the

OLS estimator and simplify:(
1 +

1

β

Cov(p∗, dhdq q)

V ar(p∗)
− Cov(p∗, g(q))

V ar(p∗)

)(
Cov(ξ, g(q))− 1

β
Cov

(
ξ,
dh

dq
q

))

=− 1

β

Cov(p∗, g(q))

V ar(p∗)
Cov(ξOLS ,

dh

dq
q) +

(
1 +

1

β

Cov(p∗, dhdq q)

V ar(p∗)

)
Cov(ξOLS , g(q))

− 1

β

(
1− Cov(p∗, g(q))

V ar(p∗)

)
Cov(ξOLS ,

dh

dq
q)− 1

β

Cov(p∗, dhdq q)

V ar(p∗)
Cov(ξOLS , g(q))

=Cov(ξOLS , g(q))− 1

β
Cov(ξOLS ,

dh

dq
q).

Thus, we obtain an expression for the probability limit of the OLS estimator,

plimβ̂OLS = β −
Cov(ξOLS , dh

dq
q)

V ar(p∗) − βCov(ξ
OLS ,g(q))

V ar(p∗)

β +
Cov(p∗, dh

dq
q)

V ar(p∗) − βCov(p
∗,g(q))

V ar(p∗)

,
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and the following quadratic β.

0 =

(
1− Cov(p∗, g(q))

V ar(p∗)

)
β2

+

(
Cov(p∗, dhdq q)

V ar(p∗)
− β̂OLS +

Cov(p∗, g(q))

V ar(p∗)
β̂OLS +

Cov(ξOLS , g(q))

V ar(p∗)

)
β

+

(
−
Cov(p∗, dhdq q)

V ar(p∗)
β̂OLS −

Cov(ξOLS , dhdq q)

V ar(p∗)

)
.

QED.

Proof of Lemma A.1

The proof is by construction. Note that model has the solutions p∗t = 1
2

(
−α
β −

ξt
β + γ + νt

β

)
and

q∗t = 1
2(α+ ξt + βγ + νt), where again νt ≡ βηt. The following objects are easily derived:

Cov(p, ξ) = − 1

2β
V ar(ξ) Cov(p, ν) =

1

2β
V ar(ν)2

V ar(p) =
V ar(ν) + V ar(ξ)

(2β)2
V ar(q) =

1

4
(V ar(ξ) + V ar(ν))

Using the above, we have

Cov(p, q) = Cov(p, α+ βp+ ξ) = βV ar(p) + Cov(p, ξ) = β
V ar(ν) + V ar(ξ)

(2β)2
− 2β

(2β)2
V ar(ξ)

=
βV ar(ν) + βV ar(ξ)− 2βV ar(ξ)

(2β)2
= β

V ar(ν)− V ar(ξ)
(2β)2

And that obtains equation (A.2):

plim
(
β̂OLS

)
≡ βOLS =

Cov(p, q)

V ar(p)
= β

V ar(ν)− V ar(ξ)
V ar(ν) + V ar(ξ)

Equation (A.4) requires an expression for Cov(q, ξOLS). Define

plim(ξ̂OLS) ≡ ξOLS = q − αOLS − βOLSp
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Then, plugging into Cov(q, ξOLS) using the objects derived above, we have

Cov(q, ξOLS) = Cov(q, q − βOLSp)
= V ar(q)− βOLSCov(p, q)

=
1

4
(V ar(ξ) + V ar(ν))−

(
β
V ar(ν)− V ar(ξ)
V ar(ν) + V ar(ξ)

)(
β

(V ar(ν)− V ar(ξ))
(2β)2

)
=

1

4

(
[V ar(ξ) + V ar(ν)]2 − [V ar(ν)− V ar(ξ)]2

V ar(ν) + V ar(ξ)

)
=

V ar(ξ)V ar(ν)

V ar(ν) + V ar(ξ)

We turn now to equation (A.3). Based on the above, we have that

Cov(q, ξOLS)

V ar(p)
=

(
V ar(ξ)V ar(ν)

V ar(ν) + V ar(ξ)

)
(2β)2

V ar(ν) + V ar(ξ)
= (2β)2

V ar(ξ)V ar(ν)

[V ar(ν) + V ar(ξ)]2

and now only few more lines of algebra are required:

(βOLS)2 +
Cov(q, ξOLS)

V ar(p)
= β2

[
V ar(ν)− V ar(ξ)
V ar(ν) + V ar(ξ)

]2
+ (2β)2

V ar(ξ)V ar(ν)

[V ar(ν) + V ar(ξ)]2

=
β2[V ar2(ν) + V ar2(ξ)− 2V ar(ν)V ar(ξ)] + 4β2V ar(ν)V ar(ξ)

[V ar(ν) + V ar(ξ)]2

=
β2[V ar2(ν) + V ar2(ξ) + 2V ar(ν)V ar(ξ)]

[V ar(ν) + V ar(ξ)]2

= β2
[V ar(ν) + V ar(ξ)]2

[V ar(ν) + V ar(ξ)]2
= β2

QED.

Proof of Proposition C.1 (Two-Stage Estimator)

Suppose that, in addition to assumptions 1-3, that marginal costs are uncorrelated with the

exogenous demand factors (Assumption 5). Then, the expression 1

β+
Cov(p, dhdq q)
V ar(p)

Cov
(
ξOLS , dh

dq
q
)

V ar(p) is

equal to 1

β+
Cov(p∗, dhdq q)
V ar(p∗)

Cov
(
ξOLS , dh

dq
q
)

V ar(p∗) .
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Assumption 4 implies Cov(p̂, c) = 0, allowing us to obtain

Cov(p̂, β(p̂+ p∗ − c)) = βV ar(p̂)

Cov(p− p∗, β(p̂+ p∗ − c)) = βV ar(p)− βV ar(p∗)

V ar(p)β + Cov

(
p,
dh

dq
q

)
= V ar(p∗)β + Cov

(
p∗,

dh

dq
q

)
β +

Cov
(
p, dhdq q

)
V ar(p)

 1

V ar(p∗)
=

β +
Cov

(
p∗, dhdq q

)
V ar(p∗)

 1

V ar(p)

1

β +
Cov

(
p∗, dh

dq
q
)

V ar(p∗)

Cov
(
ξOLS , dhdq q

)
V ar(p∗)

=
1

β +
Cov

(
p, dh
dq
q
)

V ar(p)

Cov
(
ξOLS , dhdq q

)
V ar(p)

.

Therefore, the probability limit of the OLS estimator can be written as:

plimβ̂OLS = β − 1

β +
Cov

(
p, dh
dq
q
)

V ar(p)

Cov
(
ξOLS , dhdq q

)
V ar(p)

.

The roots of the implied quadratic are:

1

2

βOLS − Cov
(
p, dhdq q

)
V ar(p)

+−

√√√√√βOLS +
Cov

(
p, dhdq q

)
V ar(p)

2

+ 4
Cov

(
ξOLS , dhdq q

)
V ar(p)


which are equivalent to the pair

(
β, β

(
1− V ar(p∗)

V ar(p)

)
+ Cov(p∗,ξ)

V ar(p∗) −
Cov

(
p∗, dh

dq
q
)

V ar(p)

)
. Therefore,

with the auxiliary condition β < Cov(p∗,ξ)
V ar(p∗)

V ar(p)
V ar(p∗) −

Cov
(
p∗, dh

dq
q
)

V ar(p∗) , the lower root is consistent
for β. QED.

E Supplemental Tables and Figures

Figure E.1 illustrates the connection between rejected values of Cov(ξ, η) and rejected values of
β that can be obtained from Proposition 5. Panel A of Figure E.1 shows that some intermediate
values of Cov(ξ, η) can be rejected if σ ≥ 0.62. Uncorrelatedness is rejected with σ ≥ 0.69 and,
as σ → 1, it must be that Cov(ξ, η) ≥ 0.35. Panel B provides the corresponding bounds on β.
As σ becomes larger, a more negative β is required to rationalize the data within the context
of the model. If σ = 0.80 then it must be that β ≤ −0.11. The panel also plots the 3-Stage
estimator, β̂3−Stage(σ), over its supported range. Unlike the bounds, the estimator assumes that
Cov(ξ, η) = 0. As σ converges to 0.69 from below, the 3-Stage estimator approaches the bound
on β. For context, the panel plots the upper root of the three-stage estimate, which is negative
when σ ≥ 0.62.
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Figure E.1: Prior-Free Bounds for Airlines
Notes: The shaded region in Panel A corresponds to covariance value that cannot
be rationalized given the data and the model. The shaded region in Panel B
provides the corresponding price parameters that can be ruled out based on the
excluded set in Panel A.
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