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Abstract

In this paper we address the question of how individuals form expectations and invent, re-
inforce, and update their forecasting rules in a complex world. We do so by fitting a novel,
parsimonious and empirically validated genetic algorithm learning model with explicit het-
erogeneity in expectations to a set of laboratory experiments. Agents use simple linear first
order price forecasting rules, adapting them to the complex evolving market environment
with a Genetic Algorithm optimization procedure. The novelties are: (1) a parsimonious ex-
perimental foundation of individual forecasting behavior; (2) explanation of individual and
aggregate behavior in three different experimental settings, (3) improved one- and 50-period
ahead forecasting of experiments, and (4) characterization of the mean, median and empir-
ical distribution of forecasting heuristics. The median of the distribution of GA forecasting
heuristics can be used in designing or validating simple Heuristic Switching Models.
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1 Introduction

Expectations are a cornerstone of many dynamic economic models. In this paper we address the

question of how individuals form expectations and invent, reinforce and update their forecasting

rules in a complex world. We do so by fitting a novel, parsimonious and empirically validated

genetic algorithm learning model with explicit heterogeneity in expectations to a set of laboratory

experiments. The traditional literature after Muth (1961), Lucas (1972) and others emphasizes

the Rational Expectations (RE) hypothesis, which states that the expectations of all agents have

to be model consistent. While the RE hypothesis is a natural benchmark theory of expectation

formation, as a realistic description of real world behavior it faces challenges both theoretically and

empirically. A substantial literature addresses many of the shortcomings of RE by an alternative

boundedly rational approach attributing to individuals an adaptive learning rule. These learning

models are typically motivated by restricting forecasting rules to nest the RE of interest and to

specify a reasonable learning algorithm that adjusts the forecasting model in light of forecast

errors, thereby, preserving the cross-equation restrictions that are the hallmark of RE models.

Much of this literature is motivated by a cognitive consistency principle, formulated by Sargent

(1993), Evans and Honkapohja (2001) and others, that holds that individuals should forecast like

a good econometrician who specifies a forecasting model and revises the model in light of data.1

An influential set of papers following Brock and Hommes (1997) developed a learning model

where individuals entertain a set of possible forecasting rules and select the rule that performs

best. In this model expectations can be heterogeneous and time-varying in macroeconomic

and asset-pricing settings with a strong feedback mechanism from expectations onto equilib-

rium outcomes. Applications of this learning model include asset prices (Brock and Hommes,

1998; Anufriev and Panchenko, 2009; Branch and Evans, 2010) and business cycle dynamics and

monetary policy (Branch and McGough, 2010; Branch and McGough, 2011; Anufriev, Assenza,

Hommes, and Massaro, 2013). Moreover, empirical evidence for this predictor-selection learning

model can be seen in survey data2 (Branch, 2004), estimated financial models (Boswijk, Hommes,

1Non-learning streams of macroeconomic literature on bounded rationality include the rational inattention ap-
proach, see Sims (2010) for a comprehensive review, the rational or “near-rational” beliefs approach, see Woodford
(2010) and Kurz and Motolese (2011), and the eductive approach of Guesnerie (2005). In the rational inattention
literature agents do not react on all relevant information quickly but instead process information at some finite
rate. Similarly to the adaptive learning models it induces sluggish behavior which then can be translated into
sluggishness of economic variables. ‘Near-Rational’ expectations allow distortions of expectations with respect to
the RE case within certain bounds. Eductive learning means that agents’ expectations are consistent with the
actual law of motion and some common knowledge assumption about expectations of others. All these threads of
literature produce a richer set of equilibrium dynamics than RE, possibly leading to complex dynamics (Bullard,
1994). Woodford (2013) gives a recent survey.

2Perhaps, the most prominent recent example on failure of REs comes from the housing market in the US, which
in the last decade exhibited first a boom and then a collapse. Case, Shiller, and Thompson (2012) conduct a survey
of households’ expectations about changes in their home value over the next years and reject the RE hypothesis.
They conclude that people’s expectations are consistent with trend-extrapolation and that people systematically
misjudge the long-term value of their houses. Similar effects were observed with expectations before the previous
housing bubble in the late 80’s, see Goodman and Ittner (1992). In fact, economic history knows many similar
examples of prolonged asset misvaluation, see, e.g., Reinhart and Rogoff (2009) and Kindleberger and Aliber
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and Manzan, 2007), estimated DSGE models (Cornea-Madeira, Hommes, and Massaro, 2017),

housing market models (Bolt, Demertzis, Diks, Hommes, and Van der Leij, 2014), and, most

importantly for this paper, in a series of “learning-to-forecast” experiments reviewed in Hommes

(2011) and Wagener (2014).3 Heterogeneity in expectations has been a general feature in these

empirical works, survey data analyses, and laboratory experiments.

Learning-to-Forecast (LtF) experiments offer a simple laboratory testing ground for adaptive

learning mechanisms (Lucas, 1986). These controlled experimental economies have a straight-

forward and unique fundamental equilibrium consistent with RE. As in real markets, subjects

observe the realized prices and their own past individual predictions, but not the history of other

subjects’ predictions, and are not informed about the exact law of motion of the economy. The

outcomes of many LtF laboratory experiments contradict the RE hypothesis, see the review in

Hommes (2011). The experiments in Hommes, Sonnemans, Tuinstra, and van de Velden (2005),

henceforth HSTV05, showed that subjects can coordinate on oscillating and serially correlated

time series, and that convergence to the fundamental equilibrium happens only under severe

restrictions on the underlying law of motion. Further experiments in Heemeijer, Hommes, Sonne-

mans, and Tuinstra (2009), henceforth HHST09, and Bao, Hommes, Sonnemans, and Tuinstra

(2012), henceforth BHST12, demonstrated that the expectations feedback structure plays a cru-

cial role. Negative feedback systems (i.e., where more optimistic forecasts lead to lower market

prices, as in supply driven commodity markets) tend to generate convergence to the fundamental

equilibrium rather easily, while positive feedback systems (i.e., where more optimistic forecasts

lead to higher market prices, as in speculative asset markets) typically generate behavior with

the price oscillating around the fundamental equilibrium dynamics.4

Anufriev and Hommes (2012) and Anufriev, Hommes, and Philipse (2013) show that an exten-

sion of the predictor-selection learning model of Brock and Hommes (1997) – called the heuristics

(2011). Many studies use surveys of inflation expectations. For example, Malmendier and Nagel (2009) studies
the responses in the Reuters/Michigan Survey of Consumers and find support for the backward looking, learning
from experience model. Branch (2004) shows that the responses are consistent with a mixed model where non-
rational expectations (such as naive or adaptive) have a high weight. A similar conclusion is reached in Nunes
(2010) who uses, instead, the Survey of Professional Forecasters.

3There is a connection of this literature with experimental research in psychology (Tversky and Kahneman,
1974; Kahneman, 2011; Gigerenzer and Todd, 1999) and game theory (Erev and Roth, 1998; Camerer and Ho,
1999) suggesting that people rely on relatively simple behavioral rules in their decision making and that an
important ingredient of their learning is reinforcement of successful rules and forgetting less successful. The game
theoretical studies provide also evidence of using more sophisticated belief-based learning, see, e.g., Feltovich
(2000). However, in the experiments which we discuss in this paper there is not much space for belief learning,
because the payoffs as well as the game-theoretical structure are not explicitly explained to the subjects. This
would, actually, be the case in most real situations, where the law of motion of the market is unknown.

4In this paper the one-variable LtF experiments are used as a test bed for the GA model. Their relatively long
duration of 50 periods and more is well suited to evaluate both short and long run performance of the GA model
and compare it with other models. Recent LtF experiments in macroeconomics (Adam, 2007, Pfajfar and Žakelj,
2014, Assenza, Heemeijer, Hommes, and Massaro, 2014) investigate forecasting of two variables simultaneously
(Duffy, 2016). Experiments with repeated play of the “beauty contest” game (Nagel, 1995) are also closely related.
Despite somewhat different design and shorter duration, their outcomes are similar to the LtF experiments (Ho,
Camerer, and Weigelt, 1998, Sutan and Willinger, 2009, Sonnemans and Tuinstra, 2010). Application of our GA
model to these experiments is beyond the scope of this paper and left for future research.
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switching model (HSM) – fits these different experimental settings quite well. Individuals choose

from a small set of simple linear forecast rules (heuristics) that depend on a weighted average of

past prices and a trend following component based upon their relative performance. However, a

drawback to the HSM is that the modeler needs to specify the set of rules available for individuals

to choose from. Moreover, the set of rules providing the best fit to the experimental data (or

survey data, or DSGE model) may depend on the specifics of the economic model. So, while

the HSM addresses some of the ‘wilderness of bounded rationality’ criticism by endogenizing the

distribution of agents across learning models, there is still the issue of how people come to select

from this particular set of models, and why some models are used in some settings (like negative

feedback experiments) and other models in other settings (like positive feedback experiments).

Finally, a general model is needed to account for within-group heterogeneity in experimental data.

The current paper breaks new ground by further disciplining the wilderness of bounded ra-

tionality and proposing an evolutionary model, based on the genetic algorithm, that provides

a general framework for expectation formation and the formulation of simple sets of forecast-

ing models or heuristics. The GA learning model that we propose is empirically validated and

parsimonious. Heterogeneous agents use linear first order price forecasting rule with only two

parameters, that nests most of the existing ways the literature would model the formulation of

expectations. The GA allows the agents to fine tune that set of forecasting rules by comparing

past performance, experimenting, and refining the set to include rules likely to perform well in

a mean square error sense. We will use three different experimental frameworks, initialize the

genetic algorithm using the (estimated distribution of) initial outcomes from the experiment, and

then run Monte Carlo simulations. A comparison is then made between the model-implied data

and the data from the learning-to-forecast experiments. The results are striking. The GA model

provides a very good fit to the experimental data and the same type of behavior – convergence

in negative feedback models, oscillations in positive feedback – emerges. The model can also

account for much of the cross-sectional heterogeneity. The ability of the GA model to generate

a good fit to the results across a variety of lab experiments provides strong evidence in favor of

the evolutionary predictor-selection model.

GA’s are a prominent tool in the economic literature to model individual learning (see, e.g.,

Sargent, 1993 and Dawid, 1996). From the very first economic application in Arifovic (1994),

GA were used to model both the social and individual learning and to explain the results of

experiments with human subjects. Areas of GA applications include the overlapping generation

monetary economies (Arifovic, 1995), exchange rate volatility (Arifovic, 1996; Lux and Schorn-

stein, 2005), production level choices in a cobweb producers economy (Dawid and Kopel, 1998),

financial markets (LeBaron, Arthur, and Palmer, 1999; Duffy and Ünver, 2006) and monetary

policy (Arifovic, Bullard, and Kostyshyna, 2013). Recently in a related paper Hommes and Lux

(2013) investigate a model in which agents use GA to optimize an AR1 forecasting heuristic

(instead of directly optimizing a prediction) and, much like the actual subjects in the LtF exper-

iments, cannot observe each others behavior or strategies. The authors replicate the distribution
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(mean, variance and first order auto-correlation) of the predictions and prices of the cobweb

experiments by Hommes, Sonnemans, Tuinstra, and van de Velden (2007).

We compare our GA model to 11 alternative learning models: seven homogeneous models: RE,

naive, adaptive, trend-following and contrarian expectations, Least Square learning and Constant

Gain learning, and four heterogeneous expectation models: a HSM with two rules, a HSM with

four rules, and two different specifications of the GA, an action-based GA and a GA based on the

AR1 rule. This set of models includes the benchmark RE model, a standard set of homogeneous

models that were popular in macroeconomics before the RE, and that constitute the building

blocks for a recent successful HSM model, the two standard adaptive learning models as used

in the literature discussed before, and different variations of GA models. Our GA model almost

always outperforms these alternative benchmark models both in the short and in the long run. In

particular, it substantially outperforms the action-based GA, where the action (i.e., the forecast)

is optimized, and the AR1 based GA, where the two parameters of the AR1 rule are optimized.

An important and novel insight from our analysis is that the use of an appropriate forecasting

heuristic, that takes the trend-extrapolation in positive feedback systems into account, makes our

heuristic-based GA ‘smart’, in the sense that it fits well with the observed behavior of human

subjects in the experiments, cf. Gigerenzer and Todd (1999).

Another contribution of the paper is that our model is able to capture the dynamics of

prices and forecasts at both the aggregate and the individual level for different experimental

settings. The GA model replicates the long-run behavior of the experimental prices, as well as

the individual forecasting decisions. We are also the first to evaluate the out-of-sample one period

ahead predictive power of the GA model. Using Sequential Monte Carlo techniques we find that

depending on the experiment our model is comparable to or better than the HSM in terms of

predicting prices, individual forecasts, and their heterogeneity. This is an important contribution

to the literature on heterogeneous agent models, which usually focuses only on a model’s fit to

aggregate stylized facts.

Finally, the Monte Carlo studies of the GA model enable us to characterize the emerging

median forecasting behavior, together with its corresponding confidence bounds, in various exper-

imental settings. The GA simulations thus (1) provide a solid motivation for describing the LtF

experimental dynamics in terms of simple ‘stylized’ heuristics, and (2) guide the specific choice of

these heuristics for a particular experimental market. This yields natural empirical foundations

for heterogeneous expectations models such as the HSM.

The paper is organized as follows. In Section 2 we present the set-up and findings of the LtF

experiments. Section 3 presents some benchmark models of expectation formation. In Section 4

we introduce our GA model. Section 5 investigates how our model fits three different experimental

settings. Finally, the concluding Section 6 gives an overview of the results and suggestions for

future research. The appendices contain GA simulation details and various robustness checks.
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2 Learning to Forecast Experiments

2.1 Overview

Learning to Forecast (LtF) Experiments are experimental markets where participants repeatedly

forecast the market price and are rewarded for their forecasting accuracy. The underlying law of

motion for realized prices, as a function of individual forecasts, is given by one of the following:

pt = F (p̄et ) + εt , or(1a)

pt = F (p̄et+1) + εt ,(1b)

where pt is the price at period t, p̄et (or p̄et+1) denotes subjects’ average forecast for the price, and

εt are small IID shocks. In all experiments discussed in this paper there were 6 participants per

group, so that p̄et = (pe1,t + · · ·+ pe6,t)/6. The price law of motion F (·) is obtained from a market

clearing condition with aggregate supply and demand derived from optimal (i.e., profit/utility

maximizing) choices of firms, consumers or investors, given the individual forecasts.5 In all

examples below there exists a unique price pf such that pf = F
(
pf
)
, the fixed point of the

expectations feedback system F . This price is called the fundamental price and when all subjects

forecast it, the Rational Expectation steady state emerges.6 An important question for LtF

experiments is whether the price will converge to its fundamental value.

The subjects in the LtF experiments are only informed about qualitative aspects of the market,

but not about the exact law of motion. They know that their forecasts affect realized prices and

whether the law of motion exhibits negative feedback (i.e., a higher average forecast results in a

lower price) or positive feedback (i.e., a higher average forecast results in a higher price). Subjects

do not know the exact number of other participants and their forecasts, and are not explicitly

informed about the fundamental price.7

The forecasts are submitted repeatedly and the experimental screen of a participant shows

past prices, own past forecasts and earnings of the participant. The earnings per period decrease

with the squared forecasting error, (pt − pei,t)2. In the experiments with the law of motion (1a),

subjects make one-period ahead forecasts, but in the experiments with the law of motion (1b),

subjects forecast two-periods ahead, since when forecasting pt+1 the last observed price is pt−1.

5The LtF experiments focus only on the forecasting behavior and abstract from other considerations (e.g.,
trading) by assuming that the subjects’ actions are rational conditional on the submitted forecast. See Hommes
(2011) for an in-depth discussion on methodology of the LtF experiments. See also Bao, Duffy, and Hommes
(2013) and Bao, Hommes, and Makarewicz (2017) for experimental studies on how trading/production decision
making is related to price forecasting.

6In LtF experiments the subjects typically face an upper constraint on the price forecasts, which excludes
exploding “rational bubbles” in asset pricing treatments.

7The fundamental price can sometimes be inferred from the experimental instructions. For example, in the
asset pricing experiment HSTV05, the fundamental price is equal to the present value of future dividends, which
is the ratio of the average dividend to the interest rate. Both variables were provided to the subjects, but most of
the individual (first period) forecasts were not at the fundamental level.
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In this paper we consider three LtF experiments that differ by their law of motion.

1. HHST09 in Heemeijer, Hommes, Sonnemans, and Tuinstra (2009): a linear law of motion

(1a) with negative or positive feedback;

2. BHST12 in Bao, Hommes, Sonnemans, and Tuinstra (2012): law of motion as in HHST09,

with two large and unanticipated shocks to the fundamental price;

3. HSTV05 in Hommes, Sonnemans, Tuinstra, and van de Velden (2005): non-linear positive

feedback asset market with the two-period ahead law of motion (1b).

We explain the details of these experiments below.

2.2 Experimental Data and “Stylized Facts”

HHST09 study the subjects’ behavior conditional on whether the market is built upon negative

or positive feedback. A typical example of positive feedback is a stock exchange: investors with

optimistic beliefs will buy more stock and due to increased demand the stock price will go up.

In this sense investors’ sentiments are self-fulfilling. Negative feedback arises, e.g., in a supply

driven market where producers face production lags (as in the well known hog cycle model). If

producers expect a high price, they will increase production and the market clearing price will

go down. HHST09 run two treatments with linear specifications of the law of motion (1a):

Negative feedback: pt = pf − 20

21

(
p̄et − pf

)
+ εt ,(2)

Positive feedback: pt = pf +
20

21

(
p̄et − pf

)
+ εt ,(3)

where p̄et =
∑I

i=1 p
e
i,t/I is the average prediction of all individuals at period t and pf is the unique

constant RE solution of the price dynamics, which we will refer to as the fundamental price. The

experiment ran for 50 periods with 13 groups of I = 6 subjects with the same realization of

the shocks εt drawn independently from a normal distribution N(0, 0.25). The two treatments

are symmetrically opposite, with the same fundamental price pf = 60, and dampening factors

of the same absolute value, but with opposite signs.8 Under homogeneous naive expectations

(i.e., p̄et = pt−1) the fundamental price for both treatments is a stable steady state of the price

dynamics.

The aggregate price dynamics in the two feedback treatments of the experiment were very

different, see Figs. 1a and 1b for typical examples (the GA simulations in the two lower panels are

explained in Section 5). Under negative feedback after a short volatile phase of 6-7 periods, the

price converged to the fundamental value pf = 60, after which the subjects’ forecasts coordinated

8In an asset pricing market, the near unit root coefficient 20/21 arises from a realistic discount factor 1/(1 + r)
with interest rate r = 5%. To have symmetric treatments, the factor in the negative feedback was set to −20/21.
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Figure 1: HHST09 experimental groups (upper panels) and 50-period ahead simulations of GA-P1
model with random initial predictions (lower panels). Black thick line shows the price, green
dashed lines show 6 individual predictions. The long-run dynamics of the GA model is close
to the experiment both under negative (left) and positive (right) feedback.

on the fundamental price as well. In most of the positive feedback groups9 persistent price

oscillations arose where the price over- and undershoots pf . In spite of the price oscillations the

subjects’ forecasts became very close to each other after only 2−3 periods and remained so until

the end of the experiment. In positive feedback markets subjects’ forecasts are thus strongly

coordinated, but on a non-fundamental price. The almost self-fulfilling character of the near-unit

root positive feedback is a key feature of the system that allows subjects to coordinate on trend

following behavior, which results in price oscillations (Hommes, 2013).

BHST12 report an LtF experiment with the same structure as HHST09, with a positive

and a negative feedback treatment, based on linear price equations (2) and (3) with dampening

factors ±20
21

. There are I = 6 participants in every group, and the experiment runs for 65 periods.

The key difference in this experiment is that there are two large, permanent and unanticipated

shocks to the fundamental price: the fundamental price changes from pf = 56 to pf = 41 in

period t = 21 and then to pf = 62 in period t = 44 until the last period t = 65. Typical time

paths of BHST12 are shown in the upper panels of Fig. 2 (two lower panels are explained in

9There were 6 experimental groups for the negative feedback treatment with very similar price dynamics to
Fig. 1a. There were 7 experimental groups for the positive feedback treatment and in 4 of them price oscillated.
Fig. 1b is a typical example for the oscillating groups. Even when price converged (which happened for 3 groups),
it did so only towards the end of the experiment.
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Figure 2: BHST12: experimental groups (upper panels) and 65-period ahead simulations of GA-P1
model with random initial predictions (lower panels). Black thick line shows the price, green
dashed lines show 6 individual predictions, thin line shows the fundamental price.

Section 5). Under negative feedback (Fig. 2a), a shock to the fundamental breaks the subjects’

coordination and is followed by quick convergence to the new fundamental price. In contrast,

under positive feedback (Fig. 2b), shocks leave the coordination intact, and the predictions and

prices move smoothly towards the new fundamental, eventually over- or undershooting it.

HSTV05 report an experiment based on a 2-period ahead non-linear positive feedback market

asset-pricing model with law of motion (1b) specified by

(4) pt = F (p̄ei,t+1) =
1

1 + r

(
ntp

f + (1− nt)p̄ei,t+1 + y
)

+ εt,

where r = 5% is the interest rate, y is the mean dividend, and nt is the share of computerized,

robotic forecasters predicting the fundamental price pf . This fraction changes endogenously as10

(5) nt = 1− exp
(
−
∣∣pt−1 − pf ∣∣ /200

)
.

10In this market, with constant interest rate r and mean dividend y, the unique constant RE solution, i.e.,
fundamental price, coincides with the discounted value of future dividends, pf = y/r. The participants were
not explicitly informed about the fundamental price, though they knew values of y and r. In the field setting,
so-called fundamental traders have a better understanding of the underlying process and often stabilize markets,
especially when the price deviation from the fundamental level is large. Robotic forecasters were introduced in
this experiment to mimic those fundamentalists from real financial markets.
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Converging dynamics Oscillating dynamics
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Figure 3: HSTV05: experimental groups (upper panels) and 50-period ahead simulations of GA-P3
model for different seeds giving different initial predictions and learning (lower panels). Black
thick line shows the price, green dashed lines show 6 individual predictions.

The most important feature of this market is that, differently from HHST09 and BHST12, the

current price depends on the average of the subjects’ expectations about the price in the next

period. Thus participants in this experiment had to predict pt+1 without knowing pt. Moreover,

the presence of robotic forecasters makes the feedback between forecasts and the price, F (·),
highly non-linear. There were two treatments with different values of mean dividend, and thus

different fundamental price: in seven markets the mean dividend was set to y = 3 leading to

pf = 60, and in three markets the mean dividend was set to y = 2, leading to pf = 40.

The two upper panels of Fig. 3 illustrate the results of HSTV05. In fact, in this experiment

three different aggregate outcomes were observed: (i) monotonic convergence to the fundamental

price (in 2 groups; see Fig. 3a for an example), (ii) dampened oscillations (in 3 groups), and (iii)

persistent price oscillations (in 5 groups; see Fig 3b for an example).11

To summarize, the LtF experiments revealed the following characteristic “stylized fact”:

S1. Price dynamics under negative feedback is more stable than under positive feedback;

S2. There are generally different types of price dynamics under positive feedback: monotonic

convergence, dampened oscillations, and permanent oscillations of prices were observed;

11Bao, Hommes, and Makarewicz (2017) run a similar asset market experiment to compare “Learning to Fore-
cast” versus “Learning to Optimize” designs. They report three similar types of price behavior.
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S3. The expectations of 6 different participants in the same group were typically coordinated

even though participants could not observe the forecasts of others.

HHST09 described the subjects’ forecasting behavior in the experiment with the first-order

rule FOR:

(6) pei,t = α1pt−1 + α2p
e
i,t−1 + α3p

f + β(pt−1 − pt−2),

for α1, α2, α3 > 0, α1 + α2 + α3 = 1, β ∈ [−1, 1]. Rule (6) is an anchor and adjustment rule

extrapolating a price change from an anchor given by a weighted average of the previous price,

the previous forecast and the fundamental price pf .12 HHST09 estimated the FOR separately

for each subject, fitting well the forecasting behavior of around 60% of all individuals. In Section 4

we will use these findings to motivate the specification of our GA model.

HHST09 found significant variability in terms of individual forecasting, within the same

treatment, but even more so between the two treatments. The main difference lies in the trend

extrapolation, which is popular under positive feedback (i.e., β > 0), but disregarded under

negative feedback (i.e., β ≈ 0). BHST12 and HSTV05 report qualitatively similar results.

3 Models of Expectation Formation

Before specifying our Genetic Algorithm model, we discuss a number of alternative benchmark

models of expectation formation. In particular, we consider Rational Expectations, simple adap-

tive learning (LS learning), a number of simple linear heuristics (naive, adaptive, trend following

and contrarian expectations) and a Heuristic Switching Model. For technical details on these

models, we refer to Appendix A.

The Rational Expectations model (RE) for the LtF experiments implies that the subjects

should predict the fundamental price, pei,t = pf , the fixed point of the experimental feedback

map F (·). Naturally, one cannot expect the subjects’ forecasts to immediately converge to the

fundamental value. Nevertheless, under negative feedback we typically observe that the subjects

learn the RE equilibrium within a few periods (see Figs. 1a and 2a). On the other hand, RE

contradicts subject heterogeneity and price oscillations under positive feedback treatments, as

observed in all three LtF experiments discussed above (see Figs. 1b, 2b and 3b).

Adaptive learning offers a less restrictive alternative to RE. The broad idea of adaptive

learning is that agents learn to forecast prices by means of some statistical inference, e.g., by

econometrically fitting some forecasting rule. As a benchmark, we will focus on LS learning,

where agents use a perceived law of motion (PLM)

(7) pet = αLSt pt−1 +
(
1− αLSt

)
pei,t−1 + βLSt (pt−1 − pt−2),

12RE is nested as a special case of the FOR in (6), with α1 = α2 = β = 0 and α3 = 1, so that the forecast
reduces to the fundamental price, pei,t = pf .
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where αLSt and βLSt are found by simple OLS inference on the regression equation

(8) (ps − pes−1) = (α β)

(
ps−1 − pes−1
ps−1 − ps−2

)
+ us

in every period t, based on the full information set in that period (i.e., data from all periods

s < t). We focus on rule (7), because it is the same first-order forecasting heuristic (10), which

will form the core of our GA model (see Section 4). Table 7 in Appendix A provides initialization

details on LS learning model. LS learning gives equal weight to all past observations and, as

time goes to infinity, the weight given to the last observation tends to 0. It may therefore be

more realistic to give more weight to recent observations. Constant Gain (CG) learning is a

modification of LS learning that takes this into account and gives more weight to more recent

observations. Appendix A describes the LS and CG learning algorithms in more detail.

The basic class of non-rational models of expectation formation is a collection of simple

homogeneous linear forecasting heuristics. In this paper, we focus on:

naive expectations: pei,t = pi,t−1 ,(9)

adaptive expectations: pei,t = αpi,t−1 + (1− α)pei,t−1 with α = 0.75 ,

trend following rule: pei,t = pi,t−1 + β(pt−1 − pt−2) with β = 1 ,

contrarian expectations: pei,t = pi,t−1 + β(pt−1 − pt−2) with β = −0.5 .

Notice that all these heuristics are special cases of the first-order rule (6). The main drawback of

any of these heuristics is that each disregards subject heterogeneity and cannot explain differences

between experimental treatments (we will show this formally in later analysis).

Another issue with any homogeneous forecasting rule is that it underestimates the sophis-

tication of the experimental subjects. As explained before, HHST09 report that subjects are

much more likely to forecast price trends under positive feedback, where trends occurred fre-

quently. This indicates that subjects are smart and try to adapt their behavior to the particular

experimental economy. These findings led Anufriev, Hommes, and Philipse (2013) to investigate

the Heuristic Switching Model (HSM), in which the subjects are endowed with two prediction

heuristics (henceforth 2-type HSM), namely adaptive expectations and trend extrapola-

tion as specified in (9). The idea of the HSM model is that the subjects can at any time use

any of the two heuristics, but tend to focus on the rule with a higher relative past performance

(see Anufriev, Hommes, and Philipse, 2013, for a technical description). The dynamics of the

HSM are similar to the experimental outcome and have an intuitive behavioral interpretation.

Under positive feedback agents quickly coordinate on the trend extrapolation heuristic, leading to

persistent price oscillations and thus self-confirming trend chasing forecasting. In contrast, under

negative feedback the trend extrapolation rule performs poorly and agents switch to adaptive

expectations, which eventually causes the price to converge to the fundamental price.
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An extended HSM with 4 heuristics (henceforth 4-type HSM) was used by Anufriev and

Hommes (2012) to explain the experimental data HSTV05. These four heuristics contain (i)

a so-called anchoring and adjustment rule, given by pei,t+1 = 0.5(pt−1 + pavt−1) + (pt−1 − pt−2),

where pavt−1 = (1/(t − 1))
∑t−1

s=1 ps is the average price so far; and three rules similar to the 2-

type HSM specification, namely (ii) adaptive expectations (with α = 0.65), (iii) weak and (iv)

strong versions of the trend following rule (with β = 0.4 and β = 1.3 respectively). Anufriev and

Hommes (2012) demonstrate the impact of the trend coefficient in the trend following heuristic

on the amplitude of price oscillations.

The HSM captures the essence of the aggregate forecasting behavior in the LtF experiment

by successfully replicating the results of HSTV05 and of the two treatments of HHST09. It

is a stylized model, however, and leaves open two important questions about the origins of the

forecasting heuristics: (1) where do these particular rules (with these coefficients) come from?

and (2) which rules (and how many of them) should be used in a more general setting? Moreover,

the HSM cannot fully account for the within-treatment heterogeneity of predictions and hence

does not fully explain the experiment at the individual level. To overcome these drawbacks, we

introduce a model with explicit individual heuristic-learning through Genetic Algorithms.

4 The Genetic Algorithm model

Genetic Algorithms (GA) form a class of numerical stochastic maximization procedures that

mimic the evolutionary operations with which DNA of biological organisms adapts to the envi-

ronment. GA were invented by John Holland in the 1960s to study the mechanism of adaptation

and have since then been used to solve ‘hard’ optimization problems, which may involve non-

continuities or high dimensionality with complicated interrelations between the arguments. GA

are flexible and efficient and so are often used in computer sciences and engineering. See Holland

(1975) for the original introduction of GA, Haupt and Haupt (2004) for technical discussion,

De Jong (2006) and Mitchell (1996) for an overview of their use and Dawid (1996) for economic

applications. We note that the ability of GA-models to replicate human behaviour in labora-

tory experiments does not prove the ability of reproducing their deliberate process. The LtF

experiments abstract from all economic dimensions of the problems that the agents have to solve

in general, since they reduce the economy to an aggregate forecasting feed-back environment.

We rather view GA-models as a convenient statistical way to represent an evolutionary selection

process which, as we will see, fits the LtF experimental data rather well.
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4.1 Core algorithm

A GA routine starts with a population of random trial solutions to the problem. Individual trial

arguments are encoded as binary strings (strings of ones and zeros), so-called ‘chromosomes’.13

They are retained into the next iteration with a probability that increases with their relative

performance (or ‘fitness’). This so-called reproduction operator means that with each iteration,

the trial arguments are likely to have a higher performance, i.e., be ‘fitter’. On top of reproduction,

GAs use three operators that allow for an efficient search through the problem space: mutation,

crossover and election, where the last operator was introduced in the economic literature in

Arifovic (1995).

Mutation. At each iteration, every bit in each chromosome has a small probability to mutate,

in which case it changes its value from zero to one or vice versa. The mutation operator

utilizes the binary representation of the arguments. A single change of one bit at the end

of the chromosome leads to a minor, numerically insignificant change of the argument. But

with the same (small) probability a mutation of a bit at the beginning of the chromosome

can occur, which changes the argument drastically. Mutation is thus a form of parameter

experimentation, enabling the GA to search through the whole parameter space and have

a good chance of shifting from a local maximum towards the region containing the global

maximum.

Crossover. Pairs of arguments can, with a predefined probability, exchange predefined parts of

their respective binary strings. In practice, the crossover is often set to exchange subsets

of the arguments. For example, if the objective function has two arguments, crossover

would swap the first argument between pairs of trial arguments. Crossover is thus a form

of experimentation with the set of heuristics.

Election. This operator screens inefficient outcomes of the experimentation phase by transmit-

ting the new chromosomes (selected from the old generation and treated with mutation and

crossover) into the new generation only if their fitness is greater than that of the original

chromosome. This ensures that once the routine finds the global maximum, it will not

diverge from it due to unnecessary experimentation.

These four operators have a straightforward economic interpretation for a situation in which

agents optimize their behavioral rules such as forecasting heuristics. The reproduction means

that – as in the case of HSM – people focus on better solutions (or heuristics). The mutation and

crossover are experimentation with the heuristics’ specifications, and finally the election ensures

that people disregard unsuccessful experimentation.14

13We use a binary representation, as in a majority of economic GA applications, for the sake of parsimony.
The real number variant of the GA requires additional parametrization, such as a distribution of the mutation
changes. An attractive feature of the binary representation is that agents’ experimentation will include both local
and global changes.

14An important additional condition for a GA routine is that it requires a predefined interval for each parameter.
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4.2 Model specification

GAs can be used to model both individual and social learning, see Arifovic (1994) and Vriend

(2000) for comparison. Under social learning different agents would be able to imitate the actions

of others. However, in the LtF experiments the subjects did not have access to the predictions

and performances of other subjects. They could learn only individually by experimenting and

evaluating own ideas, and for this reason, we use a GA implementation of individual learning.

We populate the price-expectation feedback economies from Section 2 by I = 6 GA agents.

For now we focus on the one-period ahead LtF economy (1a), and will extend our framework to

the two-period ahead LtF design (1b) in Section 5.

At the beginning of each period t an agent i submits a forecast pei,t, and learns to do so with

a GA. The GA can be used to directly optimize the forecast (action-based GA) or alternatively,

to optimize the parametrization of some forecasting heuristic (heuristic-based GA). In the latter

case, one has to further specify the heuristic of the GA, which can have important implications

on the model dynamics.

In our model every agent i uses one of her own H = 20 parametrizations15 of a linear first-order

forecasting heuristic. The forecast pei,h,t of agent i with heuristic h at time t is given by

(10) pei,h,t = αi,h,tpt−1 + (1− αi,h,t)pei,t−1 + βi,h,t(pt−1 − pt−2) ,

where pei,t−1 denotes the prediction of the price pt−1 submitted by agent i in period t − 1. The

forecasting heuristic (10) is a simplified version of the general FOR (6) as estimated in HHST09

on individual data.16 In Section 4.3 we will introduce alternative specifications of the GA, which

were suggested in the literature (such as the action-based GA). We will demonstrate that our

heuristic-based GA works particularly well. It is the heuristic (10) that makes our GA agents as

smart as human subjects in the experiment.

Heuristic (10) depends on two parameters, αi,h,t (price weight) and βi,h,t (trend extrapolation

coefficient), and the H specifications only differ in these coefficients. Importantly, these parame-

ters are time varying, as the agents repeatedly fine-tune the rule to adapt to the specific market

conditions. For example, in an asset pricing market it may pay off to extrapolate the price trend

and agents would try to find the optimal value of β, depending on the most recent trend. This

learning is embodied as a heuristic optimization with the GA procedure, and introduces individ-

ual heterogeneity into the model which is absent in any homogeneous expectation model, and in

For the example with updating behavioral rules through GAs it means that we confine them to some predetermined,
large but finite grid of heuristics.

15Simulations with H = 10 and H = 100 yield similar results, see Appendix B.
16In comparison with the estimated FOR (6), in rule (10) the coefficient in front of the fundamental price (which

can be thought of as an anchor) is set to 0. We experimented with the general FOR (6) with the anchor specified
as either (i) the fundamental price pf or (ii) the average realized price so far. Neither specification could closely
match the experimental dynamics of the positive feedback treatment, where the anchor dampens the oscillations,
see Appendix F.1. This is consistent with the fact that in the estimated rules of the experimental data in HHST09
under positive feedback, the anchor weight α3 in (6) is typically insignificant.

15



Parameter Notation Value

Number of agents I 6
Number of heuristics per agent H 20

Allowed α, price weight [αL, αH ] [0, 1]
Allowed β, trend extrapolation coefficient

Parametrization 1 (GA-P1) [βL, βH ] [−1.1, 1.1]
Parametrization 2 (GA-P2) [βL, βH ] [0, 1.1]

Number of bits per parameter {L1, L2} {20, 20}

Mutation rate δm 0.01
Crossover rate δc 0.9

Performance measure U(·) exp(−SE(·))

Table 1: Values of parameters used by the Genetic Algorithms agents.

the HSM where each individual is confined to the same fixed set of a few heuristics.

Define Hi,t as the set of H heuristics of agent i at time t, where heuristic h is specified as a

pair of parameters (αi,h,t, βi,h,t) ∈ Hi,t. Each pair is a ‘chromosome’ represented as a binary string

of length 40 with 20 bits per coefficient. The bounds for the coefficients are chosen as follows.

From a behavioural viewpoint, the price weight αi,h,t must belong to the unit interval [0, 1]. For

the trend extrapolation coefficient we report two parametrizations, depending on the bounds.

Under Parametrization 1 (denoted as GA-P1), the restriction is symmetric, βi,h,t ∈ [−1.1, 1.1].

Under Parametrization 2 (denoted as GA-P2), the restriction is βi,h,t ∈ [0, 1.1], i.e., contrarian

rules are not allowed.17

The heuristics are updated independently for each agent by one iteration of the GA operators,

see Table 1 for the specific parameter values.18 The updating is based on the relative forecasting

performances of the heuristics. The experimental payoffs decrease with the squared error (SE) of

the forecast. Accordingly, at time t for every heuristic from Hi,t we compute the (hypothetical)

squared error, SEi,h,t = (pei,h,t−pt)2, and apply the logit transformation19 to define the normalized

performance (‘fitness’) of heuristic h that agent i uses in individual learning:

(11) Πi,h,t =
exp(−SEi,h,t)∑H
k=1 exp(−SEi,k,t)

.

Before the market starts to operate, the GA model and the set Hi,1 of agents’ heuristics have

to be initialized. In particular three aspects of the initialization are relevant:

17Heuristics with negative extrapolation coefficient are often called contrarian strategies. HHST09 found only
two subjects with such contrarian rules, but for the sake of completeness we report both parametrizations. The
estimated positive trend coefficients in HHST09 range from 0.3 to 1.

18Extensive simulation runs show that the model is robust to small changes in the parametrization. Only when
the number of heuristics falls significantly below H = 10, the GA model loses empirical fit.

19We use the logit and not the power transformation as in Hommes and Lux (2013) to have a clear link with
the literature on HSMs.
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1. Initialization of heuristics: At period t = 0, every agent samples 20 random heuristics.20

2. Uninformed initial forecast: At period t = 1, with no past prices and forecasts, the

heuristics’ forecasts are yet undefined. To highlight different aspects of our GA model, we

will either draw forecasts pei,1 from an exogenous distribution (Section 5.1.1), or use the

forecasts submitted in the experiment (Sections 5.1.2 and 5.2). Price p1 is then realized

according to (1a).

3. Initial use of heuristics: At period t = 2 (when the agents observe the first realized

price p1 and their first forecasts pei,1)
21 the heuristics can already be used for forecasting,

but their performances are still undefined. In this period, every agent randomly picks one

of her own heuristics with equal probabilities.

Once GA agents have enough observations to use their heuristics and evaluate their perfor-

mances, the timing at period t is as follows:

1. Agents forecast price; the market price pt is realized according to (1a); agents observe it;

2. Agents independently update their heuristics using one GA iteration. The criterion function

Πi,h,t in (11) is computed from the hypothetical SE’s of all different heuristics in predicting

the price pt. To be specific, agent i uses four operators:

(a) reproduction: agent samples H so-called ‘child’ heuristics from the pool of ‘parent’

heuristics Hi,t, with replacement, using Πi,h,t as the corresponding probabilities;

(b) mutation: each bit of each child heuristic has probability δm = 0.01 to switch its value;

(c) crossover : each pair of child heuristics has probability δc = 0.9 to swap the last twenty

bits (it corresponds to exchanging β’s);

(d) election: each child heuristic (possibly modified after mutation and crossover) is com-

pared in terms of SE with a randomly chosen parent heuristic. The child joins Hi,t+1

if it strictly outperforms the parent. Otherwise, the parent is passed to Hi,t+1.

3. Now, when the new sets Hi,t+1 are formed, period t+ 1 starts.22

4. With probabilities as in (11), but now based on the hypothetical SE’s of heuristics from

the new pool, each agent i randomly picks one heuristic from Hi,t+1. Each agent uses this

heuristic to generate her forecast pei,t+1. The algorithm now returns to step 1.

20In particular, every agent samples 800 bits (20 heuristics with 2 parameters, each encoded with 20 bits) as 0
or 1 with equal probability. Note that the range of parameters will then affect the forecasts in the initial periods.

21The agents still do not observe a price trend ∆p1 = p1− p0, since p0 is undefined. We assume no initial trend
with ∆p1 = 0, as if agents were forced to use βi,h,1 = 0 within this period.

22All the simulations of our GA model are based on different initial predictions and learning realizations, but
the supply shocks εt are the same within each treatment.
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While the last step – the choice of heuristic – is the same as in the HSM, there are two

important differences between the HSM and our GA model that we want to emphasise. First,

the set of heuristics evolves over time with Hi,t 6= Hi,t+1. As a result, the heuristics have time

varying parameters adapted to the specific market dynamics. Second, learning operates through

a stochastic GA procedure and is independent between the agents. In practice the agents can

learn different heuristics and may remain heterogeneous with Hi,t 6= Hj,t when i 6= j.

4.3 Alternative GA specifications

The success of the GA model relies to a large extent on a smart choice of the forecasting heuristic

of the GA agents. To emphasize this point, we compare our GA model with two alternative

specifications from the literature: an action-based GA and a GA with an AR1 heuristic. These

are simple GA benchmarks, but unlike the GA-P1 and GA-P2 specifications, they have no direct

empirical motivation based on laboratory data. In the next section it will become apparent that

these two alternative GA models result in a worse fit to the data.23 Note that the timing of the

two alternative GA models is the same as for our GA-P1 and GA-P2.

An action-based GA does not require a heuristic such as the FOR rule (10). Instead, in

this specification each agent directly optimizes the forecast through GAs. In particular, agent i

has H = 20 chromosomes, where each encodes exactly one argument from the forecasting range

[0, 100], and which is then used directly as the (constant) forecast. Such an action-based GA

does not take the experimental trend-following behavior into account, and as we will see below,

is among the worse performing models.

An AR1 GA was used by Hommes and Lux (2013). This model is similar to our GA model,

with the exception that here agents optimize not the FOR heuristic (10), but an AR1 rule

(12) pei,t = µ+ ρ (pt−1 − µ) ,

where µ ∈ [0, 100] and ρ ∈ [−1, 1]. This heuristic, like FOR, has two parameters: the long-run

mean µ and the mean-reversion coefficient ρ. Like the action-based GA, the AR1 GA does

not take trend-following into account, but rather learns the mean-reversion parameter ρ.

5 Empirical validity of the GA model

In order to test the goodness of fit of our GA model to the experimental data, we focus on two

types of evidence: long run out-of-sample 50-period ahead predictions in Section 5.1, and short

run out-of-sample 1-period ahead predictions in Section 5.2. We consider the fitness of the model

23As mentioned earlier, a third alternative GA model is one with the general FOR rule (6) with an additional
coefficient for the anchor. This extended GA did not perform well in any of the empirical tests. We also checked a
GA model based on a hybrid rule that nested the FOR heuristic (10) and an additional ‘action’ term γi,h,t ∈ [0, 100]
(as in the action-based GA). Again this specification had a poor fit to the data.
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to the price dynamics (aggregate behavior), but also to the subject heterogeneity and individual

forecasts. We first present jointly the results for HHST09 and BHST12, since they share a

similar interpretation. Section 5.3 will focus on the experiment in HSTV05, in which our GA

model will yield more complex dynamics, consistent with the experimental data.

5.1 50-period ahead simulations for linear LtF economies

The first empirical test for the fit of our GA model to the experimental data are 50- and 65-

period ahead simulations for the HHST09 and BHST12 experiments respectively.24 In these

simulations we only use experimental data from the first period and we run two types of Monte

Carlo (MC) simulations that differ in how these data are used for model initialization. The GA

model is then simulated for the duration of the experimental sessions with no other information

from the experiment. In this way, we test if our GA model is able to capture the long-run

dynamics observed in the experiment, i.e., to reproduce the “stylized facts”.

5.1.1 Long-run average group behavior

In the first MC exercise we look at “unconditional” dynamics by starting each new simulation

run with new sampling of the initial predictions from an exogenous distribution. We calibrated

this distribution separately for the two experiments, from the set of all forecasts submitted in

the first period of the experiment, see Appendix C for details.25 To compute prices, the laws of

motion (2) and (3) are applied for negative and positive feedback simulations, respectively, from

either experiment. Recall that the difference between the two experiments lies only in the level of

the fundamental price, which is constant in HHST09 and changes twice by large unanticipated

shocks in BHST12. For each treatment, we run 1000 simulations that differ by the sampled

initial predictions and by the random realizations in all steps of the GA learning algorithm.

Fig. 4 (upper panels) show the median price of 1000 GA simulations (solid line) and 95%

confidence intervals (CI, dotted lines) for the two treatments from HHST09, for the GA-P1

parametrization of the model. To compare these simulations with the data, we superimpose the

experimental data on this figure. The pluses “+” represent prices in 6 different groups in the

treatment26 and the green dashed line shows the median of those data points. See also Fig. 12

in Appendix D for a comparison of the experimental and GA model (GA-P1 and GA-P2)

forecasts in period 49, for both types of feedback. The lower panels of Fig. 4 illustrate the degree

24All simulations were written in Ox matrix algebra language (Doornik, 2007) and are available upon request.
25In the first period the subjects in the LtF experiments have limited, mostly qualitative information about the

market and do not see any price history. Their initial forecasts are necessarily more a matter of an initial guess
than a reasoned forecast. Thus, we treat initial forecasts as coming from an exogenous distribution, as discussed
in the model initialization in Section 4.2 (see also Diks and Makarewicz, 2013, for a comprehensive discussion).

26We treat one of the groups in the positive feedback treatment as an outlier and omit this group from the
analysis. In this group, in period 6 one of the subjects ‘out of the blue’ submitted a forecast which was ten times
larger than the previous price and own forecasts. This destabilized the market for a number of periods. In total,
we focus on six positive feedback and six negative feedback treatment groups.
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Figure 4: HHST09: 50-period ahead “unconditional” simulation (1000 runs) of GA-P1 model com-
pared with the experimental data. Upper panels: dynamics of price. Lower panels: dynamics
of standard deviation of 6 forecasts (in log2 scale). Black pluses denote the group observa-
tions in the experiment, green dashed line shows the median. Red thick line shows the
median simulation; blue dotted lines show the 95% confidence interval for the GA model.

of coordination among agents by showing the dynamics of the standard deviation of six individual

forecasts (in log2 scale). For examples of model dynamics in the HHST09 environment, we also

show two typical simulations of the GA model in the lower panels of Fig. 1. It is striking that

these simulations are almost identical to the experimental data shown in the two upper panels.27

The same set of figures of 65-period ahead unconditional simulations of the GA-P1 model

for BHST12 can be found in Fig. 5 (with two additional middle panels for the distance of

the experimental and the GA model prices from the fundamental price). Two typical sample

simulations for this experiment are exhibited in Figs. 2c and 2d.

Figs. 4 and 5 show that the GA model replicates well the outcomes of the linear LtF experi-

ments. Under negative feedback of the HHST09 experiment (left panels of Fig. 4), prices quickly

converge close to the fundamental, but individual heterogeneity of GA agents declines only slowly

and is visible until period 15, consistent with the experimental data. Under positive feedback,

GA agents coordinate their forecasts in less than five periods, but the distribution of realized

prices does not collapse into the fundamental even after 50 periods, when the 95% CI of prices

is as wide as [55, 70]. The median price resembles the experimental oscillations, including the

27Simulations presented in Figs. 1c and 1d were among the first that we ran.
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Figure 5: BHST12: 65-period ahead MC simulation (1000 runs) for GA-P1 model compared with
the experimental data. Upper panels: price. Middle panels: distance from the fundamental
price. Lower panels: degree of coordination (log2 scale). Green dashed line and black pluses
show the experimental median and group observations, respectively. Red thick line is the
median simulation and blue dotted lines are the 95% confidence interval for the GA model.

typical amplitude and turning points. Large shocks to the fundamental (BHST12 experiment

in Fig. 5) exaggerate these dynamics. Under negative feedback, both GA agents and the exper-

imental subjects quickly converge to the new fundamental prices, while under positive feedback

fundamental shocks cause smooth, high amplitude oscillations both in the experiment and in the

GA model (as shown by the oscillating 95% CI).

Overall, the 95% CI for the GA-P1 model captures 65% (resp. 81%) of the experimental prices

and 81% (resp. 72%) of the degree of coordination for the negative (resp. positive) feedback

treatment in the HHST09 experiment. For simulations for the BHST12 experiment these
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Figure 6: HHST09: Emerging heuristics in 50-period ahead MC simulation (1000 runs) for GA-P1
model. The price weight α (upper panels) and the trend extrapolation coefficient β (lower
panels) of the chosen heuristic are shown. Red thick line is the median, black dot-dashed line
is the mean, blue dotted and purple dashed lines show the 95% and 90% confidence intervals,
respectively, for the GA model. The green thick dashed line in panel (d) represents the 28%
percentile of chosen β.

numbers are 66% (resp. 84%) of the prices and 84% (resp. 67%) of the individual coordination

under negative (resp. positive) feedback. In other words, we are able to replicate roughly 75% of

the long-run behavior of the experimental groups in the two linear LtF experiments, both at the

aggregate and individual levels.

Which heuristics were learned by our GA agents in the HHST09 environment? Fig. 6 reports

the median and the mean (with 95% and 90% CI) for the MC simulations of the price weight

α and the trend extrapolation coefficient β, which were selected by the GA agents (6 pairs of

α and β in each period in one simulation, with the same set of 1000 simulations as in Fig. 4).

A first observation is that large heterogeneity of individual rules persists, consistent with the

estimated rules in HHST09. Secondly, there are clear differences between the two treatments.

Under positive feedback the median GA agent28 quickly converges towards an approximate rule

(13) pei,t+1 ≈ 0.9pt + 0.1pei,t + 0.6(pt − pt−1).
28Median rules of the GA agents in all treatments are similar to average rules, see dashed black lines in Figs. 6

and 7 for HHST09 and BHST12 respectively.
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This median rule is close to a pure trend-following rule (i.e., with anchor pt), but has a coefficient

β ≈ 0.6, smaller than β = 1 as used in the 2-type HSM of Anufriev, Hommes, and Philipse

(2013). Furthermore, 72% of the GA agents never used negative β in the last 30 periods (see the

green thick dashed line in Fig. 6d for 28% percentile). For the distribution of β in period 50, see

Fig. 9a. On the other hand, under negative feedback, the median GA agent learns a rule close to

(14) pei,t+1 ≈ 0.5pt + 0.5pei,t

with median trend coefficient β close to 0. Thus the median rule under negative feedback is adap-

tive expectations with price weight of 0.5; Anufriev, Hommes, and Philipse (2013) used adaptive

expectations with coefficient 0.75 on the price in their 2-type HSM. Our learning dynamics there-

fore confirm the results by HHST09 and yield empirical support for the 2-type HSM by Anufriev,

Hommes, and Philipse (2013), albeit with slightly different parametrizations.

Similar results are found in the BHST12 environment, as seen in Fig. 7. In fact, under

negative feedback, the median GA agent learns the same adaptive expectations rule as before,

pei,t+1 ≈ 0.5pt + 0.5pei,t. Under positive feedback, the median GA agent converges to the heuristic

(15) pei,t+1 ≈ 0.95pt + 0.05pei,t + 0.9(pt − pt−1),

which is a trend following rule with the trend extrapolation coefficient β ≈ 0.9. This trend

coefficient is significantly larger than the coefficient 0.6 in rule (13) used by the median GA

agent under the positive feedback from the HHST09 experiment. The 95% CI for the trend

extrapolation coefficient β becomes significantly positive towards the end of the experiment (see

also Fig. 9b for the histogram of β’s chosen in period 65). Hence, due to the large, unanticipated

shocks in the positive feedback treatment, GA agents become stronger trend followers.

Figs. 6 and 7 suggest that convergence to the mean and median parameters is relatively fast,

within the first 10− 15 periods. To check that learning in the GA model occurs very quickly, we

performed two simulation experiments. In the first experiment we switched off the GA evolution

at time t = 15. Specifically, after that time we skipped step 2 of the GA algorithm described

in Section 4.2, so that the set of rules for each GA agent did not evolve after period 15. The

goodness of fit of this model turned out to be comparable to the benchmark GA simulations,

showing that learning of the set of rules indeed has taken place within first 15 periods.29 In

the second experiment we switched off the GA model at the outset, fixing the set of rules by

random draws of the coefficients around the median. This noGA-model performs worse. These

two simulation experiments show that GA learning is important in the first 15 periods, but not

thereafter for the HHST09 experiment.30

29In the next sections we introduce the goodness-of-fit measures. Tables 8 and 9 report the results for these two
simulation experiments under labels GA: 15Learn and GA: noGA (with two specifications), respectively.

30The same holds for the BHST12 data. However, these linear one-period ahead feedback environments are
particularly simple. The results for the HSTV05 data indicate that in a more complex nonlinear and two-period
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Figure 7: BHST12: Emerging heuristics in 65-period ahead MC simulation (1000 runs) for GA-P1
model. The price weight α (upper panels) and the trend extrapolation coefficient β (lower
panels) of the chosen heuristic are shown. Red thick line is the median, black dot-dashed line
is the mean, blue dotted and purple dashed lines show the 95% and 90% confidence intervals,
respectively, for the GA model.

We also checked what happens when replacing the heterogeneous rules with the median fore-

casting type. The dynamics with such a median representative agent is close to the median

trajectory of the GA simulations. However, the median forecasting model does not match the

heterogeneity across different groups, which is well explained by the GA model, as we will see in

Subsection 5.1.2.

5.1.2 Long-run specific group behavior

In the second MC study, we investigate how well our GA model can replicate long-run dynamics

of a specific experimental group, focusing on realized prices, individual forecasts and subject

heterogeneity. We fix experimental group X and initialize the 50-period ahead simulations of

the GA model with the actual predictions submitted in the first period in this group, that is the

initial forecasts of the GA agents coincide with the initial forecasts of the subjects from group

ahead feedback environment, GA agents do not have to remain locked in one specific set of rules after the initial
learning phase. Instead, they can switch between some “local equilibria” (e.g., following price oscillations versus
staying close to the fundamental steady state), if given enough time, and each shift between ”local equilibria” is
accompanied by another set of rules; see Subsection 5.5 and Figure 10 for more details.
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X. The rest of the simulation is performed in the same way as in the first MC study, i.e., we do

not use any other information from group X. To quantify how close the simulations are to the

actual predictions from group X, we define for every subject i and time t,

(16) pe,GA
i,t =

H=20∑
h=1

Πi,h,tp
e
i,h,t,

which is the average of the price forecasts given by the twenty different heuristics weighted by

their fitness, Πi,h,t, as defined in (11). The quantity pe,GA
i,t in (16) is simply the model prediction

of the subject i’s price forecast at time t.31 Using this model prediction and the price trajectory

generated by the GA model, pGA
t , we compute the mean squared error (MSE) in predicting the

experimental data (both prices and individual price forecasts), excluding the initialization phase

of the first three periods, as follows

MSE
prices
X =

1

T − 3

T∑
t=4

(
pGrX
t − pGA

t

)2
,(17)

MSEforecasts
X =

1

6× (T − 3)

6∑
i=1

T∑
t=4

(
pe,GrX
i,t − pe,GA

i,t

)2
,(18)

where pGrX
t and pe,GrX

i,t denote period t price and forecast of subject i in the experiment, and

T = 50 (T = 65) for groups from the HHST09 (BHST12) experiment.

The third statistic of interest measures the degree to which our GA model predicts subject

heterogeneity, that is the dispersion of individual forecasts in a given period in a given experi-

mental group. Denote the average forecast of a certain group (group of experimental subjects or

group of GA model agents) in period t as p̄et = (1/6)
∑6

i=1 p
e
i,t. Then, the period coordination

measure at t is

(19) Coordt =
1

6

6∑
i=1

(
pei,t − p̄et

)2
.

Notice that Coordt often changes over the session’s course in the experimental groups. For

example, under negative feedback in HHST09 it was typically large in the initial periods, but

would collapse close to zero later on (see Fig. 4c). In order to measure how well a model traces the

evolution of the subjects’ coordination in a particular group, we use the following coordination

31Notice that within the simulation, the realized price itself does not depend on the set of mean forecasts (16)
of the GA agents. Instead, as explained in Section 4.2, every GA agents samples one from her H = 20 heuristics
to generate her forecast, which is then used in the price law of motion.
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Negative feedback Positive feedback

Model Prices Forec. Coord. Prices Forec. Coord.

Trend extrapolation 3421 1696 NA 62.84 72.45 NA
Adaptive 4.164 16.97 NA 95.62 108.6 NA
Contrarian 3.446 16 .18 NA 108.5 122.8 NA
Naive 112.3 136.2 NA 69.11 79.38 NA

RE 2.571 15.21 NA 46.835 54.811 NA
LS learning 229.9 250.7 NA 334.2 342.7 NA
LS const. gain learning 230 250.8 NA 328.6 337.2 NA
HSM 4-type AH (2012) 499.78 634.53 23.84 45.96 53.84 4.88
HSM 2-type AHP (2013) 19.64 34.02 48.05 55.15 63.98 38.06

GA-P1 2 .884 20.03 6.446 44 .22 51 .98 8.059
GA-P2 (no contrarians) 9.392 29.51 7 .687 25.3 31.1 8 .216
GA: Action-based 32.86 71.05 NA 82.78 120.89 NA
GA: AR1 10.6 40.31 15.17 106.8 122.1 8.727

Table 2: HHST09: 50-period ahead simulation, fitness of various models to the experimental data,
experimental prices (MSE of predicted prices (17), Prices columns); subjects’ forecasts (MSE
of predicted forecasts (18), columns Forec.) and subject heterogeneity (predicted dispersion
of forecasts (20), columns Coord.). Statistics are averaged over six experimental groups for
the corresponding treatment, and the best model is in bold, the second best in italic. NA
denotes infinite statistics.

proximity statistic:

(20) CoordProximityModel =
1

T − 3

T∑
t=4

(
ln

(
CoordModel

t

CoordData
t

))2

> 0,

where T denotes the duration of the experimental session (note that the square guarantees this

measure to be non-negative). If the model perfectly predicts the evolution of the dispersion of

the subjects forecasts, the coordination proximity measure (20) is equal to zero. The measure

increases for both under- and over-estimation of the individual dispersion, and explodes to infinity

for homogeneous expectation models.

Tables 2 and 3 show the results of the Monte Carlo simulations for HHST09 and BHST12

respectively. We report the three statistics (17)-(20) averaged separately over six (eight) groups

for each treatment from HHST09 (BHST12), for all the benchmark models and our GA model

(averaged over 1024 sample GA simulated paths per group). The statistics for the best model is

shown in bold and for the second best in italic.

Under negative feedback, two simple models of adaptive and contrarian expectations as well

as RE perform well in terms of long-run predicting prices and forecasts, because they correctly

predict convergence to the fundamental price. Our GA model performs only slightly worse. Fur-

thermore, RE has problems with predicting the short spell of instability that follows fundamental
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Negative feedback Positive feedback

Model Prices Forec. Coord. Prices Forec. Coord.

Trend extrapolation (γ = 1) 2736 1289 NA 101.26 113.3 NA
Adaptive 3.629 10.75 NA 55 62.14 NA
Contrarian 6.984 14 .45 NA 58.46 65.95 NA
Naive 94.44 110.9 NA 46.62 52.9 NA

RE 13.871 20.923 NA 55.133 60.859 NA
LS learning 262.1 230.7 NA 228.8 235.8 NA
LS const. gain learning 384.2 367.7 NA 333.1 338.6 NA
HSM - 4 type 236.08 267.592 31.402 32.18 37.01 4.57
HSM - 2 type 73.57 87.86 52.73 90.8 101.8 65.62

GA-P1 8.01 21.97 14 .66 43 .49 49.44 4 .83
GA-P2 (no contrarians) 6 .333 17.39 13.34 43 .49 49 .64 5.112
GA: Action-based 29.73 90.7 40.79 179.8 200.2 8.985
GA: AR1 21.28 59.71 29.83 88.02 98.71 5.216

Table 3: BHST12: 65-period ahead predictions, fitness of various models to the experimental data,
experimental prices (MSE of predicted prices (17), Prices columns); subjects’ forecasts (MSE
of predicted forecasts (18), columns Forec.) and subject heterogeneity (predicted dispersion
of forecasts (20), columns Coord.). Statistics are averaged over six experimental groups for
the corresponding treatment, and the best model is in bold, the second best in italic. NA
denotes infinite statistics.

shocks in BHST12, as seen in worsening of the statistics in Table 3.

Under positive feedback, the contrarian and adaptive expectations lose goodness of fit, because

they still predict convergence, in contrast to the experimental data. The 2-type HSM, trend

extrapolation and naive expectations perform relatively well, but surprisingly they are not better

than RE, especially for BHST12. The reason is that the price oscillations predicted by these three

models at the long run horizon fall out of phase with the experimental oscillations. LS learning

performs poorly in long run forecasting for both positive and negative feedback. Our GA model is

consistently either the best or the second best, especially the GA-P2 parametrization.32 Finally,

under positive feedback, the model that comes closest to our GA model in terms of long horizon

predictions is the 4-type HSM (in particular for BHST12), but at the expense of a poor fit under

negative feedback.

Finally, our GA model is always among the best three models, if not the best, in terms of

predicting the subject forecasts’ heterogeneity, regardless of the experiment or the treatment.

32As mentioned in Section 4.2 (see footnote 20) the range of β affects the initial set of heuristics and hence their
forecasts in the initial periods. Comparison of performances of GA-P1 and GA-P2 in Table 2 across negative
and positive feedback shows that initialization matters. For instance, GA-P1 will generate initially heuristics
with both positive and negative β, and it performs better than GA-P2 under negative feedback. Instead, GA-P2
will generate initially heuristics with only positive β’s, and it performs better under positive feedback. Notice that
subjects in the lab experiment had general information about the market and could in fact infer that they were
in a positive feedback environment and might therefore ignore negative coefficients under the positive feedback
treatments.
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Notice that the two other GA specifications (Action-based and AR1) do not perform well and

are typically among the worst models in any statistics. We conclude that (i) some of the alterna-

tive models are able to capture the price and forecast long-run dynamics of some treatments from

either experiment, but (ii) only our heuristic-based GA model with FOR heuristic (10) consis-

tently and successfully predicts long-run behavior of prices and forecasts in all four treatments;

and (iii) is the only one to properly pick up the long-run evolution of subject heterogeneity in

each treatment from these two experiments. This shows that the GA model is the only model to

properly replicate the two experiments also at the individual level.

5.2 One-period ahead simulations for linear LtF experiments

Another important indicator of the model’s fit is the precision of its one-period ahead predictions:

how well the model predicts experimental outcomes in period t + 1, conditional on the data

available to the subjects of the experiment until period t.33 For deterministic models such as

the HSM and the homogeneous expectations models, computing the one period-ahead MSE is

straightforward. For our GA model with its probabilistic reproduction and three operators,

however, evaluating the MSE is more complicated. Our model is both stochastic and highly

non-linear: it evolves according to an analytically intractable period-to-period distribution. To

address this issue, we compute the expected MSE using a simple Sequential Monte Carlo (SMC)

approach designed as follows.

For each experimental group X from the three experiments that we consider, and for each GA

model specification, we run 1024 independent GA model simulations. In every simulation, we

associate one GA agent with one subject, and in each period t > 2 every GA agent i (1) retains

her own heuristics from the previous period and (2) is given the experimental prices and the price

forecasts of “her” subject i until the previous period t−1. Every GA agent uses the experimental

(not artificial) data to update her heuristics and picks one heuristic to forecast the next price,

which gives us the GA’s price forecasts (16) and realized prices (according to the experimental

price equation) for period t. We evaluate the fit of the model to the experimental group by

computing the same three statistics (17)–(20) as for 50-period ahead simulations, averaged over

all 1024 GA simulations.

The results for the 1-period ahead simulations are summarized in Tables 4 and 5 for HHST09

and BHST12 respectively. Under negative feedback many rules (RE, HSM, adaptive, contrarian,

naive) capture the convergence of prices and forecasts to the fundamental price, putting our GA

model at some disadvantage. Under positive feedback, these models (except for HSM) loose their

predictive power and under-estimate the experimental oscillatory behavior of individual forecasts.

LS learning does surprisingly well in the one-period ahead forecasting of HHST09, as it is able

33Anufriev and Hommes (2012) and Anufriev, Hommes, and Philipse (2013) mostly focus on this measure
to evaluate the fit of the HSM. As Table 2 shows, the long-run simulations may generate oscillations that are
qualitatively similar to the experimental data, but – being out of phase – have high MSE.
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Negative feedback Positive feedback

Model Prices Forec. Coord. Prices Forec. Coord.

Trend extrapolation 21.101 35.648 NA 0.926 4.196 NA
Adaptive 2 .3 14 .912 NA 2.999 6.482 NA
Contrarian 2.249 14.856 NA 3.864 7.436 NA
Naive 3.09 15.782 NA 1.822 5.184 NA

RE 2.571 15.21 NA 46.835 54.811 NA
LS learning 2.999 15.682 NA 0.889 4 .155 NA
LS const. gain learning 4.323 17.142 NA 4.099 7.695 NA

HSM 4-type AH (2012) 9.05 22.35 4.80 0.82 4.07 6.16
HSM 2-type AHP(2013) 2.999 15.106 19.868 0.889 4.156 19.144

GA-P1 4.95 25.017 3.4291 0 .806 4.235 4 .9
GA-P2 (no contrarians) 4.496 25.012 3 .446 0.802 4.198 5.558
GA: Action-based 32.855 71.047 NA 82.783 120.848 NA
GA: AR1 2.949 21.904 4.246 1.635 6.24 4.464

Table 4: HHST09: one-period ahead predictions, fitness of various models to the experimental data,
experimental prices (MSE of predicted prices (17), Prices columns); subjects’ forecasts (MSE
of predicted forecasts (18), columns Forec.) and subject heterogeneity (predicted dispersion
of forecasts (20), columns Coord.). Statistics are averaged over six experimental groups for
the corresponding treatment, and the one the best model is in bold, of the second best is in
italic. NA denotes infinite statistics.

to adapt to the changing trends in a stationary environment. In the BHST12 experiments,

however, LS performs slightly worse as it responds too slowly to the large structural breaks.

The GA model has the best, or comparable to the best, fit for the positive feedback treatment

and outperforms RE by a factor of 10. Furthermore, under both treatments, the GA model is

particularly good at tracking the evolution of the heterogeneity of the individual forecasts, as

seen in the Coordination statistic. As for the case of the long-run simulations, the GA model is

the only model that consistently explains different experiments in the short-run, in terms of the

prices and in terms of the distribution of the individual forecasts. This depends crucially on the

specification of the GA model, since AR1 GA performs well only in some treatments, whereas

Action-based GA is among the worst models.

5.3 Two-period ahead asset pricing LtF experiment

In HSTV05, with the underlying law of motion (4)–(5), participants had to forecast pt+1 without

knowing pt, and therefore their 2-period ahead price forecasts were based on a different information

set than in the previous one-period ahead experiments. The 2-period ahead version of our GA

model is based on the following forecasting heuristic:

(21) pei,h,t+1 = αi,h,tpt−1 + (1− αi,h,t)pei,t + βi,h,t(pt−1 − pt−2) .
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Negative feedback Positive feedback

Model Prices Forec. Coord. Prices Forec. Coord.

Trend extrapolation (γ = 1). 103.93 121.329 NA 0.548 2.165 NA
Adaptive 3.251 10.332 NA 2.797 4.618 NA
Contrarian 5.248 12 .534 NA 3.653 5.559 NA
Naive 9.127 16.81 NA 1.583 3.286 NA

RE 12.856 20.923 NA 53.757 60.857 NA
LS learning 21.109 30.023 NA 3.283 5.156 NA
LS const. gain learning 23.485 32.643 NA 2.91 4.744 NA
HSM - 4 type 6.28 13.68 15.06 0.42 2.01 7.77
HSM - 2 type 15.45 23.78 36.022 0.42 2 .02 16.23

GA-P1 10.247 21.464 11 .213 0 .342 2.059 5 .892
GA-P2 (no contrarians) 4 .208 15.267 11.127 0.341 2.036 7.051
GA: Action-based 34.865 67.753 32.176 40.333 66.451 23.347
GA: AR1 7.939 24.022 15.7 1.111 3.555 4.8

Table 5: BHST12: one-period ahead predictions, fitness of various models to the experimental data,
experimental prices (MSE of predicted prices (17), Prices columns); subjects’ forecasts (MSE
of predicted forecasts (18), columns Forec.) and subject heterogeneity (predicted dispersion
of forecasts (20), columns Coord.). Statistics are averaged over six experimental groups for
the corresponding treatment, and the best model is in bold, the second best is in italic. NA
denotes infinite statistics.

Once pt is realized, the agents can evaluate their rules based on the hypothetical performance of

predicting pt two periods ago, i.e., their fitness is a normalized SE = (pei,h,t − pt)2, as before. This

specification is the most straightforward adaptation of the baseline one-period ahead forecasting

heuristic (10). Recall that in the two baseline parametrizations, GA-P1 and GA-P2, we imposed

the restrictions on the trend coefficients, β ∈ [−1.1, 1.1] and β ∈ [0, 1.1], respectively. HSTV05,

however, found that many subjects used stronger trend extrapolation. Therefore, for the sake of

completeness we will also report the results of our GA model with β ∈ [−1.3, 1.3] (parametrization

GA-P3) and β ∈ [0, 1.3] (parametrization GA-P4).34

The lower panel of Fig. 3 displays two typical simulated markets of the GA-P3 model for

the HSTV05 experiment. GA agents can either converge to the fundamental price (Fig. 3c)

or coordinate on large oscillations (Fig. 3d). Fig. 8 shows the results for MC 50-period ahead

simulations for two GA model parametrizations, GA-P1 and GA-P3. Under the latter setting,

the agents are allowed to experiment with higher trend coefficients β. The median price has

a very similar oscillatory shape in both cases, but the difference is seen in the 95% CI. Both

parametrizations are likely to generate two price bubbles within 50 periods, but the GA-P3

model with higher β’s has larger potential oscillations (Fig. 8b), and the second bubble can be

even bigger than the first (unlike in the linear one-period ahead positive feedback case). In

34Notice that subjects in this experiment extrapolate the trend two periods ahead, hence a trend coefficient 1.3
should be interpreted as an approximately trend extrapolation coefficient of 1.14 per period.
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GA-P1 parametrisation (β ∈ [−1.1, 1.1]) GA-P3 parametrisation (β ∈ [−1.3, 1.3])
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Figure 8: HSTV05: Emerging heuristics in 50-period ahead MC simulation (1000 markets) for GA-
P1 (left panel) and GA-P3 (right panel) parametrizations. The price (upper panels), the
price weight α (middle panels) and the trend extrapolation coefficient β (lower panels) of
the chosen heuristic are shown. Red thick line is the median, blue dotted and purple dashed
lines show the 95% and 90% confidence intervals, respectively, for the GA model.

both parametrizations, the median GA agent converges to a strong trend extrapolation rule,

close to pei,t+1 ≈ pt−1 + (pt−1 − pt−2), which is consistent with the behavior of our model in the

previous experiments. Nevertheless, the 95% CI of the chosen trend coefficient remain wide and

the distribution of this variable in period 50 is close to bi-modal (see Figs. 9c and 9d), with

a relatively large mass centered around zero, i.e., weak or no trend extrapolation, and a peak

around the maximum possible trend coefficient.

Even though our GA model leaves space for improvement,35 it is the only model which is

35For instance, the GA model does not seem to generate relatively frequent price oscillations of 8-9 periods,
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Predictions 50-period ahead 1-period ahead

Models Prices Forec. Coord. Prices Forec. Coord.

Trend extrapolation 178.2 174.9 NA 17.45 55.09 NA
Adaptive 96.12 145 .9 NA 44.13 25 .32 NA
Contrarian 157 146.8 NA 59.39 30.86 NA
Naive 95.29 144.6 NA 31.67 20.84 NA

RE 96 .03 146 NA 96.03 146.00 NA
LS learning 183.1 210.9 NA 138.84 109.41 NA
LS const. gain learning 170.1 176 NA 143.72 113.37 NA
HSM 4-type AH (2012) 96.38 144.42 11.42 7.88 53.25 2.89
HSM 2-type AHP (2013) 101.37 151.59 35.41 30.54 33.36 31.76

GA-P1 103.9 155.8 28.32 42.22 74.95 2 .77
GA-P2 114.9 169.1 31.46 5.93 30.34 4.28
GA-P3 139.4 201.5 22.12 21.19 53.24 4.47
GA-P4 226.5 318.5 19.67 16.29 42.13 2.56
GA: AR1 121.6 182.2 12 .97 45.55 136.62 3.24
GA: Action 154 221.8 NA 54.49 153.95 6.83

Table 6: HSTV05: 50-period ahead and 1-period ahead predictions, fitness of various models to the
experimental data, experimental prices (MSE of predicted prices (17), Prices columns); sub-
jects’ forecasts (MSE of predicted forecasts (18), columns Forec.) and subject heterogeneity
(predicted dispersion of forecasts (20), columns Coord.). Statistics are averaged over six
experimental groups for the corresponding treatment, and the one the best model is in bold,
of the second best is in italic. NA denotes infinite statistics.

on par with Anufriev and Hommes (2012) in terms of predicting the experimental results of

HSTV05 both in the long- and the short-run. Table 6 reports the MSE of both 50-period and

1-period ahead simulations, initialized with the experimental initial predictions. The long-run

predictive power is relatively poor for all models, as typical MSEs are approximately 10-25 times

larger than for the two linear one period ahead forecasting experiments. The best four models

for 50-period ahead predictions are naive, adaptive, RE and the 4-type HSM, though our model

(in particular GA-P1 and GA-P2 specifications) yields similar results. Surprisingly, the models

that did well in terms of the long-run predictions become poor for 1-period ahead predictions,

with the exception of the 4-type HSM, while our GA model takes over as the best one.

The disparity between short- and long-run predicting power of different models has a natural

interpretation. Our simulations show that the 2-period ahead economy is intrinsically unstable,

also in terms of the specific amplitude, phase and frequency of price oscillations (see also the

discussion on the long-run behavior of the model in Section 5.5 below). As a result any model

observed in some sessions of HSTV05. The HSM with four heuristics (adaptive, two different trend extrapolation
and anchor and adjustment) did actually capture such dynamics and also had a good one-period ahead fit to
these faster price oscillations (Anufriev and Hommes, 2012). In order to improve the GA model’s fit to the
observed subjects learning in this set-up, one could experiment with higher order rules, but we leave this for
future investigations.
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that can actually generate proper price cycles and is initialized with the experimental data, is

likely to “disconnect” itself from the data in the medium to long run, i.e., generate oscillations

out of phase with the experimental data. The most successful long-run prediction of the data

is then just to predict its average, which is close to the fundamental value, as RE and adaptive

expectations tend to do. Another successful prediction rule in such an unstable environment is

naive expectations, taking account of the highly persistent data oscillations. In contrast, in the

short run an average or RE fundamental predictions perform poorly, while the HSM and our GA

model, both based on trend following heuristics, perform much better.

5.4 Trend following heuristics across different experiments

It is clear from our analysis that the GA model can successfully replicate stylized facts and

predict experimental data from the three LtF experiments reported by HHST09, BHST12 and

HSTV05. The virtue of the GA model is that it allows agents to learn quickly and adapt their

behavior to diversified environments. The strength of our GA model lies in the optimization of

the first order heuristic (10), because subjects exhibited this behavior in the lab.

As discussed before, positive feedback environments (in particular asset markets) reinforce

trend following behavior, and the particular strength of trend chasing depends on the environment.

Fig. 9 displays the histogram (over 1000 runs) of the trend coefficients of the first-order heuristic

(10), which were chosen in the last period by our GA agents in the “unconditional” 50-period

ahead simulations across different positive feedback economies. Going from the simple linear

feedback of HHST09, through the same linear feedback with additional large shocks to the

fundamental value of BHST12, to the highly non-linear 2-period ahead feedback of HSTV05,

we observe that the distribution of the trend following coefficient becomes more extreme. In

comparison with HHST09, the GA agents in BHST12 use stronger trend chasing rules, while

the GA agents in HSTV05 exhibit much more polarized behavior with more modes (either no

trend whatsoever, or extreme trend following). We conclude that our GA model shows that the

more complicated the asset market is, the less likely we will observe convergent type of behavior,

whereas coordination on trend-following behavior may arise more easily.

5.5 Long-run dynamics

In comparison to the linear, one-period ahead experiments HHST09 and BHST12, the 2-period

ahead HSTV05 experiment with nonlinear feedback (due to robotic forecasters, see Eq. (5))

report more diversified dynamics. Among the 10 groups only 3 converged to the vicinity of the

fundamental price, 3 generated dampening oscillations, and the remaining 4 exhibited persistent

oscillations. This leads to a question about the long-run behavior of this 2-period ahead asset

market: does our GA model predict eventual convergence,36 persistent instability, or maybe

36Simulations of the GA model show that for the HHST09 and BHST12 environments the long run dynamics
converges to the fundamental price.
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Figure 9: Positive feedback treatments: HHST09, BHST12 and HSTV05 with pf = 60. Distribu-
tion of trend extrapolation coefficient β chosen by the agents in period t = 50 across the
whole MC sample for GA-P1 and GA-P3 (last panel) parametrizations.

switching between these two outcomes? To stress the volatile behavior of this market structure,

we report one long-run simulation for GA-P3 model in Fig. 10. The top panels display price

dynamics with persistent oscillations of different amplitude, where large oscillations can reappear

even after the market seemingly settled on the fundamental price. This simulation suggests that

the invariant distribution of our stochastic model may have several modes.37 The GA model

generates economically relevant dynamics with clustered volatility, i.e., phases of relatively stable

price behavior interchange with highly volatile price fluctuations. The bottom panel of Fig. 10

shows the average β chosen by the six GA agents. Despite continuing instability, a clear pattern

is that the average β remains close to zero in the stable phase of the simulation, but stays close

to the upper limit of 1.3 in volatile times.

We interpret this pattern in the following way. If the price is stable and close to the fun-

damental value, the fittest heuristics give predictions that are close to the fundamental value.

Due to averaging of the predictions of six GA agents and the robotic forecasters (who always

predict the fundamental value) in the pricing equation (4), random deviations from the funda-

mental price will typically be mitigated. At the same time, while the price dynamics are near

the fundamental price, the coefficients of the GA heuristic (10) are not identified (Youssefmir

and Huberman, 1997), allowing agents to experiment with strong trend extrapolation. If now

a sufficiently large shock triggers an initial trend in prices, and if the GA agents coordinate

sufficiently well on following that trend, they are able to counter-weigh the stabilizing effect of

robotic forecasters. This adds momentum to the initial price trend, and hence leads to a drift of

the extrapolating coefficients in the fittest heuristics towards the upper bound. As a result, the

price oscillations become self-reinforcing. A reverse scenario can occur as well, when a sufficiently

37Due to the presence of mutation in the learning phase and the noise in the pricing equation, our GA model is an
ergodic Markov process. Therefore, the invariant distribution exists, though it cannot be computed analytically
due to the complexity of the model. As this paper is motivated by the experimental data, we simulated and
compared in Fig. 9 the distributions of the trend extrapolation coefficient after the first 50 periods for all the
positive feedback treatments discussed in the paper, leaving more systematic investigation of the asymptotic
properties of GA dynamics to future research.
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Figure 10: HSTV05: sample 2000-period ahead simulation (right panels) and its first 500 periods
(left panels) of GA-P3 model with pf = 60. Top panels: individual predictions (green
dashed lines) and price (black line). Bottom panels: average trend extrapolation coefficient
β chosen by six GA agents.

large shock mitigates price trend, which stabilizes the forecasts of the GA agents and pushes the

market towards the stable regime.

These switches in learning dynamics are possible, because under non-linear (due to presence of

robotic forecasters) 2-period ahead price feedback mechanism, the specific shape (i.e., frequency,

amplitude) of oscillations is diversified. As a result, there is still space for GA agents to experiment

with the specific strength of trend following. Therefore, in this economy our GA model not only

entails two ‘attractors’ (i.e., two types of long run behavior: stable fundamental price and large

oscillations), but also generates endogenous switching between them. Note that the HSTV05

experiment exhibited different dynamic patterns (e.g., convergence to the fundamental price and

persistent oscillations around it) under the same experimental conditions. Whereas switching

between these patterns has not been observed in the lab, simulations of our model suggest that if

the experiment could last long enough, endogenous switching between converging and oscillating

price behavior may be observed.
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6 Conclusions

This paper presented a model where in a complex environment agents learn to use smart heuristics.

Agents independently use a Genetic Algorithms (GA) to optimize a simple anchor and adjustment

forecasting heuristic. The GA model dynamics was compared with the stylized facts of Learning-

to-Forecast experiments, where the realized market price depends on individual forecasts. These

experiments are used to study how human subjects adapt to the price-predictions feedback in

a controlled environment. We showed that GAs capture individual forecasting behavior in the

experiments quite well and also reproduce the aggregate outcomes. GA agents use a parsimonious

linear first-order heuristic (a mixture of adaptive and trend extrapolating expectations) to forecast

prices. They independently optimize the two parameters of their forecasting rule with GAs,

learning to fine-tune them to the specific market conditions.

Experimental data can be used to test various theories. Our goal was to compare the predic-

tion accuracy of the GA model with other benchmark models: Rational Expectations, simple LS

learning, constant gain learning, a number of homogeneous expectation models, and the Heuristic

Switching Model of Anufriev and Hommes (2012) and Anufriev, Hommes, and Philipse (2013).

We focused on the out-of-sample one-period and 50−periods ahead predictions and showed that

in comparison with other models, the GA model is able to account for both the aggregate out-

comes and the individual behavior across three different experiments. The strength of the model

lies in its parsimony, flexibility, and generality. Under GA, the coefficients in the active heuristic

are time-varying. When agents face a negative feedback type of economy, a median GA agent

will increasingly rely on adaptive expectations, enforcing convergence of the market to the fun-

damental equilibrium. In contrast, positive feedback induces the agents to follow the observed

price trend and median forecasting behavior converges to a trend extrapolation rule, which am-

plifies price oscillations. The more ‘complex’ the positive feedback is (in terms of shocks to the

fundamental solution or a 2-period ahead non-linear forecasting environment), the stronger trend

extrapolation chosen by the median agent is, and the more volatile the price fluctuations will be.

Heterogeneity is a key feature of our GA-model that is consistent with individual and ag-

gregate experimental data. Individuals are heterogeneous and different market environments

generate heterogeneous aggregate outcomes. The evolutionary selection among different forecast-

ing heuristics, a key feature of our GA-model, describes well the adaptive human behaviour in

such different market environments.

In the experiments that we used in our paper participants had to forecast only one variable,

such as the price of a financial asset, for at least 50 periods. There are several other related

experiments where we expect our heuristic-based GA model will perform equally well. Learning-

to-Forecasts experiments in macroeconomic setting investigate the dynamics when participants

forecast two variables, e.g., inflation and output gap. The results of these experiments are roughly

consistent with stylized facts S1–S3. Interestingly, the set of facts may be enriched allowing for

more interactions between variables, as now, e.g., one variable may have positive feedback, while
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the other variable may have negative feedback. As a natural next step, it would be interesting

to generalize our GA model to such two-dimensional environment and compare its performance

and predictions with existing learning theories. There is also a growing literature on a so-called

“beauty contest” game, see Nagel (1995). Repeated version of this game resembles the Learning-

to-Forecast experiments, and it is found that its dynamic properties depend on the strength and

type of the feedback. It would be interesting to investigate how well our GA model captures

behavior of participants in these experiments.

The GA model is general and can be used to investigate settings with more complicated inter-

actions between individual agents. This can include economies with heterogeneous preferences,

unequal market power, information networks, decentralised price setting, etc. In any of these

cases, heterogeneous price expectations may have important consequences for market efficiency

and price dynamics. Our Genetic Algorithms model gives a realistic explanation of how such het-

erogeneity between the agents emerges from their individual learning and, for each environment,

which decision heuristics make them smart.
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Appendices

A Definition of forecasting rules and models

Table 7 provides the specification for all forecasting rules and models used in the paper. For the

full specification of the 2-type and 4-type HSM, see Anufriev, Hommes, and Philipse (2013) and

Anufriev and Hommes (2012), respectively.

Rule/Model Forecast pet

Homogeneous rules

Trend extrapolation pt−1 + γ(pt−1 − pt−2) with γ = 1
Adaptive wpt−1 + (1− w)peprevious, with w = 0.75

Contrarian pt−1 − 0.5(pt−1 − pt−2)
Naive pt−1
RE pf

LS learning wt = 1/(t− 2), detailed description below this table.
LS const. gain learning wt = 0.05, detailed description below this table.

Heterogeneous rules

HSM 2-type AHP switching between 2 heuristics: trend extrapolation and adaptive
expectations, as specified above; learning parameters are β = 1.5,
η = 0.1, γ = 0.1.

HSM 4-type AH switching between 4 heuristics: adaptive with w = 0.65, two trend
extrapolation (with γ = 0.4 and γ = 1.3), and the anchor-and-
-adjustment rule; learning parameters are β = 0.4, η = 0.7, γ = 0.9.

GA model αi,tpt−1 + (1− αi,t)pei,previous + βi,t(pt−1 − pt−2)
GA-P1 with restrictions αi,t ∈ [0, 1] and βi,t ∈ [−1.1, 1.1]
GA-P2 with restrictions αi,t ∈ [0, 1] and βi,t ∈ [0, 1.1]
GA-P3 with restrictions αi,t ∈ [0, 1] and βi,t ∈ [−1.3, 1.3]
GA-P4 with restrictions αi,t ∈ [0, 1] and βi,t ∈ [0, 1.3]

Table 7: Specification of the forecasting rules used in the paper. For the one-period ahead environments
(HHST09; BHST12), the rules generate prediction pet , the adaptive rule includes peprevious =
pet−1, whereas the GA model includes pei,previous = pei,t−1. For the two-period ahead environment
HSTV05, the rules generate prediction pet+1, and the adaptive rule includes peprevious = pet ,
whereas the GA model includes pei,previous = pei,t.
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Recursive least squares and constant gain learning

Consider an agent in a one-period ahead LtF setting, who tries to minimize forecasting error

pet − pt. That is, this agent is looking for coefficients αt and βt that optimize the fit of

pt = αtpt−1 + (1− αt)pet−1 + βt(pt−1 − pt−2),

with αt ∈ [0, 1] and β ∈ [−1.1, 1.1], the same constraints as in GA-P1 model specification38.

The agent uses standard LS to estimate the optimal projection of p̂et − pet−1 = pt − pet−1 on the

variables pt−1 − pet−1 and pt−1 − pt−2. Define the information set of the agent at the beginning of

period t as

Yt ≡

 p2 − pe1
...

pt−1 − pet−2

 and Xt ≡

 p1 − pe1 p1 − p0
...

...

pt−2 − pet−2 pt−2 − pt−3

 with p1 − p0 ≡ 0.

Notice that the initial trend p1−p0 = 0 is set to zero as in the GA model and that both Xt and Yt

contain t− 2 rows. Secondly, define xt and yt as the t− 2 (the last) row of Xt and Yt respectively.

Then the OLS estimator (α̂t, β̂t)
′ = (X ′tXt)

−1X ′tYt can be represented as a recursion of the form

Vt =Vt−1 + wt (x′txt − Vt−1) ,
(α̂t, β̂t)

′ =(α̂t−1, β̂t−1)
′ + wtV

−1
t x′t (yt − xtγt−1) ,

with weight wt = 1/(t− 2). If the recursion yields a coefficient outside of its constraint, we set it

to the relevant bound of the allowed interval.

For each experimental group, we initialize this recursion in the following way. The first three

prices p1, p2 and p3 are set equal to the experimental prices. The first three forecasts pe1, p
e
2 and

pe3 are set to the average forecast of the subjects from the respective periods of the group session.

In period t = 4, the learning can start, and the initial estimation in to the baseline OLS is

V4 =X ′4X4,

(α̂4, β̂4)
′ =V −14 X ′4Y4.

Under normal LS learning, the weight wt = 1/(t − 2) is time decreasing and converges to 0.

We also consider constant gain LS learning with time invariant wt ≡ w = 0.05 as is common in

the literature. Robustness checks suggest that the qualitative results of this algorithm applied

to our experimental data do not depend much on the specific value of the weight parameter w.

Finally, the LS model has a straightforward translation to the 2-period ahead setting, where the

LS algorithm can start operating in period t = 5.

38In the adaptive learning literature these bounded parameter intervals are referred to as projection facilities.
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B Robustness checks

To illustrate the robustness of our GA model, we run additional 50- and 1-period ahead sim-

ulations (as discussed in Sections 5.1.2 and 5.2) for the GA-P1 model, but with alternative

parametrization and heuristics.

Tables 8 and 9 summarize the results for HHST09 experiments, for the following versions of

GA-P1 model:

• HK: model with K heuristics (H = K), where we consider K ∈ {2, 4, 6, 8, 10, 100},

• dM05: mutation rate of 5% (δM = 0.05),

• dM10: mutation rate of 10% (δM = 0.1),

• dM75: mutation rate of 75% (δM = 0.75),

• dC50: crossover rate of 50% (δC = 0.5),

• dC00: crossover rate of 0%, i.e., no crossover at all (δC = 0.0),

• AltCross: alternate crossover position – crossover swaps the first and the last ten bits,

• NoElec: election operated turned off (no election),

• 15Learn: only 15 periods of GA procreation-learning and a fixed set of rules for each agent

thereafter (see section 5.1.1 in the paper),

• noGANeg: the model is initialized as in GA-P1, but the heuristics are never updated

with the GA. Hence, every agent has 20 fixed heuristics, which on average are equal to the

median rule (14) learned by the GA-P1 agents under negative feedback,

• noGAPos: similar to noGANeg, but with heuristics initialized under constraints α ∈ [0.8, 1]

and β ∈ [0.1, 1.1], which results in heuristics that on average are equal to the median rule

(13) of the GA agents under positive feedback,

• Action: GA directly optimize forecast (see section 4.3 in the paper),

• AR1: GA optimize AR1 rule (see section 4.3 in the paper).

• FOR+Action: GA optimizes hybrid heuristic with adaptive and trend expectations (FOR

rule) together with an ‘action’ term (as in Action GA), namely pei,t = αpt−1 +(1−α)pei,t−1 +

β∆pt−1 + γ, where α ∈ [0, 1] and β ∈ [−1.1, 1.1] are the price weight and trend coefficient

as in GA-P1 and γ ∈ [0, 100] corresponds to the level from Action GA.

• FOR+Anchor: GA optimizes First Order Heuristic with anchor, that is pei,t = α1pt−1 +

α2p
e
i,t−1 + (1 − α1 − α2)p

av
t + β∆pt−1, where the anchor term pavt = (1/(t − 1))

∑t−1
s=1 ps is

defined as the average price so far.
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Negative feedback Positive feedback

Model Prices Preds Coord Prices Preds Coord

Trend extrapolation (γ = 1) 3421 1696 NA 62.84 72.45 NA
Adaptive 4.164 16.97 NA 95.62 108.6 NA
Contrarian 3.446 16.18 NA 108.5 122.8 NA
Naive 112.3 136.2 NA 69.11 79.38 NA

RE 2.571 15.21 NA 46.835 54.811 NA
LS learning 229.9 250.7 NA 334.2 342.7 NA
LS const. gain learning 230 250.8 NA 328.6 337.2 NA
HSM - 4 type 499.78 634.53 23.84 45.96 53.84 4.88
HSM - 2 type 19.64 34.02 48.05 55.15 63.98 38.06

GA-P1 2.884 20.03 6.446 44.22 51.98 8.059
GA-P2 (no contr.) 9.392 29.51 7.687 25.3 31.1 8.216

GA: H2 7.68 31.73 NA 123.2 139.8 5.298
GA: H4 3.513 21.79 5.837 81.04 92.74 5.555
GA: H10 3.496 21.7 5.973 56.98 66.09 6.933
GA: H100 3.145 19.35 8.062 46.54 54.5 11.69
GA: dM05 2.982 18.77 6.472 45.6 53.47 7.721
GA: dM10 3.331 19.11 6.221 47.36 55.42 7.502
GA: dM75 3.309 18.27 6.167 49.87 58.19 5.235
GA: dC50 2.929 20.2 6.416 44.04 51.79 8.181
GA: dC00 2.885 20.04 6.452 44.63 52.44 7.986
GA: AltCross 2.885 20.02 6.458 44.44 52.22 8.055
GA: NoElec 2.956 19.99 5.7 42.64 50.24 6.837
GA: 15Learn 2.967 19.91 5.553 46.65 54.68 6.9
GA: NoGANeg 4.265 20.19 5.589 60.59 70.02 4.232
GA: NoGAPos 2945 7239 NaN 14.43 19.08 21.13
GA: Actions 7.35 46.47 18.88 213.3 239.7 8.634
GA: AR1 rule 10.6 40.31 15.17 106.8 122.1 8.727
GA: FOR+Action 602 3981 66.16 460200 510900 NA
GA: FOR+Anchor 2.533 16.08 8.405 39.97 47.45 5.819

Table 8: HHST09: 50-period ahead simulation. To complement Table 2 of the paper. MSE of various
models for experimental prices and subjects’ predictions, and coordination measure, averaged
over six experimental groups for the corresponding treatment. Robustness check for model pa-
rameters (compare with GA-P1). NaN denotes statistics, which are larger than the standard
floating number.
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Negative feedback Positive feedback

Model Prices Preds Coord Prices Preds Coord

Trend extrapolation (γ = 1) 21.101 35.648 NA 0.926 4.196 NA
Adaptive 2 .3 14 .912 NA 2.999 6.482 NA
Contrarian 2.249 14.856 NA 3.864 7.436 NA
Naive 3.09 15.782 NA 1.822 5.184 NA

RE 2.571 15.21 NA 46.835 54.811 NA
LS learning 2.999 15.682 NA 0.889 4.155 NA
LS const. gain learning 4.323 17.142 NA 4.099 7.695 NA
HSM - 4 type 9.05 22.35 4.80 0.82 4.07 6.16
HSM - 2 type 2.999 15.106 19.868 0.889 4 .156 19.144

GA-P1 4.95 25.017 3.4291 0 .806 4.235 4.9
GA-P2 (no contr.) 4.496 25.012 3.446 0.802 4.198 5.558

GA: H2 4.074 26.417 3.363 1.468 5.827 3.373
GA: H4 4.51 26.62 3.22 1.11 5.07 3.35
GA: H10 4.739 25.797 3.252 0.849 4.434 3.922
GA: H100 6.175 24.331 4.091 0.824 4.119 7.835
GA: dM05 6.441 24.434 4.129 0.835 4.263 5.816
GA: dM10 7.138 25.197 4.447 0.883 4.334 5.496
GA: dM75 6.04 23.481 4.589 1.006 4.83 4.223
GA: dC50 4.975 25.089 3.445 0.807 4.229 5.007
GA: dC00 4.946 25.062 3.419 0.806 4.244 4.863
GA: AltCross 4.95 25.024 3.423 0.81 4.242 4.887
GA: NoElec 5.223 25.262 3.539 0.824 4.248 4.283
GA: 15Learn 4.024 24.873 3.293 0.823 4.371 4.444
GA: NoGANeg 6.582 24.319 4.255 1.063 4.923 3.486
GA: NoGAPos 8.544 23.833 15.468 0.924 4.001 13.948
GA: Actions 32.855 71.047 NA 82.783 120.848 NA
GA: AR1 rule 2.949 21.904 4.246 1.635 6.24 4.464
GA: FOR+Action 25.166 75.302 7.579 3.658 11.625 7.827
GA: FOR+Anchor 4.455 21.754 4.342 1.134 5.033 3.219

Table 9: HHST09: one-period ahead predictions. To complement Table 4 of the paper. MSE of
various models for experimental prices and subjects’ predictions, and coordination measure,
averaged over six experimental groups for the corresponding treatment. Robustness check for
model parameters (compare with GA-P1).
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C Distribution of random initial forecasts

In this Appendix we discuss one aspect of initialization of the GA model for the “unconditional”

50-period Monte Carlo simulations discussed in Section 5.1, namely the choice of the distribution

for the initial predictions. Recall that our task is to demonstrate that GA model can repli-

cate experimental stylized facts. Two examples for the HHST09 experiment illustrate that the

initialization of the model can be crucial in achieving this task.

First, under negative feedback, the coordination in individual price forecasts was observed only

after the price has converged to the fundamental. To replicate this feature in our simulations,

one has to start with a similar degree of initial heterogeneity in the agents forecasts and then

show that due to the learning of GA agents, coordination arises as in the experiment.

Second, under positive feedback, as Anufriev, Hommes, and Philipse (2013) suggest, price

oscillations emerged in the groups where the average of the first forecasts was relatively far from

the fundamental price. Therefore, in this set-up the initial individual predictions influenced later

outcomes, such as the appearance and characteristics of oscillations or dynamics of coordination.

One would like to have a model that can mimic this path-dependence. But without a realistic

initialization, the path-dependent model will not fit the data well.

How did subjects make predictions in the very first period of the experiment, when the

information set of past prices and predictions is empty? Diks and Makarewicz (2013) investigate

this issue in a systematic way for the HHST09 experiment. They argue that the initial subject

forecasts can be regarded as a sample from a common distribution, which they estimate. We use

their methodology and estimate a distribution of initial forecasts for all other experiments. In the

MC “unconditional” simulations, where the initial predictions are sampled from the distribution,

this distribution is the one estimated from the respective experiment.

HHST09 For this experiment we use the estimated Winged Focal Point (WFP; see Fig. 11 for

visualization) reported by Diks and Makarewicz (2013), which is given by

(22) pei,1 =


ε1i ∼ U(9.546, 50) with probability 0.45739 ,

50 with probability 0.30379 ,

ε2i ∼ U(50, 62.793) with probability 0.23882 ,

where U(a, b) is the uniform distribution on interval [a, b]. Around 1/3 of the subjects would

forecast 50 at t = 1, the mid-point of the suggested interval for the initial price forecast [0, 100].

Others were spread around this focal point with more subjects predicting a lower price and almost

nobody predicting a price higher than 60. Hence the distribution is a composite of a unit mass

at 50 and two ‘wings’, uniform distributions spreading from the focal point.
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509.546 62.793

P = 0.45739 P = 0.23882

P = 0.30379

Figure 11: Estimated density of winged focal point distribution for HHST09 as given in Eq. 22. The
sizes of the wings around the mass point p = 50 are scaled to their masses and lengths.

BHST12 We re-estimate the WFP model for the data reported by BHST12 using the same

methodology as reported by Diks and Makarewicz (2013). This leads to WFP specified as

pei,1 =


ε1i ∼ U(16.406, 50) with probability 0.32296,

50 with probability 0.35159,

ε2i ∼ U(50, 70.312) with probability 0.32296.

HSTV05 In this experiment, the predictions are two-period ahead, hence the subjects would

have to give two initial predictions, pei,1 and pei,2. First period forecasts are similar to those from

the other experiments. As for the second period, one can notice that 2/3 of the subjects, who

would predict pei,1 = 50 the focal point in the first period, would do the same in the second period;

otherwise they would again draw predictions resembling WFP, but with a substantially smaller

weight on the focal point 50. Hence we follow Diks and Makarewicz (2013) and get the following

estimations for the first period:

pei,1 =


ε1i ∼ U(4.712, 50) with probability 0.31306,

50 with probability 0.45536,

ε2i ∼ U(50, 64.062) with probability 0.23158.

To generate the second period predictions, we define the auxiliary draw

(23) pauxi,2 =


ε1i ∼ U(3.125, 50) with probability 0.44958,

50 with probability 0.018761,

ε2i ∼ U(50, 67.227) with probability 0.53166.
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With the realization from this draw, the second period predictions are defined as

(24) pei,2 =


pauxi,2 always if pei,1 6= 50,

pauxi,2 with probability 1/3 if pei,1 = 50,

50 with probability 2/3 if pei,1 = 50.

D Distributions of the last period predictions

Figure 12 compares the distributions of the 49th period individual forecasts simulated by our

GA model (specifications GA-P1 and GA-P2) in the “unconditional” MC simulations (Sec-

tion 5.1.1), with the last period forecasts distribution in the HHST09 experiment under negative

and positive feedback. Every panel is divided into two parts by a horizontal black line. The upper

part shows (in red) the distributions from the GA model. The lower part shows the distribution

of forecasts in the experiment (which is reflected for the ease of comparison).
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Figure 12: HHST09: 49th period of 50-period ahead MC simulation (1000 runs) for GA-P1 model
(upper panels) and GA-P2 model (lower panels) compared with the experimental data
from negative (left panels) and positive feedback (right panel). Every panel contains two
histograms: the histogram of the individual price forecasts of the GA agents (upper part of
panels, red bars) and the reflected histogram of the experimental subjects’ forecasts (lower
part of panels, blue bars). Vertical dotted line represents the fundamental price.
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E On-Line Appendix. Formal definition of Genetic Algo-

rithms

In this Appendix we present a formal definition of the Genetic Algorithms (GA) version, which

served as the cornerstone of our model. It closely follows the standard specification suggested by

Haupt and Haupt (2004) and used by Hommes and Lux (2013).

E.1 Optimization procedures: traditional and Genetic Algorithms

Consider a maximization problem where the target function F of N arguments θ = (θ1, . . . , θN)

is such that a straightforward analytical solution is unavailable. Instead, one needs to use a

numerical optimization procedure.

Traditional maximization algorithms, like the Broyden-Fletcher-Goldfarb-Shanno (BFGS) al-

gorithm, iterate a candidate argument for the optimum of the target function F by (1) estimating

the curvature around the candidate and (2) using this curvature to find the optimal direction and

length of the change to the candidate solution. This so called ‘hill-climbing’ algorithm is very

efficient in its use of the shape of the target function. On the other hand, it will fail if the target

function is ‘ill-behaved’: non-continuous or almost flat around the optima, has kinks or breaks.

Here the curvature cannot be reliably estimated. Another problem of a computational nature is

that the BFGS may perform poorly for a problem of large dimensionality.

The Genetic Algorithms are based on a fundamentally different approach and therefore can

be used for a wider class of problems. The basic idea is that we have a population of arguments

which compete only in terms of their respective function value. This competition is modeled in

an evolutionary fashion: mutation operators allow for a blind-search experimentation, but the

probability that a particular candidate will survive over time is relative to its functional value.

As a result, the target function may be as general as necessary, while the arguments can be of

any kind, including real numbers, integers, probabilities or binary variables. The only constraint

is that each argument must fall into a predefined dense interval (or set) [an, bn].

E.2 Binary strings

A Genetic Algorithm (GA) uses H chromosomes gh,t ∈ H which are binary strings divided into

N genes gnh,t, each encoding one candidate parameter θnh,t for the argument θn. A chromosome

h ∈ {1, . . . , H} at time t ∈ {1, . . . , T} has predetermined length L and is specified as

(25) gh,t = (g1h,t, . . . , g
N
h,t),
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such that each gene n ∈ {1, . . . , N} has its length equal to an integer Ln (with
∑N

n=1 Ln = L)

and is a string of binary entries (bits)

(26) gnh,t = (gn,1h,t , . . . , g
n,Ln

h,t ), gn,lh,t ∈ {0, 1} for each j ∈ {1, . . . , Ln}.

The relation between the genes and the arguments is straightforward. An integer θn is simply

encoded by (26) with its binary notation. Consider now an argument θn which is a probability.

Notice that
∑Ln−1

l=0 2j = 2Ln − 1. It follows that a particular gene gnh,t can be decoded as a

normalised sum

(27) θnh,t =
Ln∑
l=1

gn,lh,t2
l−1

2Ln − 1
.

A gene of zeros only is therefore associated with θn = 0, a gene of ones only – with θn = 1,

while other possible binary strings cover the [0, 1] interval with an 1
2Ln−1 increment. Any desired

precision can be achieved with this representation. Since 2−10 ≈ 10−3, the precision close to one

over trillion (10−12) is obtained by a mere of 40 bits.

A real variable θn from an [an, bn] interval can be encoded in a similar fashion, by an affine

transformation of a probability:

(28) θnh,t = an + (bn − an)
Ln∑
l=1

gn,lh,t2
l−1

2Ln − 1

where the precision of this representation is given by bn−an
2Ln−1 . Notice that one can approximate an

unbounded real number by reasonably large an or bn, since the loss of precision is easily undone

by a longer string.

E.3 Evolutionary operators

The core of GA are its four operators. GA iterates the population of chromosomes for T periods,

where T is either large and predefined, or depends on some convergence criterion. First, at each

period t ∈ {1, . . . , T} each chromosome has its fitness equal to a monotone transformation of

the function value F . This transformation is defined as V (F(θh,t)) ≡ V (hk,t) → R+ ∩ {0}. For

example, a non-negative function can be used directly as the fitness. If the problem is to minimize

a function, a popular choice is the exponential transformation of the function values, similar to

the one used in the logit specification of the Heuristic Switching Model (Brock and Hommes,

1997).

Chromosomes at each period can undergo the following operators: reproduction, mutation,

crossover and election. These operators first generate an offspring population of chromosomes

from the parent population t and therefore transform both populations into a new generation of
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chromosomes t+ 1 (notice the division of the process).

E.3.1 Reproduction

For the population at time t, GA picks subset X ⊆ H of χ chromosomes and picks κ < χ of them

into a set K. The probability that the chromosome h ∈ X will be picked into K as its zth element

(where z ∈ {1, . . . , κ}) is usually defined by the power function:

(29) Prob(gz = gh,t) =
V (gh,t)∑
j∈X V (gj,t)

.

This procedure is repeated with differently chosen X’s until the number of chromosomes in all

such sets K’s is equal to H. For instance, the roulette is reproduction with χ = H and κ = 1:

GA picks randomly one chromosome from the whole population, where each chromosome has

probability of being picked equal to its function value relative to the function value of all other

chromosomes. This is repeated exactly H times.

So called tournaments are often used for the sake of computational efficiency. Here, χ << H.

For instance, GA could divide the chromosomes into pairs and sample two offspring from each

pair.

Procreation is modeled as the basic natural selection mechanism. We consider subsets of the

original population (or maybe the whole population at once). Out of each such a subset, we pick

a small number of chromosomes, giving advantage to these which perform better. We repeat this

procedure until the offspring generation is as large as the old one. Thus the new generation is

likely to be ‘better’ than the old one.

E.3.2 Mutation

For each generation t ∈ {1, . . . , T}, after the reproduction has taken place, each binary entry in

each new chromosome has a predefined δm probability to mutate: ones turned into zeros and vice

versa. In this way the chromosomes represent different numbers and may therefore attain better

fit.

The mutation operator is where the binary representation becomes most useful. If the bits,

which are close to the beginning of the gene, mutate, the new argument will be substantially

different from the original one. On the other hand, small changes can be obtained by mutating

bits from the end of the gene. Both changes are equally likely! In this way, GA can easily

evaluate arguments which are both far away from and close to what the chromosomes are currently

encoding. As a result, GA efficiently converges to the maximum, but are also likely not to get

stuck on a local maximum. This is clearly independent of the initial conditions, which gives GA

additional advantage over hill-climbing algorithms (like BFGS), where a good choice of the initial

argument can be crucial to obtain the global maximum.
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E.3.3 Crossover

Let 0 6 CL, CH 6
∑N

n=1 Ln = L be two predefined integers. The crossover operator divides

the population of chromosomes into pairs. If CL < L − CH , it exchanges the first CL and the

last CH bits between chromosomes in each pair with a predefined probability δc. Otherwise, the

crossover operator exchanges max{CL, CH} bits in each pair of chromosomes with this predefined

probability δc. This operator facilitates experimentation in a different way than the mutation

operator. Typically, it is set to exchange whole arguments, that is there are 0 6 νL 6 νH 6 N

such that CL =
∑νL

n=1 Ln and CH =
∑N

n=νH
Ln. This allows the chromosomes to experiment with

different compositions of the individual arguments, which on their own are already successful.

E.3.4 Election

The experimentation done by the mutation and crossover operators does not need to lead to

efficient binary sequences. For instance, a chromosome which actually decodes the optimal argu-

ment should not mutate at all. To counter this effect, it is customary to divide the creation of

a new generation into two stages. First, the chromosomes procreate and undergo mutation and

crossover in some predefined order. Next, the resulting set of chromosomes is compared in terms

of fitness with the parent population. Thus, offspring will be passed to the new generation only

if it strictly outperforms the parent chromosome. In this way each generation will be at least as

good as the previous one, what in many cases facilitates convergence.
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F On-Line Appendix. Parametrization of the forecasting

heuristic

In this Appendix, we will address two issues. First, we will investigate the importance of the

anchor in the forecasting heuristic both for the one-period ahead HHST09 and for the two-period

ahead HSTV05 settings. Second, we study the allowed degree of trend extrapolation (i.e., the

interval for the trend coefficient β), based on the linear feedback from HHST09.

F.1 Is the anchor important for HHST09?

HHST09 show that most of their subjects (around 60%) use the First-Order prediction rule with

heterogeneous parameter specification:

(30) pei,t = α1pt−1 + α2p
e
i,t−1 + α360 + β(pt−1 − pt−2)

where the anchor is a weighted average of the last observed price, the last forecast and the

fundamental price pf = 60, α’s span a simplex (α1+α2+α3 = 1) and β is the trend extrapolation

coefficient. Our FOR heuristic (10) is a special case of (30) with the restriction that α3 = 0,

which implies that the fundamental price is not used by the agents (recall footnote 16).

Experimental literature suggests that, in general, anchors and focal points are important in

describing human behavior. However, HHST09 report that the anchor coefficient α3 is typically

significant for the subjects under negative feedback, while most of the subjects under positive

feedback do not use it (only 2 out of 42 subjects have a significantly positive α3). Furthermore,

under negative feedback prices and forecasts quickly converge to the vicinity of 60, which in

practice makes the three αk coefficients unidentifiable; and could make the anchor itself redundant.

When designing our GA model, we therefore investigated whether the fundamental anchor has

any additional explanatory power.

To simplify econometric issues, in the previous literature the anchor was set at the fundamental

level, which however was not directly given to the subjects. It is more plausible that the subjects

used the average of all previous prices as an anchor. We will use a GA with the FOR specified

specified as

(31) pei,t = α1pt−1 + α2p
e
i,t−1 + (1− α1 − α2)

(
1

t− 1

t−1∑
s=1

ps

)
+ β(pt−1 − pt−2).

This extended GA model has 3 parameters (two weights within the anchor and the trend ex-

trapolation coefficient), instead of 2 parameters (price weight and trend extrapolation coefficient)

from our GA model, which is based on heuristic (10).

We run the Monte Carlo (MC) simulations exactly as in the first part of Section 5.1, but for

the GA model based on (31) with the restriction for β ∈ [−1.1, 1.1]. The results are presented
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Figure 13: HHST09: 50-period ahead Monte Carlo simulation (1000 runs) for the GA-P1 model
with the FOR (31) compared with the experimental data. Upper panels: price. Lower
panels: degree of coordination (log2 scale). Green dashed line and black pluses show the
experimental median and group observations, respectively. Red thick line is the median
and blue dotted lines are the 95% confidence interval for the GA model.

in Fig. 13. We observe for the positive feedback that, in contrast to our restricted GA model

without the fundamental anchor, the GA model based on FOR (31) does not predict oscillations

at all. Instead a sluggish convergence towards the fundamental is generated, as can be seen in

the stable median price, bounded by relatively narrow 95% CI. In other words, this specification

misses most of the dynamics observed in half of the experimental groups. We conclude that there

is no evidence for a need of a fundamental anchor, specified as a long-run average of the observed

prices, in our GA model.

F.2 Anchor and HSTV05

The HSTV05 non-linear, two-period ahead LtF asset pricing market resulted in more pronounced

oscillations than those observed in the simple linear experiment HHST09 under positive feed-

back. One could therefore think that some kind of a long-run anchor might have been important

for the subjects, even though they would not use it in one-period ahead forecasting setting. Fur-

thermore, in HSTV05 the oscillations typically arose around the fundamental price, which again

suggests that the subjects tried to anchor the price changes to it. To address this issue, we run
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(a) GA-P1, β ∈ [−1.1, 1.1]
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(b) GA-P3, β ∈ [−1.3, 1.3]

Figure 14: HSTV05 with pf = 60: 50-period ahead Monte Carlo simulation (1000 runs) for the GA-
P1 (left panel) and GA-P3 (right panel) models with FOR (31). Price evolution is shown.
Red line is the median and blue dotted lines are the 95% CI.

the 50-period ahead MC simulation as in Section 5.3, but where the heuristic (21) is replaced by

the extended FOR heuristic (31) adapted for the two-period ahead setting, and where the anchor

was given by the fundamental price pf = 60.

Results for two parametrizations (with allowed trend extrapolation β ∈ [−1.1, 1.1] and β ∈
[−1.3, 1.3]) are presented on Fig. 14. As in the case of HHST09, we find that the GA model

with the extended FOR rule generates sluggish convergence towards the fundamental price from

below. Indeed, in contrast to HHST09, the 95% CI of the GA model’s prices do not include

the fundamental pf = 60 even after 50 periods. This indicated that adding an anchor to the GA

model would decrease its fitness to the experimental data.39

F.3 Degree of trend extrapolation in HHST09

Recall that the GA requires a predefined finite interval for the optimized parameters. In the case

of our GA model based on (10), the price weight is confined to α ∈ [0, 1], but prima facie there

is no ‘natural’ bound for the trend extrapolation β ∈ [βL, βH ], since a priori we do not know

the degree of trend extrapolation that people consider while forecasting prices. As mentioned in

Section 4.2, we argue that the model performs well in the HHST09 economy if we specify the

heuristic (10) with an upper bound of 1.1 to the trend coefficient β (as in GA-P1 and GA-P2).

It turns out (unsurprisingly) that the allowed trend extrapolation interval has little effect on

the behavior of our GA model under negative feedback. However, a clear effect exists for the

model under positive feedback: the larger the interval β ∈ [βL, βH ], the larger the amplitude of

the price oscillations. We experimented with different bounds, trying to calibrate the GA model

to the experimental oscillations, using the same Monte Carlo experiments as in Section 5.1.1.

Allowing for a strong trend extrapolation β ∈ [−1.5, 1.5] results in a model with huge possible

oscillations and little predictive power, see Fig. 15. On the other hand, parametrization with

β ∈ [−0.5, 0.5] has narrow CI, but predicts small oscillations, see Fig. 16. We found that the

39We found similar results when the anchor was specified as the sample average price 1
t−1

∑t−1
s=1 ps.
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Figure 15: HHST09: 50-period ahead Monte Carlo simulation (1000 runs) for the model with re-
striction β ∈ [−1.5, 1.5] compared with the experimental data. Upper panels: price. Lower
panels: degree of coordination. Green dashed line and black pluses show the experimental
median and group observations, respectively. Red thick line is the median and blue dotted
lines are the 95% confidence interval for the GA model.

model with β ∈ [−1.1, 1.1] is the best trade-off between in-sample fit and out-sample predictive

power of the model.
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Figure 16: HHST09: 50-period ahead Monte Carlo simulation (1000 runs) for the model with restric-
tion β ∈ [−0.5, 0.5]) compared with the experimental data. Upper panels: price. Lower
panels: degree of coordination. Green dashed line and black pluses show the experimental
median and group observations, respectively. Red thick line is the median and blue dotted
lines are the 95% confidence interval for the GA model.
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