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Abstract

I study the role of purely financial players in electricity markets, where they

trade alongside physical buyers and sellers. Using detailed individual data, I

examine physical and financial firms’ response to regulation that exogenously

increased financial trading. I find this reduced generators’ market power and

increased consumer surplus. I develop a structural test of static Nash equilibrium,

and reject it in favor of dynamic competition consistent with tacit collusion by

a group of firms. To implement the test, I present a new method to study the

competitive structure of electricity markets using machine learning tools to define

markets.

I Introduction

The role of financial traders in commodity markets is controversial. Although they

are expected to facilitate risk sharing and increase informational efficiency, distrust of

financial traders is so widespread that some politicians have proposed restrictions and

bans on their activity. Among the reasons for this bad reputation is that speculators

are frequently blamed for higher and more volatile prices, and accused of market

manipulation.1 In this paper, I employ a unique dataset to study the role of speculators

as competitors of physical producers in the Midwest electricity market.

Typically, it is hard to identify the effect of speculation on a commodity market

because only aggregate market outcomes are observed and the physical good is not

∗I am indebted to Ali Hortaçsu, Michael Greenstone for invaluable guidance and support. I thank
John Birge and Brent Hickman for their comments and support. I am also grateful to Ignacio Cuesta,
Gunnar Heins, Ashley Langer, Derek Neal, Mar Reguant, and Frank Wolak for detailed comments,
and to the participants of several conferences and seminars at universities for helpful comments and
suggestions. All errors are my own.
†School of International and Public Affairs, Columbia University, ignacia.mercadal@columbia.edu
1See Juvenal and Petrella (2014); Kilian and Murphy (2014); Knittel and Pindyck (2016) for a

discussion on volatile and high prices. On price manipulation, Birge et al. (2017)
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traded together with its derivatives. Electricity markets provide an excellent setting

to study the effects of financial trading since all transactions involving both physical

producers and financial players occur in a single market. This paper focuses specifically

on the Midwest electricity market (MISO2), which has two additional advantages. First,

a regulatory change in 2011 that exogenously attracted more financial traders, which

allows me to identify the effect these traders had on the market. Second, I observe

individual-level behavior and can separately analyze how buyers, producers, and

financial traders reacted to the regulatory change. Exploiting these unique features,

this paper shows that financial trading decreases physical producers’ market power and

increases consumer welfare.

In electricity markets, financial trading takes place in sequential markets where

physical energy is traded. There is first a forward market that schedules production

a day in advance, and then a spot market that balances demand and supply

immediately before operation. In such markets, generators have incentives to engage

in intertemporal price discrimination. Instead of fully scheduling their intended

production in the forward market and using the spot market for unexpected shocks,

producers withhold part of their generation in the forward market in order to increase

the forward price (Ito and Reguant, 2016). This results in a forward premium that has

been documented in several wholesale electricity markets. 3

Because a forward premium distorts planning decisions and therefore results

in inefficiencies, wholesale electricity markets have introduced financial traders to

arbitrage these price differences. These traders sell (buy) in the forward market, and

their transaction is then reversed in the spot market, such that their profits are the

(negative) forward premium times the quantity traded. In the Midwest electricity

market the forward premium persisted despite the presence of financial traders because

high transaction costs made arbitrage unprofitable (Birge et al., 2017). A regulatory

change lowered these costs significantly in April 2011, after which financial trading

increased and the forward premium became smaller. As a consequence, we expect

price discrimination in the forward market to go down, since increased financial trading

means more arbitrage. Interestingly, I show that generators not only reacted to the

regulatory change by exerting less market power in the forward market, but they did

2Midwest Independent System Operator until 2013, then Midcontinent ISO.
3Bowden et al. (2009) and Birge et al. (2017) find it in the Midwest, Saravia (2003) in New York,

Jha and Wolak (2018); Borenstein et al. (2008) in California, Ito and Reguant (2016) in the Iberian
market, among others.
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it months before it was implemented.

In order to understand the generators’ reaction, I use individual bid data to estimate

a model of optimal generator behavior, following the approach of Wolak (2000) and

Hortacsu and Puller (2008).4 I build a static model of a firm that decides how much

to sell in the forward and spot markets. In MISO, these markets are organized as

sequential auctions in which firms bid step functions specifying how much they are

willing to sell or buy at each price. I extend Hortacsu and Puller (2008)’s model of

optimal bidding in the spot market to the case of a sequential market. As in their

model, I include firms’ forward contract positions as determinants of profits.5 This

is important because firms usually hedge by signing contracts for differences that pay

sellers (buyers) when the market price is lower (higher) than the price agreed upon in

the contract.

In my model, a firm’s optimal bid depends on its contract position, as well as

on the elasticity of its residual demand, i.e. total demand minus the quantity sold by

competitors. Since future competition does not affect residual demand today, the model

predicts that generators in the Midwest will only lose market power when transaction

costs are reduced and financial trading increases. Consequently, the model rationalizes

the observed change in behavior as a reaction to changes in current market conditions,

i.e. residual demand or contract positions. I test the model’s optimality condition

empirically and find that it does not hold, which means that, rather than reacting

to current market conditions, generators changed their behavior in anticipation of

increased competition in the future.

I consider two alternative hypotheses, i.e. two mechanisms that could explain

why firms changed their conduct before market conditions changed. The first is a

cooperative equilibrium in a repeated game, which is sustained as long as a player’s

benefits from continued cooperation outweigh the gains from deviating and stealing

the market today. In the context of this paper, increased arbitrage in the future

4There are a number of papers following this approach in electricity markets. Wolak (2007) uses
the optimality conditoins obtained from static profit maximization to estimate firm’s marginal costs.
He tests the hypothesis of profit maximization and finds no evidence against it. Hortacsu and Puller
(2008), on the other hand, find that while it describes big firms’ behavior well, small firms are far less
sophisticated. Reguant (2014) studies an auction in which firms’ bids can include complementarities
across production hours, which she uses to estimate startup costs. Ryan (2014) estimates marginal
costs from bids in the Indian market, taking into account transmission constraints to estimate the
consequences of transmission investment

5Wolak (2000) shows that the forward contract position affects a firm’s incentives to exert market
power.
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eliminates the benefits from future cooperation, because speculators will arbitrage away

any resulting price gap. This mechanism would explain the generators’ anticipatory

reaction, since the equilibrium unravels as soon as it is known that cooperation cannot

be sustained in the future. This is a market in which the same firms interact with

each other every day, and have good information about demand and each others’ costs.

Although there are many firms in the market, a few large ones control most of the

production.6

The second mechanism is entry deterrence. If generators expected financial, or

“virtual”, traders to enter the market and arbitrage the forward premium, they might

have tried to make the market less attractive by lowering the forward premium. Entry

deterrence does not seem to be sustainable in equilibrium, as there is no link between

periods that could make today’s competition affect the entrant’s profits in the future.7

Nonetheless, I include this mechanism for the sake of completeness, since the generators’

pricing changes might have been a failed attempt to deter the entry of financial traders.

The test I use to evaluate generators’ conduct is based on a simple intuition. In

a repeated game cooperative equilibrium, firms do not play best response, but behave

as if the market were less competitive than it is. Under entry deterrence, generators

do not play best response either, but they act as if the market were more competitive

than it is. Therefore, comparing the elasticity of demand actually faced by firms with

that implied by their behavior allows me to distinguish between entry deterrence, tacit

collusion, and static Nash equilibrium. Although these alternatives do not exhaust the

space of alternatives, they can be taken as examples of two different ways in which

the null hypothesis of static best response can be rejected, i.e. behaving more or less

competitively than what would be optimal under static best response.

This paper also introduces a number of methodological contributions, which I now

describe. In structural analysis, optimality conditions are usually imposed on the data

and used to obtain an estimate of primitive parameters from the model. Instead,

the richness of my data allows me to compute every component of the optimality

condition for the forward market, i.e. I can construct the residual demand faced by each

participant and compute its elasticity. I use the empirical counterpart of the optimality

6Evidence of tacit collusion in electricity markets has been found by Fabra and Toro (2005) in the
Spanish electricity market.

7Like dynamic demand, for instance, as in Goolsbee and Syverson (2008). In this context, increasing
capacity as in ? would not make a firm’s threat more credible. Obtaining reputation as a fighter could
justify lowering today’s profits to deter future entry (Milgrom and Roberts, 1982), but in this case
the market became more competitive before entry.
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condition obtained from the model to distinguish between the three hypotheses that

could explain the generators’s behavior: tacit collusion, entry deterrence, and static

Nash (reaction to something different from financial traders that affected residual

demand). The test evaluates whether generators’ behavior indicates that they perceive

residual demand elasticity to be lower than, higher than, or the same as that observed

in the data.8

The residual demand faced by each generator can in principle be computed by

adding up the demand bids and subtracting the supply bids of the generator’s

competitors. However, this exercise is complicated by the fact that the Midwest

electricity market is a nodal market, i.e. there may be a different clearing price in

each location or node where electricity is generated or demanded. This price represents

the marginal cost of supplying energy at that node, which varies significantly because

nodes are connected by transmission lines with limited capacity. When the lines reach

maximum capacity, demand cannot necessarily be satisfied by the lowest cost generator

and is instead satisfied by the lowest cost feasible generator.

To deal with nodal pricing, I assume the MISO market is split into several

independent markets. I define these markets empirically by using machine learning

techniques that cluster nodes together based on the correlation of their prices. Unlike

most applications of these clustering techniques, I build a measure of fit that allows

me to choose the market definition that better fits the data. To do this, I simulate

prices that would clear under each alternative market definition and compare them

with those observed in the data. I find that the clusters fit the data fairly well. To the

best of my knowledge, this paper is the first to use a structural model to study a nodal

market, which is made possible by these market definitions.

My findings indicate that, prior to learning of the impending regulatory change,

firms acted as if they were facing a less competitive market than they were, and

therefore exerted more market power than would be optimal given the elasticity of

the residual demand they actually faced. After learning about the future fall in

transaction costs for financial traders, the firms moved to a static Nash equilibrium.

This reaction is consistent with a repeated game cooperative equilibrium that unravels

8Puller (2007) studies the competitiveness of the electricity market in California. Using a Cournot
model for the spot market, he simulates the price that would have resulted under perfect competition,
Cournot-Nash, and tacit collusion, concluding that the market is well described by the static Nash
equilibrium. My approach is similar but I have the advantage of observing all bids. Additionally, I
am mainly interested in the effect of financial trading on competition, instead of assessing the overall
competitiveness of the market.
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when future benefits from cooperation disappear. The forward market becomes more

competitive because of increased financial trading, and it does so even before trading

goes up. Therefore, this result underscores the importance of considering dynamics

when investigating the role of financial traders.

Moreover, this paper presents a case in which the standard assumption of static

Nash equilibrium does not hold. This assumption would need to hold not only for

a structural estimation to be able to identify structural parameters, but also for any

analysis that compares variables of interest before and after the policy change and

attributes the differences to the respective policy. Though in most markets it is not

possible to obtain a dataset rich enough to implement the test of static Nash equilibrium

proposed in this paper, the fact that in this case firms are in a dynamic equilibrium

suggests a careful consideration of how results would change under alternative equilibria

is important for robust analysis.

While financial traders reduce generators’ market power in the forward market,

they do not eliminate their market power altogether since generators could exert more

market power in the spot market once they are not able to intertemporally price

discriminate. I estimate the firms’ markups in the spot market and find that they

remain roughly at the same level during the whole period of analysis, as opposed to

what Ito and Reguant (2016) find by running a counterfactual in which they introduce

financial traders into a sequential market that does not have them. There are two

reasons behind the differences. First, in this paper firms move from a dynamic to a

static equilibrium instead of going from price discrimination to uniform pricing in a

static setting. Second, the market operator closely monitors production withholding in

the spot market but not in the forward market, reducing firms’ ability to exert market

power in the spot market.

As firms exert less market power in the forward market and there are no big changes

in the spot market, financial trading has a positive effect on welfare. Consumers

are better off because they pay less for energy, saving roughly $1,800,000 per day on

average; producers are worse off because they cannot price discriminate. Nonetheless,

the total effect is not just a transfer from producers to consumers because production

costs go down. Less underscheduling in the forward market results in better planning,

which allows cheaper generating units to be scheduled and decreases production costs.

This effect is likely to be sizable since 98% to 99% of production is scheduled in the

forward market.
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The rest of this paper is organized as follows: The next section describes the

Midwest electricity market and explains its conditions before the regulatory change.

Section 3 then describes how the different players in the market reacted to lower

transaction costs for financial traders. Section 4 describes the dataset used for empirical

analysis. Section 5 presents a static model of generator behavior in a sequential auction,

as well as the test of static Nash behavior derived from the model. The empirical

strategy is described in section 6, and results are presented in section 7. Section 8

concludes.

II The MISO energy market

Wholesale electricity markets are different from other markets because electricity

cannot be stored, supply needs to meet demand at every moment, and the transmission

network that transports electricity from sellers to buyers has limited capacity. As a

consequence, proper administration of the transmission grid is essential for reliability

and efficiency. For this reason, deregulated electricity markets typically operate under

an Independent System Operator (ISO), a non-profit organization that coordinates the

use of the transmission grid by the different market participants. In the Midwest, this

role is played by the MidContinent ISO9, which covers 15 U.S. states and the Canadian

province of Manitoba. MISO operates an energy market that serves 42 million people

and collects US$20 billion in gross charges per year.

The energy market is organized as an auction in which participants submit bids

to buy or sell energy in particular locations; the ISO then clears the market solving a

nonlinear programming problem that minimizes cost subject to the capacity constraints

imposed by the transmission network. Because the network has limited capacity,

electricity supplied at different locations is not a homogeneous good. MISO deals

with this heterogeneity by allowing each node or location to clear at a different price,

which is known as nodal pricing and described in more detail in Appendix A.

The MISO energy market has over 2000 pricing nodes and often becomes congested

(reaches capacity), so in practice there is significant price dispersion among the nodes.

Figure 4 presents heat maps of the MISO market in two different moments, which

illustrate how prices can substantially differ geographically and over time. The presence

of congestion is relevant for the empirical analysis of this market because when lines

9Midwest ISO until 2013.
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are at capacity demand cannot always be served by the cheapest generator. As a

consequence, congestion segments the market, creating local markets in which firms

have more market power than they would otherwise. This poses a challenge for

empirical analysis, because the degree of market power enjoyed by a firm depends

directly on the degree of congestion and its transmission structure. I address this

problem by using prices to define independent markets within the MISO market with

a machine learning algorithm. This is described in part in section that discusses the

empirical strategy.

A Forward and spot market

Like many deregulated electricity markets, the MISO energy market is structured

as a sequential auction. First, there is a day-ahead or forward market that schedules

production for the 24 hours of the next day, and then a real-time or spot market that

balances demand and supply 30 minutes before each operating hour. Both of these

markets are auctions organized by the market operator.

The forward or day-ahead market is a financial market that takes place once a

day and clears separately for each hour of the next day. Until 11 a.m. of each day,

buyers and sellers submit bids for each of the 24 hours of the next day, starting with

the midnight hour. The real-time market is a balancing market and takes place 30

minutes before each operating hour. Only physical supply bids are allowed, and the

market is cleared by minimizing the cost of satisfying the forecasted demand subject

to transmission constraints. The bulk of demand comes from utilities that sell to most

of their final consumers at a fixed price per MWh. This makes demand very inelastic

in the short run, and demand bids are therefore not accepted in the real-time market.

A generator can be a seller or a buyer in the spot market, depending on the quantity

she schedules in the forward market. Firms are paid for the quantity sold in the forward

market regardless of how much they actually produce, but the difference between the

forward schedule and the actual production is settled at the spot price. For instance,

if a generator schedules 100MWh in the forward market, but then clears 80MWh in

the spot market, she receives the forward price for 100MWh but has to pay the spot

price for 20MWh, as if she were buying.10

The rationale behind a sequential market is that generation is cheaper when it

is planned, so scheduling forecasted demand in advance decreases production costs.

10See Jha and Wolak (2018) for a complete description of how multi-settlement markets work.
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Generators with lower marginal costs generally have high startup costs and cannot

adjust the level of production easily. On the other hand, generators that can start and

vary production quickly, called peakers, often have high marginal costs. By scheduling

production in the forward market, it is easier to satisfy expected demand with cheaper

generators and only unanticipated shocks with peakers. Additionally, scheduling the

24 hours of the next day in the forward market increases efficiency by taking into

account complementarities across hours, which come from the startup costs faced by

some generating units.11. The existence of the forward market also allows market

participants to face less risk, as price is more volatile in the real-time than in the

day-ahead market.12

Although it would be efficient to schedule enough generation to satisfy all forecasted

load in the day-ahead market and only use the real-time market to adjust for

unexpected shocks, market participants do not always have incentives to do so. The

most costly deviations are those that result in insufficient generation being scheduled

in the forward market, because in such cases the market authority needs to quickly

cover demand by increasing production, dispatching peakers, and starting inactive

plants. This happens either when generation scheduled in the forward market becomes

unavailable in the spot market, or when real-time demand is larger than scheduled (for

instance, because not enough generation was scheduled as a result of high price offers).

Because the clearing price does not cover ramping or startup costs, but only marginal

cost, firms that buy in the spot market are subject to deviation charges called Revenue

Sufficiency Guarantee (RSG) charges. The revenue collected is then distributed among

participants who incurred ramping or startup costs.

B Market power and the forward premium

In a perfectly competitive market, firms would schedule their intended generation

in the forward market and sell in the spot market only when they face unexpected

shocks. However, when generators have market power they have incentives to withhold

sales in the forward market in order to increase the forward price, which results in a

forward premium (Ito and Reguant, 2016). This forward premium has been observed

in several deregulated wholesale electricity markets (Saravia, 2003; Ito and Reguant,

11See Reguant (2014) for an analysis of the welfare consequences of allowing complementarities in
bids.

12Additionally, Allaz and Vila (1993) show that sequential markets enhance competition among
firms when they compete à la Cournot.
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2016; Saravia, 2003; Jha and Wolak, 2018), including MISO (Bowden et al., 2009; Birge

et al., 2017). In fact, the behavior of generators in the MISO market is consistent with

this kind of intertemporal price discrimination; on average, most generators increase

their production in the spot market.13

Market power is a concern in many deregulated electricity markets for several

reasons. First, both demand and supply are very inelastic. Demand ultimately comes

from households that pay a fixed price and are thus insensitive to prices. Supply

is inelastic for technological reasons: plants with lower marginal costs are usually

unable to make short term production adjustments. Second, electricity cannot be

stored, so intertemporal arbitrage is not possible. And lastly, electricity is produced

and demanded at particular locations or nodes connected by transmission lines with

limited capacity. When capacity is reached, demand cannot always be satisfied by

the cheapest generator, effectively reducing the number of competitors for each firm.

Consistent with these concerns, findings from previous empirical work show that firms

typically have market power in wholesale electricity markets, even with concentrations

level that would be competitive enough in other markets (Borenstein et al., 2002; Ito

and Reguant, 2016; Ryan, 2014; Fabra and Toro, 2005).

During 2010 and 2011, the period under study, there were 95 generators actively

participating in the MISO energy market.14 The largest single firm’s market share was

just 7%, but together the 10 largest firms held 55% of generation capacity, the largest

15 firms held 70%, and the largest 20 held 77%. Because of the limited capacity of

the transmission lines that transport electricity, the MISO market is split into multiple

local markets in which concentration is higher and firms have more market power than

in the market as a whole.

C Virtual or financial participants

The presence of a forward premium creates opportunities for arbitrage by short

selling in the forward market. Even if the market does not allow explicit arbitrage in

the form of purely financial transactions, firms have incentives to engage in implicit

arbitrage by adjusting their bids when they trade physical energy (Jha and Wolak,

13The argument is similar to the one behind the Coase conjecture (Coase, 1972). After selling
a given quantity in the forward market, a generator has incentives to increase its sales in the spot
market since she will receive a lower price, but it will not affect the price charged in the forward
market. Anticipating this, the generator splits its sales between the forward and the spot market.

1495 had positive sales at least one day during that period.
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2018).15 Because firms are only allowed to arbitrage at nodes where they have plants,

and generators cannot short sell, arbitrage under this circumstances is limited and

generators are still able to exert market power in the forward market.

There are efficiency costs associated with intertemporal price discrimination and

implicit arbitrage. Firms’ production schedules in the forward market depend not only

on their costs, but also on whether they are exerting market power or arbitraging,

which means that they do not pursue pure cost minimization. In order to avoid these

inefficiencies, many deregulated electricity markets have introduced virtual or financial

participants, explicit arbitrageurs who profit from differences between the forward and

the spot market.

The introduction of financial traders to wholesale electricity markets has been

controversial. On the one hand, the forward premium decreased after arbitrageurs

were allowed in the California (Jha and Wolak, 2018) and New York (Saravia, 2003)

markets, leading to a reduction in production costs and emissions (Jha and Wolak,

2018). On the other hand, Birge et al. (2017) find that arbitrage was limited due

to institutional constraints on financial bidding, and that financial bids were used

to unlawfully manipulate the price of a related financial instrument used to hedge

congestion in the MISO market. In fact, one trader has already agreed to pay a 5

million dollars settlement to avoid a trial on this charge.16

Virtual participants have been allowed in the MISO energy market since it first

started operating in 2005. These bidders profit from the differences between the forward

and the spot price. For instance, selling 1 MWh in the forward market yields profits

equal to P forward−P spot because it implicitly requires the purchase of 1MW in the spot

market. In the presence of a forward premium, financial participants have incentives

to sell in the forward market. Under perfect arbitrage, these bids would shift forward

supply up to the spot market level, neutralizing generators’ underbidding and leading

to price convergence.

Birge et al. (2017) show that in 2010 the forward price was significantly higher

than the spot price. There was limited arbitrage because financial participants were

subject to deviation charges that were at least as high as the forward premium. These

fees were the RSG charges imposed on spot purchases described in section B. Virtual

bidders do not sell any physical energy, so a virtual forward sale entails an equal spot

15For instance, a generator could sell more in the forward market than it intends to sell in the spot
market, and then buy the difference in the spot market at a lower price.

16http://www.ferc.gov/enforcement/market-manipulation.asp
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purchase that was subject to RSG charges. The average forward premium was $0.9,

which is the revenue from selling 1MWh in the forward market and buying it in the

spot market. Nonetheless, RSG charges per MWh were $1.8 on average, making the

transaction unprofitable.

On April 2011, the Federal Energy Regulatory Commission (FERC) approved

MISO’s proposal to modify the way RSG were calculated, so that charges were

significantly lowered; they went from $1.8 per MWh to $0.3 per MWh.17 As a

consequence, financial trading significantly increased and the forward premium began

to close. In this paper, I use this exogenous change in virtual trading to study the

effect of arbitrageurs on the competitiveness of the market.

The change in RSG charges did not come as a surprise to market participants,

but instead occurred after a long debate about how to compute RSG charges and

who should be subject to them. A committee of market participants discussed the

issue and even drafted the proposed rule that was eventually submitted by MISO for

FERC approval. The proposal was announced and submitted to FERC on December 1,

2010, and the market immediately started preparing for implementation of the changes,

which they expected to occur in March 2011. MISO began conducting detailed training

sessions on the new calculation in January 2011, and the proposal was finally approved

in April.18

RSG charges acted as transaction costs for financial players, since they were subject

to them for every MWh they sold in the forward market. They were not an entry

barrier, because the entry cost faced by financial trading firms is the cost of becoming

a market participant, which is usually low and not affected by RSG charges.

The next section describes the effect of this regulatory change on the behavior of

the different market participants. As expected, virtual trading increased and price

discrimination by generators decreased after entry barriers for financial traders were

lowered.

17See Appendix B for computation details.
18In MISO, proposals to change market rules are discussed in groups of stakeholders. The change in

RSG charges was reviewed by the Revenue Sufficiency Guarantee Task Force, a group specially created
for this purpose. The minute from their meeting in December 2010 states that training sessions for
all market participants were going to be held in January, while the minute from January 2011 states
they expected the proposal to become effective in March, 2011. These are all available in the MISO
website.
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III Reaction to the regulatory change

A Virtual participants

When RSG charges dropped, profitable arbitrage opportunities appeared. The

expected profit from a virtual supply bid, which is equal to the expected premium

minus RSG charges, became larger than zero after the drop in RSG charges. In fact,

Birge et al. (2017) show that for the first few months after charges were lowered, it

was possible to make a profit using simple rules to predict the sign of the forward

premium. As expected, these opportunities were quickly closed by increased virtual

trading activity.

The top panel of Figure 1 shows the monthly average of the daily volume traded

by virtual bidders. The dashed red line indicates the announcement on December 1,

2010 that the proposal to redesign RSG charges had been submitted to FERC. On

that date, the market started preparing for the change in RSG charges. The solid red

line on April 1, 2011 indicates the date on which the new RSG proposal was actually

implemented. The green line is the monthly virtual trade volume, which increased

after RSG charges were reduced.

Figure 1: Virtual trading over time The green line indicates the monthly average of the daily
volume traded by virtual bidders. The first dashed red line is December 1, 2010, when the proposal
to redesign RSG charges was submitted to FERC. The solid red line on April 1, 2011 indicates the
moment in which the RSG change was implemented.
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In order to confirm that there was a change in virtual activity, I look for a structural
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break in the time series of daily traded virtual volume.19 The standard test for

structural break at a known date is the Chow test, which estimates the parameters

before and after the break separately, and then tests for equality using an F statistic.

As the date of the break is unknown in this case, I compute the F statistic for all

dates in the sample. The maximum value is known as Quandt statistic (Hansen, 2001;

Quandt, 1960). I use the critical values provided by Andrews (1993) and largely reject

the null hypothesis of stable parameter values across the sample.

I follow Bai and Perron (1998) to find the break dates in the time series. The

bottom panel of Figure 1 plots the residual sum of squares for each potential break

date. The minimum is reached on April 9, 2011, with the confidence interval between

April 6, 2011 and April 12, 2011 (Bai and Perron, 1998). This break point confirms the

observation that virtual bidders changed their behavior after RSG costs were reduced.

The blue line in Figure 1 shows the mean traded volume before and after the breakpoint,

indicating that it increased around 40%. This shows that the reduction in RSG charges

indeed attracted more financial trading.

B Generators

On average, generators’ spot sales are positive, i.e. generators produce a larger

quantity of electricity than they schedule in the forward market. This can be observed

in the top panel of Figure 2, which shows in green the average daily spot sales for each

month. There are a few things worth noting in this figure. The first is that the sales

are generally positive, which means that generators, on average, use the spot market

to increase their production.

Secondly, Figure 2 shows that spot sales became smaller when RSG charges were

reduced. This is in line with expectations if generators are exerting market power. As

long as transaction costs for financial participants are high, generators can engage in

intertemporal price discrimination between the forward and spot markets, increasing

the forward premium. Once these costs are lower, virtual traders will arbitrage the

gap between the forward and spot prices, making underbidding by generators less

attractive.

Lastly, in Figure 2 it seems that generators reacted before after the announcement

19These tests have been used in the applied micro literature before by Greenstone and Hanna (2014);
Fabra and Toro (2003). Similar to the spirit of this paper, Fabra and Toro (2003) examine the British
electricity market’s response to a regulatory change and use breakpoint test to determine whether the
response is anticipated, and thus consistent with collusion.
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Figure 2: Spot sales over time The green line indicates the monthly average of the daily
difference between the quantity cleared in the forward and spot markets. The first dashed red line is
December 1, 2010, when the proposal to redesign RSG charges was submitted to FERC. The solid red
line on April 1, 2011 indicates the moment in which the RSG change was actually implemented. The
structural break occurred on January 10, with a confidence interval between January 5 and January
15.
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of the regulatory change (dashed line), but before its implementation (solid line). In

fact, using the same tools described in the previous section, I find that there was a

structural break on January 10, 2011, with a confidence interval between January 5

and January 15. I do not find other breaks that are robust to changing the sample

periods.

The generators’ early reaction to the regulatory change is surprising, since future

financial arbitrage did not restrict generators’ market power in advance. It is possible

that the change in the level of spot sales is due to external factors and not firms’

behavior. To the best of my knowledge, there were no important changes in the market

clearing algorithm or the market structure around these dates. Wind power became

subject to RSG charges in August 2010, and intermittent power sources like wind

became dispatchable -i.e. able be turned on or off by the market operator according

to demand- in July 2011, but it is not clear how this could affect quantities cleared in

the forward and spot market in the observed manner.

Before presenting the model and the empirical strategy that will allow me to better

understand the generators’ behavior, I describe the reaction of demand to the changes

in RSG pricing in the next section.
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C Demand

For generators to be able to increase the forward price by withholding sales in the

forward market, certain conditions have to be true. First, just as with standard price

discrimination, there has to be limited or no arbitrage. As explained above, RSG

charges imposed on virtual supply bids were initially high enough to make arbitrage

unprofitable.

Second, demand has to be less responsive than supply. If demand reacts by shifting

purchases to the spot market, the effect will be the same as that of arbitrage, so

generators will not be able to price discriminate. Moreover, if buyers have market

power, they will withhold purchases in the spot market to lower the forward price

as was observed in California by Borenstein et al. (2008), creating a spot premium.

Although the fact that the forward price is larger than the spot price already suggests

that the stronger market power is on the supply side, this section describes demand

behavior to confirm buyers are not the ones driving the reaction to the regulatory

change.

Figure 3 shows spot purchases in the MISO energy market, which are on average

positive before the regulatory change. That is, buyers generally do not schedule enough

production in the forward market to meet demand and must cover the difference in

the spot market. Although this is consistent with market power on the demand side,

it is also what a price-taker buyer facing a forward premium would do to minimize its

purchasing cost. As for generators, their behavior in the spot market -i.e. whether they

choose to buy or sell- provides information about their market power. A price-taker

seller facing a forward premium would short sell in the forward market, while a

generator exerting market power would reduce forward sales in order to increase the

forward price. It is not as simple to infer market power on the demand side because

with or without market power, energy buyers are better off by withholding purchases

in the forward market. A price-taker buyer wants to buy as little as possible in the

forward market because the price is lower in the spot market. A buyer with market

power restricts its demand in the forward market in order to lower the price. Therefore,

in the presence of a forward premium, purchases in the spot market are expected to

be positive. As shown in Figure 3, this is the case in the MISO energy market.

As Figure 3 shows, buyers were initially withholding purchases in the forward

market, and spot purchases decreased after RSG charges were reduced. As explained

above, not much can be read from this behavior since it can come from both price-takers
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Figure 3: Load cleared in the spot market The green line shows the monthly average of the
daily difference between the quantity cleared in the forward and spot markets. The dashed red line
on December 1, 2010 indicates the announcement of the regulatory change; the solid red line on April
1, 2011, its implementation. The structural break occurred on January 26, with a confidence interval
between January 20 and February.
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or firms with market power. Nonetheless, I find a structural break in the net purchases

time series on January 26, 2011.20. This indicates that demand reacted before the

change in RSG charges was actually implemented, but after generators did, suggesting

demand responded to the generators’ reaction and not directly to the regulatory change.

Purchasers’ late response, as well as the fact that the forward premium was positive

both before and after the regulatory change, which is advantageous for sellers, indicates

that the premium was being driven by generators rather than purchasers. This may

seem surprising because utilities are large companies and are generally expected to have

considerable market power. There are a few reasons why demand may not have reacted

as much as would be expected. First, many utilities can pass increased costs directly

to final consumers, which makes them price insensitive. Second, MISO and the market

monitor pay special attention to demand underscheduling. If utilities exerted too much

market power by declining to purchase electricity in the overpriced forward market,

they could be sanctioned by the authorities. Third, spot purchases are subject to RSG

charges, which makes spot sales expensive for buyers. Lastly, demand may be hedged

as there are financial instruments available to hedge the risk of spot price volatility,

particularly because hedging costs are generally among the costs that regulated utilities

20 The confidence interval for the break date is between January 20 and February 2.
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are allowed to recover.21

D The market’s reaction to the regulatory change

This section has so far shown how the different participants in the energy

market reacted to the regulatory change that reduced transaction costs for financial

participants. From the previous analysis, it appears that financial traders reacted

exactly as expected to the forward premium created by generators’ market power.

Generators, in turn, exerted less market power, which is consistent with increased

financial arbitrage making price discrimination more difficult. Purchasers also reduced

their net spot purchases as generators exerted less market power. These are the

expected reactions from market participants in a static setting.

Although the way in which participants reacted to the regulatory change was

expected, the timing of their reactions was not. The fact that generators reacted

months before the implementation of the regulatory change does not fit a static model of

firm behavior in the energy market. There are two potential causes for this unexpected

timing. The first is that unobserved market conditions changed at the same time as the

regulatory change, and generators were actually responding to that unknown change.

The second alternative is that market conditions remained the same, but the energy

market is better understood using a dynamic model in which future changes have effects

on present behavior. I will use a structural analysis to distinguish between these two

cases.

IV Data

Most of the empirical work in this paper is done using an hourly panel that is

publicly available on MISO’s website. It contains each participant’s bid, as well as the

corresponding cleared quantity and price for each hour between 2010 and 2011. The

panel has around 100 millions observations, 20 millions from generators’ bids, and 80

millions from demand and financial participants’ bids.

Demand bids may specify only a quantity (price-taker), or a step function with up

to 10 pairs of price and quantity (price-sensitive). Only around 15% of demand bids

21Regulated utilities are allowed to earn a certain rate of return on capital. To calculate the tariffs
that they can charge, estimate costs are subtracted from revenues. Hedging costs are among the costs
they can include here.
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are price-sensitive, while the remainder simply specify a quantity that the purchaser

is willing to buy at any price. Purchasers only participate in the forward market, but

MISO publishes aggregate hourly data on total quantities cleared by demand in the

forward and spot markets. Table 11 presents summary statistics on demand bids. Most

bids are price-takers, with price-sensitive bids being placed by fewer firms and at fewer

nodes.

Generators may submit price-taker or price-sensitive bids as well, and they also

have the option of submitting an increasing piecewise linear function instead of a

step function. In my sample, 70% of generator bids and 82% of the megawatts hour

cleared by generators correspond to piecewise linear bids. I discretize these bids as step

functions in intervals of 0.1 MWh in my analysis, which results in residual demands with

many steps. Supply bids also include information about the technological restrictions

of each plant, such as the minimum/maximum number of hours it needs to operate,

ramping times and costs, and startup costs. I do not observe these variables, as MISO

only publishes the bid, cleared price and quantity, maximum and minimum production

levels under normal and emergency conditions, and the amount a generator sells as a

price taker.

The data identify buyers who place bids at multiple nodes, and sellers who own

multiple units, but it is not possible to know which participants are vertically integrated

utilities, nor whether a generator is also using virtual bids to hedge or arbitrage.

Summary statistics on bids are presented in Table 12 for virtual traders, and Tables 3

and 4 for supply bids in the forward and spot markets, respectively. Notice that while

around 90% of physical demand bids are cleared in the forward, only around 10% of

virtual bids and 50% of physical supply bids are cleared.

Additionally, MISO posts the clearing prices at each pricing node in the market,

information I use to match bids, which are not reported by node, to the corresponding

nodes. In my data, a node is just an identifier number and a name where one or more

participants submit bids. Each node’s geographical location is not disclosed.

I use data on prices and volumes of traded Intercontinental Exchange (ICE) futures

for the Indiana hub during peak hours. These data are available on the EIA website.

Data on oil, coal, and natural gas prices were obtained from the Federal Reserve Bank

of St. Louis. They correspond to daily crude oil prices (West Texas Intermediate -

Cushing, Oklahoma), the Henry Hub natural gas spot price, and coal prices in two coal

regions (Illinois Basin and Powder River Basin).
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V Model

A Static Model

In this section I consider the decision of a generator that sells its production in a

sequential auction. I assume firms decide simultaneously how much to produce and

how to split sales between the forward and spot markets.

My model modifies that of Hortacsu and Puller (2008) by introducing sequential

markets instead of focusing on the spot market. Additionally, I account for the limited

capacity of electrical transmission lines by assuming that both the forward and spot

markets are segmented into M independent markets. This is a simplifying assumption,

since in practice any node can potentially affect any other at a given moment, depending

on the level of congestion and the characteristics of the transmission network. I make

this assumption for two reasons. First, it makes the model tractable by allowing each

market to clear independently. Second, it matches the empirical strategy that I follow

to deal with congestion and nodal pricing, which in turn matches the observed data

fairly well (see Section A). Empirical papers on wholesale electricity markets have

avoided this problem by studying markets in which congestion is adjusted for in a

separate market (Ito and Reguant, 2016; Reguant, 2014), looked at hours without

congestion (Hortacsu and Puller, 2008), or studied zonal markets for which congestion

data are available (Ryan, 2014). Jha and Wolak (2018) study the effect of financial

traders in California, where prices are nodal as well, but do not fit a structural model

because CAISO does not publish bid data. To the best of my knowledge, this is the

first paper in the economics literature to use a structural model to analyze a nodal

market.

Demand

Demand for each market has the same structure in the forward and spot markets.

I assume demand in each market m and period t is given by

Dm,t(p) = dm,t(p) + εm,t (1)

where dm,t(p) is a non-stochastic component and ε is a demand shock. I will omit the

period subindexes t because I am using a static model, and therefore all equations are

the same for every period and there are no connections between periods.

For the spot market, this is a very natural assumption since demand comes from
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households, who mostly pay a fixed rate per MW and are thus price insensitive. In

fact, there are no demand-side bids in the spot market, as enough generation is cleared

to cover MISO’s short-term load forecast for each hour. For the forward market, this

equation is a simplification, since demand is expressed by bids and can be strategic.

Nonetheless, under the same assumptions used for generators, optimality conditions

for generators remained unchanged when demand is strategic.22 This extended model

is presented in Appendix C.

Supply

Generators usually use financial contracts to hedge risk. These contracts specify

a certain quantity x and a price h. If the market clearing price p̃ is greater than

the contract price, the firm has to pay (p̃ − h)x to the buyer of the contract; if the

contract price exceeds the clearing price, the firm is payed (p̃ − h)x by the buyer of

the contract (Green, 1999; Wolak, 2000, 2003a). They are settled in terms of the

differences between the prices because these contracts are purely financial and do not

require physical delivery of energy. It is important to account for forward price hedging

contracts in the analysis of generators’ decisions, because a firm’s financial position

determines whether it has incentives to increase or decrease the forward price.23

Often generators hold physical contracts in addition to financial ones. These specify

a price and a quantity as well, but in this case energy is delivered to the buyer, who

pays the price specified in the contract. These contracts can be treated as sunk costs

because they are negotiated in advance and therefore do not affect the generator’s

decision about how to split sales between the forward and the spot market. Physical

contracts affect costs if production costs are not linear, but even in such cases we can

simply assume that C(0) in the model is equal to the cost of producing the quantity

specified in the physical contract. For this reason, physical contracts are not explicitly

included in the model.

Generators decide how much to produce, and how to split sales between the forward

and spot markets. Each generator i submits a schedule Qi(p
F ) to the forward market

auction, and a schedule Si(p
S) to the spot market auction. These schedules specify how

much a generator is willing to sell at each price. In this section, the quantity cleared

in the spot market when the clearing price is p̃S, Si(p̃
S), is the total quantity produced

22The residual demand they face will change, but not the condition for the optimality of the
generator’s bid.

23 See Wolak (2000) for the importance of contracts on incentives to exert market power.
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by generator i, not the difference between total production and the quantity scheduled

in the forward market. Each generator’s strategies Qi(p
F , xF ) and Si(p

S, xS) depend

on the firm’s contract positions, since these positions affect the firm’s preferences for

sales in the forward or spot market.

Each generator i has a cost function Ci(q), where q is the quantity cleared in the

spot market, i.e. the quantity actually produced. I assume generators know each

others’ cost functions. This is not a strong assumption since the same firms interact

with each other over long periods, and the only information required to compute costs

are the technical characteristics of the plant, which do not change over time, and fuel

prices, which are easy to observe. Forward hedging positions, on the other hand, are

harder to observe because they change over time for each firm, which is why I assume

that the hedging positions are private information.

Market clearing

In the forward market, the market clearing price p̄ in market m is determined by

the forward market clearing condition

∑
j∈m

Qj(p̄) = dm(p̄) + εm (2)

Market clearing in the spot market is the same; the clearing price is determined by

balancing demand and supply:
∑
S(p̄S) = d(p̄S) + ε.

Generator’s uncertainty

Each generator i faces uncertainty over the clearing prices p̃F and p̃S, because

she does not know what clearing price will result from submitting different schedules.

This uncertainty comes from two sources. First, the demand function has a stochastic

component that shifts its level unpredictably. Second, a generator does not know other

generators’ bids. Although a generator knows her competitors’ cost functions, she does

not know their financial positions with respect to the forward and spot prices. In other

words, the generator is uncertain about the residual demand she faces, because residual

demand depends on other firms’ bidding behavior.24

Bidder i’s uncertainty is represented by F (x−i, ε|xi), the joint distribution of other

firms’ contract positions and the demand shock. It is conditional on i’s own position

24i.e. the market demand minus the schedules submitted by all other generators in the market.
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because i’s position may contain information about others’ contracts. Correlation

between the demand shock and the contract positions of the competitors is allowed,

but note that this remains a private value setting since i’s profits do not depend on

its competitors’ contracts (Hortacsu and Puller, 2008). To distinguish between the

forward and the spot market, I define F F (xF−i, ε
F |xFi ) and F S(xS−i, ε

S|xSi ).

Following Hortacsu and Puller (2008), I define a probability measure over the

realizations of the forward clearing price from the perspective of firm i, conditional

on i’s private information about its contract position xFi , i’s submission of a schedule

Q̂i(p, x
F
i ), and her competitors playing their equilibrium strategies {Qj(p, x

F
j ), j 6= i}.

H(p, Q̂i(p);x
F
i ) ≡ Pr(p̃F ≤ p | xFi , Q̂i) (3)

H(p, Q̂i(p);x
F
i ) represents the uncertainty over the forward market clearing price

faced by firm i. It is the probability, given i ’s contract position, that generator i

will be paid a price p when she sells a quantity Q̂i(p) and all other generators submit

the equilibrium offer functions. The event p̃F ≤ p is equivalent to the event of excess

supply at price p. Using the market clearing condition in Equation 2, H can be written

as

H(p, Q̂(p);xFi ) = Pr
(∑
j 6=i

Qj(p, x
F
i ) + Q̂i(p) ≥ DF (p)|xFi , Q̂

)
=

∫
xF−i×εF

1
{∑
j 6=i

Qj(p, x
F
i ) + Q̂i(p) ≥ DF (p)

}
dFF (xF−i, ε

F |xFi )
(4)

Equivalently, generator i’s uncertainty over the clearing price in the spot market can

be represented by the probability measure G, defined as

G(p, Ŝi(p);x
S
i ) ≡ Pr

(
p̃S ≤ p | xSi , Ŝi

)
= Pr

(∑
j 6=i

Sj(p, x
S
i ) + Ŝi(p) ≥ DS(p)|xSi , Ŝ

)
=

∫
xS−i×εS

1
{∑
j 6=i

Sj(p, x
S
i ) + Ŝi(p) ≥ DS(p)

}
dFS(xS−i, ε

S |xSi )

(5)
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The generator’s problem

At clearing prices p̃F and p̃S in the forward and spot market, respectively, the

ex-post profits for generator i are given by

Πi(Q̃, S̃) = p̃F Q̃+ p̃S [S −Q]− C(S̃)− [p̃F − hF ]xF − [p̃S − hS ]xS (6)

where Q̃ is Q(p̃F , xF ) and S̃ is S(p̃S, xS) (the arguments are omitted for clarity). The

spot quantity is defined as total sales, i.e. the total quantity the generator commits to

produce. Note that this is a different definition than the one used in previous sections,

where I used “spot quantity” to refer to the quantity in excess of that sales in the

forward market.25 The last two terms of the profits come from the financial position

held by the generator in the forward and spot markets. As explained above, these are

contracts for differences so a firm gets profits when the market price is lower than the

contracted price, and losses if the market price is larger.

A firm chooses schedules Qi(p
F , xFi ) for the forward market and Si(p

S, xSi ) for

the spot market so as to maximize its expected profits. Using the clearing price

distributions defined above, the generator’s problem is

max
Qi,Si

∫ p

p

∫ p

p
U
(

Πi(Qi, Si)
)
dH(pF , Q(pF );xFi ) dG(pS , Si(p

S);xSi ) (7)

where Qi = Qi(p
F , xFi ) and Si = S(pS, xSi ).

The Euler-Lagrange conditions for an interior solution are as follows (proof in

Appendix D). Subindexes i are omitted from now on unless necessary to avoid

ambiguities.

pF − pS = − [Q∗(pF )− xF ]
HQ

Hp
(8)

pS − c′ = − [S∗(pS)−Q∗(pF )− xS ]
GS
Gp

(9)

where HQ = dH
dQ

, Hp = dH
dp

, GS = dG
dS

, and Gp = dS
dp

. Hp is the density of the clearing

price in the forward market when all firms submit optimal schedules. HQ is the change

in the price distribution caused by a change in the bid submitted by i, which can be

interpreted as a measure of i’s market power. GS andGp have equivalent interpretations

25In practice, the spot market is cleared for total production, as in this section. Generators are
payed the spot price only for the difference between the quantity scheduled in the forward market and
sold in the spot market. This is the sense in which the forward market is financial.
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in the spot market.

Because the forward market is purely financial, generators’ sales there have no

physical cost. Nonetheless, the spot price is the opportunity cost faced by a generator

willing to sell in the forward market, since each unit can be sold in either the spot

or the forward market. This becomes clear in Equation 8, which is similar to an

oligopolist’s first order condition in which the spot price replaces the marginal cost.

The forward premium is then a markup with respect to this opportunity cost. Whether

the generator wants to have a positive or negative markup will depend on her hedging

contract position, because this determines whether the generator is a net seller or a

net buyer in the forward market.

A similar trade-off is present in the spot market. The optimal markup for a

generator depends on whether she is a net seller or buyer in the spot market, which

depends on both her contract position in the spot market and her forward sales.

Additionally, the importance of this position is weighted by the firm’s ability to affect

prices with bids, GS.

Hortacsu and Puller (2008) present a separability condition that allows the

optimality conditions to be simplified. Intuitively, the condition is that financial

contracts shift the optimal bid, but do not change its slope. Formally, it requires

schedules to be additively separable in the two sources of uncertainty, which holds

when they can be written as Qi(p
F , xFi ) = αi(p

F ) + βi(x
F
i ). Figure 6 shows some bids

that seem to satisfy this assumption, as they are parallel shifts of each other. Section

F presents some empirical evidence backing up this assumption.

If bids are additively separable, the optimality conditions can be written as directly

as a function of the residual demand faced by each firm (see Appendix E for a proof)

pF − pS = −[Q∗(pF )− xF ]
1

R′(pF )
(10)

pS − c′ = −[S∗(pS)−Q∗(pF )− xS ]
1

R′(pS)
(11)

Using the separability assumption to write the optimality conditions in terms of the

residual demand makes it much easier to obtain its empirical counterpart. The residual

demand within a market can be constructed from the bids, while the distribution of

prices is harder to compute.

Equations 10 and 11 show the conditions that the optimal schedule submitted

by a generator needs to satisfy. The optimal markup will depend both on the forward
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hedging contract position held by the firm, and on the elasticity of the residual demand

it faces. Therefore, observing a smaller difference between the quantities sold in the

spot and forward market is not enough to conclude that generators are behaving more

competitively. If, after controlling for these factors, the evidence still indicates that

generators moved their bidding behavior away from the optimal bids determined by the

model before the regulatory change was implemented, then there are dynamic elements

in play and the market is not well represented using a static model.

B Best response deviation

Define the Best Response Deviation (BRD) as follows:

BRD ≡ pF − pS − [Q(pF )− xF ]
1

|R′(pF )|
(12)

The BRD is the difference between the two sides of the optimality condition described

by Equation 10, which implicitly defines the static best response function for a firm.

The sign of the BRD can be used to test whether firms are in a static equilibrium, and to

distinguish between two different models that can rationalize the observed generators’

behavior: tacit collusion and entry deterrence.

If the static model is a good representation of the firms’ behavior, BRD = 0 because

the bids satisfy the optimality condition in Equation 10. If firms are in a collusive

equilibrium, they will act as if the elasticity of the residual demand were smaller than

it is, i.e. as if the market were less competitive than it is. In that case, BRD > 0

because firms will choose a markup larger than what is best given the elasticity of

demand they face. To see this, Equation 10 can be rewritten as follows

pF − pS

pF
=
Q− xF

Q

1

η
(13)

where Q and η are functions of pF .

Finally, if firms’ behavior can be explained by entry deterrence, firms will act as if

the market were more competitive than it actually is. This means they will choose a

smaller markup than the elasticity of their residual demand implies, and BRD < 0.

The different hypotheses have different predictions regarding the evolution of the

BRD over time as well. If the market is in a static game equilibrium, the BRD

should not change over time. If this is the case, the observed anticipatory reaction

of the generators would have been caused by changes in the contract positions or the
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demand, and the firms would have been playing their static best response to the market

conditions they faced at the moment.

If firms were in a collusive equilibrium that broke with the announcement of

increased competition in the future, the BRD would be initially positive, and then

move toward zero after the announcement of the regulatory change. How close to

zero it ends up depends on financial bidders’ effectiveness in arbitraging the forward

premium. The speed of the adjustment depends on the pace at which the collusive

equilibrium breaks. The adjustment could happen all at once when the market learns

about the future change, or gradually, beginning at the time of the announcement and

finishing when financial trading increases.

A tacit collusive equilibrium does not need to be an explicit agreement in which

firms sit around a table and agree upon each group member’s bid. The equilibrium

could take the form of a simple rule of thumb for bids in the forward and spot markets.

Firms do, however, have some contact, since the large ones are often MISO stakeholders.

These stakeholder firms meet periodically to discuss market design and draft joint

proposals for market reform. The likelihood that large firms follow similar strategies is

also increased because many of these large firms hire outside firms to do their trading.

Furthermore, any collusion between these large firms could have a significant impact

on prices, since production is fairly concentrated, with 20% of firms controlling 80% of

generation capacity.

Finally, under entry deterrence, the BRD is expected to start at zero before the

announcement, become negative when the market learns about future competition, and

increase towards zero when generators feel safe from the threat of entry. It is not clear

when this last step would happen, as financial participants can increase their trading

as soon as generators open the gap enough to make virtual trading profitable.

VI Empirical Strategy

In this section, I describe my method for estimating each of component of the

best response deviation (BRD) calculation, which is described in Equation 12. These

elements are (1) the elasticity of the residual demand, (2) the expected spot price, and

(3) the forward contract position.
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A Residual demand and its elasticity

In principle, the residual demand for each generator could be computed directly

from the data by just adding up the demand bids and subtracting the supply bids.

However, this is not always a close approximation in a market with nodal pricing.

When transmission lines are at capacity, the set of generators and physical buyers that

enter a given generator’s residual demand is a subset of the MISO market. Determining

that subset is therefore crucial to correct computation of the residual demand.

Market definition

I define markets using a machine learning technique called hierarchical clustering.

In general, clustering techniques group elements of a set into groups or clusters, based

on a predefined notion of similarity. The number of clusters is generally determined

exogenously.

In hierarchical clustering, each element is initially its own cluster.26 The first step

is to merge the two most similar objects into one cluster, according to the similarity

measure. In each of the following steps, the two most similar elements or clusters are

joined into one cluster. There are several ways to compute the similarity between two

clusters; I use the distance between the centroids of the cluster.27

In my analysis, I use the price correlation between nodes as the similarity measure

for the clustering algorithm, since two nodes that belong to the same market should

have the same price. Prices can differ across nodes because of congestion and losses,

so both need to move together for two nodes to be in the same market. Although

in principle it is possible that two nodes that are geographically far from each other

have correlated prices, this would only happen if both the congestion and line loss

components coincide. Figure 4 shows a heat map of prices in MISO in two different

moments. Nonadjacent areas do not seem to have the same color in the two maps,

making high price correlation between geographically separate nodes unlikely.28

The main source of uncertainty in this problem are physical contracts among market

participants, which do not affect market clearing prices or quantities, but do use the

transmission network. Therefore, they affect flows and network congestion for a given

26This is the agglomerative algorithm. In the divisive algorithm, all elements start together in one
single cluster, and each step splits the most different elements.

27The fit is similar or worse using alternative measures like complete or single linkage.
28I cannot verify that only prices from geographically adjacent areas are correlated because I do

not observe the nodes’ geographical location. This is why I present suggestive evidence only.

28



set of observed bids. For this reason, I run the market-definition algorithm over periods

in which firms’ contractual obligations remain constant. I define markets separately

for each month, year, and hour of the day. For instance, I take the prices for all nodes

during hour 5 of September 2011 and compute the correlation matrix. I then use these

correlation data to define markets for the hour between 5 a.m. and 6 a.m. of September

2011.29

The hierarchical clustering algorithm returns a set of potential market definitions,

one for each step of the algorithm. For instance, if there are 5 nodes there are 5

potential market definitions: There could be only one market {1,2,3,4,5}, or three

markets {1},{2},{3,4,5}, etc. Generally, there is no appropriate measure of fit for the

clusters, and it is not clear which number of separate markets best represents the data.

To remedy this uncertainty, I use bid data to test the ex-post fit of alternative market

definitions. To do this, I take a market definition (e.g. 3 markets) and clear each of

the market clusters by adding up the demand and supply bids submitted at the nodes

belonging to each cluster. For instance, to evaluate the market definition with three

clusters, I clear market 1 by crossing aggregate demand and supply bids at node 1.

To clear market 3 I add up demand and supply bids from nodes 3, 4, and 5 to obtain

aggregate supply and demand, and then clear the market. This process results in a

simulated clearing price and quantity for each market under each market definition,

which can be compared to the clearing prices and quantities observed in the data.

The difference between the observed and simulated clearing prices for each market

definition is then regressed on a constant to test the null hypothesis that this difference

is zero. This is done with both an OLS and a quantile regression for the median.30

All market definitions for which the null is rejected are discarded. The rest are kept,

even if there is more than one for each hour, because the different definitions are used

to run robustness checks. The mean difference in prices is below 10% for all hours,

and below 5% for the majority of them. Because the inelasticity of demand makes

quantities much less variable than prices, I use only price deviations when selecting

market definitions.

For some hours and months, the difference between the observed and simulated

cleared prices is statistically different from zero for all market definitions. When this

29I also tried accounting for day of the week effects, caused by contracts to deliver electricity during
weekdays, for instance. I fed the clustering algorithm the residuals of a regression of prices on day of
the week dummies. This did not improve the fit.

30If a market does not clear in the simulation, because demand’s maximum willingness to pay is
smaller than supply’s minimum price, I assume the cleared price was 0.
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is the case, I exclude that hour from the sample. This happens with for at least one

month in hours 1, 3, 4, 12, 16, 22, and 23.

Figure 5 shows an example market obtained using this method. For the hour

between 6a.m. and 7a.m. of January 2011, the best fit was obtained defining 17

markets. The plot shows the simulated demand and supply, as well as the clearing

prices and quantities, for market 2. As it can be observed, the simulated price and

quantity match the observed ones very closely. In this market, there are 37 buyers

and 7 sellers. Although it seems not so concentrated, the largest seller controls 50% of

the generating capacity, and the next two 20% each. Additionally, this highlights the

importance of market definitions, since these firms would not be described as having

market power if the market included every firm in the MISO footprint.

This method to define markets is an approximation, because in reality all nodes in

the MISO market can affect each other’s price. The fact that the simulated clearing

price is, on average, not far from the observed one indicates that the ex-post fit of these

definitions is good. As long as market conditions remain constant within the month,

these definitions can also be used ex-ante to represent generators’ rational beliefs about

the residual demand they will face.31

Using the generators’ physical locations to group nodes into markets may appear

to be a simpler way to define markets. However, MISO does not include generators’

locations in the dataset because this information is considered a matter of national

security. Even if I could obtain location information, it is not possible to infer which

firms compete with each other without having more information about the transmission

network’s capacity. As Figure 4 shows, neighbor nodes may have very different prices

and thus, belong to different markets. Finally, even if I had all of the relevant

data, I would need to solve a complex optimization problem multiple times for each

generator in order to estimate residual demand. This process would be computationally

demanding, and most likely far from what firms actually do when they make bidding

decisions.

Zheng (2014) also uses clustering tools to define markets in her estimation of

an entry game between discount retailers. She splits the market into independent

31An alternative way to understand the generators’ problem is to think they face a distribution of
potential markets in which they may be competing each day, where market means group of competitors
or residual demand. My exercise allows to compute the empirical distribution of markets by assuming
the realization is the market definition with the lowest deviation from observed cleared prices and
quantities in the data, and then use this distribution to estimate the generators’ best response. This
is something I am planning to do in future research.
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submarkets to lower the computational burden and make the estimation of the model

possible. In my case, the richness of the electricity dataset allows me to define markets

and a measure of fit that do not depend on the model of firm behavior.

Residual demand and its elasticity

Because of the richness of the data, market definitions are all is needed to obtain

the residual demand faced by each firm. Since I observe every demand and supply bid

submitted, I can construct the residual demand faced by each firm simply by adding

up demand bids and subtracting the competitors’ supply bids. A residual demand is

defined for each firm in each market, which is assumed to be the information that each

firm uses to make decisions.32

Seventy-five percent of the bids and 82% of the megawatts cleared by generators

are to piecewise linear bids, while the rest are step functions. I convert these piecewise

linear bids into step functions by splitting them into 0.1 MW increments. As a

consequence, residual demand is expressed in step functions with very small steps,

which the derivative to be computed by calculating the difference between one step

and the next and dividing it by the size of the step. I also fit a cubic spline to the

resulting residual demand, and take the derivative to compute the elasticity.

B Expected spot price

Although the optimality condition for the bid in the forward market in Equation 10

is pointwise optimal, and it is therefore written in terms of P S instead of the expected

value of P S, for the sake of robustness I compute the value of the contracts and estimate

the best response deviation (BRD) using the expected value of the spot price.

I compute the expected spot price at each node assuming rational expectations:

generators are forward-looking and use all available information to predict the spot

price. To estimate the expected value I run the following regression with data from

the prior month

pS = α+ β1f
S
p + β2f

S
q + β3p

S
lag + β4p

F
lag + ε (14)

32This assumes that decisions are taken independently by a same company in different markets.
Although it seems a strong assumption, given that markets are independent there would not be any
gain from making the decisions jointly.
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where fSp is the price and fSq the traded volume of the futures for the Indiana hub

in peak hours traded in the Intercontinental Exchange (ICE). These are spot price

futures traded one day before the underlying production date, so their prices are almost

identical to the forward price. pSlag and pFlag indicate the lags of the spot and forward

price, respectively. The lags used are one, two, and three days before for the same

hour and the previous one, plus the price in the previous 12 hours. The same lags are

used for the forward and spot prices. I estimate the coefficients of Equation 14 using

data for the month preceding t, the day for which I want to predict the price. Then I

predict the spot price for day t using data on day t− 2, as bids are submitted on day

t− 1, while markets for that day are still clearing.

Table 5 describes the difference between rational expectations and the observed

spot price. Although the predictions are not unbiased, on average they are not too

far from the spot price. Note, also, that the estimated expected spot prices are much

closer to the spot price than the forward price.

C Hedging contracts

I back out the hedging contract position held by each generator from the optimality

condition in Equation 8, as in Hortacsu and Puller (2008). I rewrite the equation as

follows for ease of explanation

pF − pS = −[Q∗(pF )− xF ]
HQ

Hp

The optimal schedule for the forward market is such that when the forward and spot

prices are the same, the total quantity offered by each generator in the forward market

equals its forward contract quantity, i.e. Q(pS) = xF . From this equation, I obtain

the contract position for each generator in each market. Although this is a condition

for pointwise optimality, for robustness I back out the forward contract positions using

the expectation of the spot price computed as explained in the previous section.

The forward hedging contract position can be correctly backed out when the

optimality condition holds, i.e. under the null hypothesis of static Nash equilibrium.

As the hedging positions are correct under the null, the test is valid.
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D Computation and analysis of the best response deviation

(BRD)

The best response deviation is defined in Equation 12 as the difference between the

two sides of the optimality condition for the forward schedule submitted by a generator.

I rewrite it here to make exposition easier:

BRD = pF − pS − [Q(pF )− xF ]
1

|R′(pF )|
The previous sections have shown how to compute each of the components of the BRD:

the forward hedging position, the derivative of the residual demand, and the expected

spot price. Each of these elements is obtained separately for each hour, and both the

residual demand and hedging position can be obtained for each individual generator.

As there are many nodes in each market, each with a potentially different clearing price,

I define the market price as the quantity-weighted average. With all these elements,

I can build a panel in which I observe the BRD for each generator in each hour and

market in which she was active.

To analyze the evolution of the BRD over time, I define three time periods according

to market events related to the change in RSG charges. These periods are the following:

• Before: the four months prior to December 1, 2010. On that date, MISO

announced that it submitted a proposal to FERC for the redesign of RSG charge

and the market began to prepare for the expected implementation of the proposal.

The before period therefore provides data about baseline market conditions.33

• Transition: the four months between December 1, 2010 and April 1, 2011, the

date on which the change was implemented. During this period, the market knew

the regulatory change was likely to occur, but it had not yet been implemented.

• After: the four months between April 1, 2011 and July 31, 2011. This period

represents the first four months after the RSG charges were lowered. There

were two major events in July 2011: (1) renewable plants became dispatchable,

meaning they could be started and stopped by the market operator according

to demand like any other plant, and (2) a large producer firm left MISO to join

33Training sessions to explain market participants how these costs were going to be computed started
in January. A group of market participants was in charge of the redesign proposal. In January, they
wrote they expected it to be implemented on March, 2011.
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the PJM Interconnection, which serves a market adjacent to MISO’s. The latter

event changed the market structure because the firm’s transmission lines were

transferred to PJM as well. For this reason, I add a dummy for July 2011 to the

regressions.

As a robustness check, I use a 9 months sample that defines the three periods based

on the dates of the structural changes in firms’ behavior. I.e. the three periods are

October to December, January to March, and April to June.

I examine the evolution over time of the best response deviation running the

following regression of the BRD on the time periods defined above:

BRDt = α0before + α1interim + α2after + July 2011 + εt (15)

where BRDt is the mean best response deviation for each hour and market, weighted

by the size of the firm, defined as the maximum quantity sold during that month.

The main specification assumes rational expectations to compute the expected

spot price, computes the elasticity using a spline, discarding observations for which

the elasticity is positive. In order to avoid effects from monthly and hourly market

fluctuations, I regress the BRD on month and hour dummies using data on 2010 and

2011. I then use the residual as the main dependent variable, and add the mean of the

month fixed effects to get a more accurate level. I also add the number of generators

in a market and the HHI (Herfindahl-Hirschman Index) as controls to understand how

the BRD is affected by market structure.

My sample does not include peakers, which are fast responding generators typically

used to cover last minute increases in demand. Therefore, they are very likely

to produce when demand in the spot market exceeds production scheduled in the

forward market. Including them in the analysis may add effects coming from technical

characteristics instead of from firm behavior. Furthermore, the BRD estimation

produce a few extreme values that have a disproportionate effect on the results. For

this reason, I remove the top and bottom 1% of my observations.

As I have a different BRD for each market definition, and more than one market

definition for some hours, I use the market definitions that are most prevalent for each

hour. That is, I count the number of months for which each market definition is a good

fit, and for each month select the one with the highest number.
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E Market power in the spot market

Although financial participants decrease generators’ market power in the forward

market, because they cannot intertemporally price discriminate, they do not eliminate

it altogether. Rather, firms retain the ability to withhold production in the spot

market in order to drive up the spot price. This is analogous to an instance where

increased arbitrage forces a monopolist to stop price discriminating between two sets

of consumers. Just as the monopolist’s new uniform price will be higher than the

original price in the low-demand market, electricity generators will use their market

power to raise spot prices after arbitrage decreases the forward premium.

I examine the effect of increased arbitrage on market power looking at firms’

spot-price markups. I back out the spot markup for each firm from the optimality

condition in Equation 11. I assume that firms’ hedging position in the spot market is

0, because firms generally hedge with respect to the forward market, since that is where

they sell the bulk of their production. For expositional clarity, I rewrite Equation 11

here for the case without hedging

markup = pS − c′ = −[S∗(pS)−Q∗(pF )]
1

R′(pS)

I estimate the markup in the spot market from the right hand side of this equation.

I observe the cleared quantities in the forward and spot markets, and estimate the

residual demand as I do for the forward market. For consistency, I use the same

market definitions as in the forward market. I then run a regression of the quantity

weighted average markup for each market and hour on the same time period dummies

used in the BRD analysis. The next section describes the results.

Notice that the output from this estimation is the markup with respect to the firm’s

opportunity, which is not necessarily equal to actual production cost.34 Therefore, I

cannot quantify the change in production costs using this mechanism. Nevertheless,

this equation is sufficient to determine firms’ market power, since the firms use marginal

opportunity cost, rather than physical cost, to make their bidding decisions.

34For instance, hydro plants decide when to sell based on the opportunity cost of using their
reserves, the actual cost of production being zero. Additionally, my exercise does not account for
complementarities across hours, which also move opportunity costs away from production costs.
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VII Results

A Market definitions

Table 1 presents summary statistics from the markets defined using hierarchical

clustering and selected by matching clearing prices. MISO is split into several markets,

typically with one large market and many smaller ones, which explains the low mean

and the high maximum number of firms and MWhs sold, as well the large number of

markets. Concentration is not too low and there are even some monopolies, a much less

competitive market structure than what would result from analyzing MISO as a single

market. Notice that the market is never best described as a single market, since the

minimum number of markets is three, which underscores the importance of defining

separate markets instead of assuming a single one.

Table 1: Markets summary statistics

Statistic Mean St. Dev. Min Median Max

# mkts 31 13 3 35 49
# of f traders 9 9 0 7 57
# of buyers 5 17 0 0 105
# of sellers 7 17 1 2 111
HHI sellers 0.4 0.4 0.0 0.1 1.0
MWh sold 3,094 10,909 0 109 87,747

B Best response deviation (BRD)

Results from the BRD regressions are presented in Table 2 and are consistent across

the three first specifications: main specification, 9 months sample, and controlling for

HHI and number of producers. The BRD was positive in the initial “before” period,

went down in the interim period, and stayed low after financial trading increased.

This means that firms initially exerted more market power than they had in a static

Nash sense, and moved closer to a behavior consistent with static Nash between the

announcement and the implementation of the policy change that reduced transaction

costs for financial traders. This is consistent with a tacit collusive agreement that
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breaks as soon as firms learn they will not be able to sustain it in the future.35

Table 2 also presents results from testing the hypothesis that the interim and

after coefficients are the same, as well as that before and after are the same, which

is equivalent to the BRD going to zero and therefore behavior being consistent

with a static Nash equilibrium. My findings indicate that the full adjustment in

generators’ behavior took place before financial participants effectively increased their

activity, which is again consistent with a tacit collusive equilibrium unraveling with

the announcement of an end period.

Table 2: Best response deviation analysis Results from regressing the BRD on time period
dummies using data between August 2010 and July 2011. The BRD is computed as the mean for each
hour and market, weighted by the size of the firm. The top and bottom 1% of the sample are removed
to avoid extreme values. I remove month and hour averages by defining the dependent variable as the
residual from a regression of the forward premium on monthly and hourly dummies using 2 years of
data, then I add the mean fitted value. Robust standard errors reported.

Main 9 months Controls West No west

(1) (2) (3) (4) (5)

Interim −0.47∗∗∗ −0.76∗∗∗ −0.45∗∗∗ −0.85∗∗∗ 0.02
(0.15) (0.15) (0.15) (0.16) (0.18)

After −0.70∗∗∗ −0.82∗∗∗ −0.64∗∗∗ −0.92∗∗∗ −0.26
(0.16) (0.16) (0.16) (0.18) (0.20)

hhi −1.88∗∗

(0.89)
Market size −0.17∗∗∗

(0.03)
July 2011 2.09∗∗∗ 2.11∗∗∗ 2.39∗∗∗ 1.98∗∗∗

(0.24) (0.24) (0.26) (0.37)
Market size×hhi 0.293∗∗

(0.14)
Constant 0.64∗∗∗ 0.58∗∗∗ 1.86∗∗∗ 0.73∗∗∗ 0.21∗

(0.11) (0.10) (0.27) (0.12) (0.13)

interim = after Y Y Y Y Y
after = before Y N N Y Y
Observations 37,436 32,421 37,436 30,262 19,719
R2 0.002 0.001 0.004 0.004 0.002

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

35Fabra and Toro (2005) find evidence of collusion in the Spanish electricity market, although they
observe price wars together with periods of price stability.
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While tacit collusion among the over 90 firms active during the sample period seems

unlikely, I am able to identify a small group of firms that seem to be driving the results.

Running individual regressions for each firm, I find that generators for which the BRD

went down in the interim and after period have a few features in common. They are

medium or large in size, and together they own 72% of the total capacity of the west

area and 86% of the wind capacity. Most importantly, they are concentrated in the

west area of the market. Though I cannot observe the location of the different pricing

nodes, the names of the nodes indicate the load balancing authority (LBA) to which

they belong. 36 These firms belong to LBAs in the west area of the market.

Using this information, I split the sample between the west and the rest of the

sample and run the same regression as above. Results are in the last two columns of

Table 2, and indicate that the changes in BRD come from firms in the west. These

generators were exerting more market power than they had in a static Nash sense in

the initial period, and moved to a behavior consistent with a static Nash equilibrium

after the announcement of increased financial activity in the future. In contrast, firms

in the rest of the market did not change their behavior during this period. On average,

the west is less concentrated that the rest of the market, with an average HHI of 0.1

as opposed to 0.19 in the rest of the market. Therefore, market concentration is not

the reason behind these results.

Table 7 shows the evolution of the residual demand elasticities and backed-out

contract positions over time. For the elasticity, I use a robust regression that weights

observations with large errors less since errors are not distributed symmetrical and

results are bias. Elasticity went down, though less for firms in the west than in the

rest of the market. Contract positions changed differently for the two sectors in the

market. In the west, firms increased their forward position in the interim period, but

went back to the initial position afterwards. Firms in the rest of the market, on the

other hand, lowered their forward contract positions over time.

As expected, the forward premium decreased after the announcement as well, as

shown in Table 8. As for the BRD, the effect comes from firms active in the west area

of the market. Though the coefficient for the after period is smaller than the one for

the interim period, they are statistically the same.

36Using LBAs to define markets does not result in clearing prices close to the observed ones.
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C Spot market markups

Table 9 presents the results from the spot markups analysis, showing that spot

markups stayed roughly at the same level during the whole sample period, since the

coefficients are economically small even if they are significant. Though we would have

expected markups to increase in response to increased financial trading, there are a

few reasons why firms would not exert more market power. First, this is not exactly

a case in which firms go from price discrimination to uniform pricing, but rather from

dynamic to static competition. For this reason, firms do not necessarily have incentives

to exert more market power in the spot market. Secondly, MISO carefully monitors

firms’ behavior in this market and can easily find out if firms are withholding since the

plants’ capacity is public knowledge. On the other hand, in the forward market the

focus of the market operator is on avoiding situations in which there is more demand

than scheduled generation, not on intertemporal price discrimination. For this reason,

generators’ market power is likely to be much more restricted in the spot than in the

forward market.

VIII Welfare analysis

Financial trading made consumers better off, since the reduction of the forward

premium means that they pay less and total quantity does not change because final

demand is perfectly inelastic. Producers, as a group, are worse off because they lose

market power.

Additionally, costs are likely to go down because production underscheduling

in the forward market lead to productive inefficiencies that then disappeared.

Underscheduling increases costs for two reasons. First, because more expensive

producers will be scheduled in the forward market to cover demand. Second, because

some units will need to be dispatched in the spot market, and the units that can

react on short notice often have higher marginal costs. Jha and Wolak (2018) compare

production costs and carbon emissions before and after the introduction of financial

traders into the California market, and find that both decreased. Given that 98%

of the energy sales happen in the forward market, meaning that most production is

scheduled in advance, total costs are likely to decrease when generators cannot engage

in price discrimination. A precise quantification of this effect requires cost data and is

therefore left for future research.
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Consumers are unambiguously better off, since they pay less for their electricity

purchases. To quantify this, I look at changes in total expenditure per MWh

over time. After controlling for fuel prices and the forecasted demand level, total

expenditure decreased in the period between announcement and implementation of

the regulatory change and stayed below the initial level after implementation, as Table

10 shows. The coefficients indicate that total expenditure was 4% higher before the

announcement than after implementation. Given that total demand is 1, 500, 000 MWh

a day on average, and the price is around $30 per MWh, this means that consumers

save about $1, 800, 000 per day on average. Note, however, that it is important to

control for demand and fuel prices. Simply looking at changes in total expenditure,

without controls, would indicate that, relative to the period after implementation, total

expenditure was 10% lower in the “before” period, and 10% higher in the “interim”

period.

Consumer savings come from two sources. The first is the direct effect of financial

traders on generators’ ability to engage in price discrimination in the forward market.

The second mechanism is the change in the dynamic equilibrium. The evolution of the

best response deviation over time indicates that firms’ initial conduct was consistent

with more market power than they had, and that after the change, increased arbitrage

pushed their conduct closer to the static Nash equilibrium. This effect can be roughly

quantified by multiplying the change in the BRD, which is measured in dollars, by the

average daily load. Using the lowest estimate for the change in the BRD in the after

period, this calculation yields an average savings of about a million dollars a day($0.70

times 1, 500, 000 MWh). This indicates that about half of the reduction in consumer

cost is attributable to firms reverting to a static Nash equilibrium.

IX Conclusion

This paper studies competition and the role of financial players in electricity

markets. I examine a regulatory change that exogenously increased virtual trading and

find that financial players made the forward market more competitive. This benefited

consumers, and likely increased productive efficiency because of better scheduling in

the forward market. Additionally, my findings indicate that generators were in a tacit

collusive equilibrium before the regulatory change, and that cooperation broke as soon

as firms learned that traders were going to enter in the future. In fact, generators
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became more disciplined before the regulatory change was actually implemented, which

highlights the importance of dynamic considerations when assessing the impact of

financial traders.
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Figures

Figure 4: Price dispersion Heat map of prices across the MISO market on September 7, 2011 and
April 10, 2012. Prices may differ significantly in a given moment, and over time. Source: MISO

42



Figure 5: An example of a market The figure shows demand and supply in one of the markets
as defined according to hierarchical clustering for January 2011 between 6a.m. and 7a.m. The best
fit was found when there are 17 markets. This is market 2 and there are 37 buyers and 7 sellers in it.
The largest seller holds 50% of the generating capacity, and the next two hold 20% each.
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Tables

Table 3: Supply bids in the forward market Each variable is computed daily. For instance, the
number of bids is the total number of bids submitted each day. The sample goes from January 2010
to December 2011.

Statistic N Mean St. Dev. Min Max

# bids 730 20,717 1,036 18,861 21,886
# nodes 730 927 28.2 883 957
# units 730 1,147 41.172 1,079 1,197
# firms 730 126 4.78 120 132
% bids cleared 730 0.361 0.035 0.288 0.511
Cleared MW 730 1,214,775 162,234 849,110 1,672,726
Price taker MWs 730 163,606 24,390 101,316 212,362
% piecewise linear 730 0.75 0.012 0.72 0.77
MW piecewise linear 730 0.82 0.013 0.78 0.86
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Table 4: Supply bids in the spot market Each variable is computed daily. For instance, the
number of bids is the total number of bids submitted each day. The sample goes from January 2010
to December 2011.

Statistic N Mean St. Dev. Min Max

# bids 730 13,037 1,031 10,607 17,071
# nodes 730 525.2 53.4 432 776
# units 730 603.9 65.1 493 914
# firms 730 100.3 6.24 88 118
% bids cleared 730 0.72 0.027 0.62 0.79
Cleared MW 730 1,447,665 189,301 1,075,636 1,977,326.000
Price taker MWs 730 123,147 27,014 63,248 196,913
% bids piecewise linear 73 0.62 0.03 0.53 0.71
% MW piecewise linear 730 0.81 0.02 0.74 0.86

Table 5: Expected spot prices The first two rows of the table present the mean difference between
the expected and the effective spot price, where the expectations are computed assuming rational
expectations (RE) or adaptive expectations (AE) as defined in Section B. The third row shows the
mean forward premium, and the fourth the mean level of the spot price.

2010 2011

E[P S]RE − P S 0.036 0.163
(0.006) (0.007)

P F − P S 1.142 0.500
(0.005) (0.006)

Spot price 31.101 30.310
(0.006) (0.007)

Observations 16,920,576 16,350,480
R2 0.000 0.000
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Table 6: Test of the additive separability of the bids Results from regressing the slope of the
bids submitted by producers on their forward contract position. Includes owner-market and month
fixed effects. The fact that the correlation between the slope and the contract position is not significant
supports the additive separability assumption. Controlling for total load or adding a time trend does
not affect this result. This sample excludes peakers

Dependent variable:

Slope of the bid

Residual demand’s 0.001∗∗

slope (0.0003)
Spot price 0.102

(0.265)
Contract position 0.001 −0.0002

(0.001) (0.002)

Observations 195,490 194,292

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 7: Residual demand elasticity and forward contract positions Regression of the
quantity weighted residual demand elasticity and forward contract position on time period dummies
between August 2010 and July 2011. The derivative of the residual demand is computed using a
spline. The top and bottom 1% of the sample were removed to avoid extreme values. I remove month
and hour averages by defining the dependent variable as the residual from a regression of the forward
premium on monthly and hourly dummies using 2 years of data, then I add the mean fitted value.
Robust standard errors reported.

Dependent variable:

Residual demand elasticity Contract position

robust OLS
linear

All West No west All West No west

(1) (2) (3) (4) (5) (6)

Interim −26.37∗∗∗ −17.55∗∗∗ −31.92∗∗∗ 26.82∗∗∗ 30.34∗∗∗ −127.45∗∗∗

(2.33) (3.30) (6.08) (8.46) (10.59) (14.44)
After −33.27∗∗∗ −27.72∗∗∗ −34.26∗∗∗ −60.11∗∗∗ −11.55 −190.80∗∗∗

(2.52) (3.41) (6.42) (9.02) (11.09) (16.03)
July 2011 −50.74∗∗∗ −65.16∗∗∗ −84.27∗∗∗ 107.37∗∗∗ 188.69∗∗∗ 24.76

(3.37) (4.14) (9.42) (13.88) (16.96) (28.17)
Constant −80.57∗∗∗ −111.35∗∗∗ −210.04∗∗∗ 678.57∗∗∗ 643.39∗∗∗ 1,089.5∗∗∗

(1.81) (2.52) (4.87) (6.25) (7.35) (11.49)

Observations 33,264 27,117 17,647 80,008 60,680 33,989
R2 0.002 0.002 0.005

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 8: Forward premium over time Regression of the quantity weighted forward premium on
time period dummies between August 2010 and July 2011. The top and bottom 1% of the sample
were removed to avoid extreme values. I remove month and hour averages by defining the dependent
variable as the residual from a regression of the forward premium on monthly and hourly dummies
using 2 years of data, then I add the mean fitted value. Robust standard errors reported.

Dependent variable:

Residualized forward premium
All West No west

(1) (2) (3)

Interim −0.58∗∗∗ −0.96∗∗∗ 0.23
(0.19) (0.21) (0.24)

After −0.37∗ −0.64∗∗∗ 0.21
(0.20) (0.22) (0.25)

July 2011 1.74∗∗∗ 1.83∗∗∗ 1.37∗∗∗

(0.26) (0.28) (0.41)
Constant 1.35∗∗∗ 1.85∗∗∗ 0.66∗∗∗

(0.14) (0.15) (0.17)

interim = after Y Y Y
Observations 37,578 30,600 19,930
R2 0.001 0.002 0.001

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 9: Spot market markups Regression of the markup in the spot market on time period
dummies between August 2010 and July 2011. The derivative of the residual demand is computed
using a spline and as the ratio of differences using two points (slope). The top and bottom 1% of
the sample were removed to avoid extreme values. I remove month and hour averages by defining the
dependent variable as the residual from a regression of the forward premium on monthly and hourly
dummies using 2 years of data, then I add the mean fitted value. Robust standard errors reported.

Dependent variable:

Markup Markup over spot price
Spline Slope Spline Slope

(1) (2) (3) (4)

Interim −0.08∗∗∗ −0.12∗∗ −0.002∗ −0.003
(0.03) (0.06) (0.001) (0.002)

After −0.18∗∗∗ −0.18∗∗∗ −0.01∗∗∗ −0.004
(0.03) (0.07) (0.001) (0.003)

July 2011 0.11∗∗ 0.09 0.003∗ 0.002
(0.05) (0.10) (0.002) (0.004)

Constant 0.29∗∗∗ 0.22∗∗∗ 0.01∗∗∗ 0.01∗∗∗

(0.02) (0.04) (0.001) (0.002)

Observations 36,097 41,514 36,307 37,224
R2 0.001 0.0002 0.001 0.0001
Adjusted R2 0.001 0.0001 0.001 −0.0000

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 10: Total expenditure Total expenditure was computed as total purchases in each market,
times the average clearing price at demand node. The total is the sum of the purchases in the forward
and spot market. Specifications (1) and (2) includes hour and month fixed effects were used. Data
is hourly, so a 24 lag is a 1 day lag. The sample goes from August 2010 to July 2011, and each
of the periods considered is 4 months long: before the announcement, between announcement and
implementation, and after implementation. HAC standard errors reported.

log(total expenditure)

(1) (2) (3)

before 0.299∗∗∗ 0.044∗∗ −0.102∗∗∗

(0.065) (0.021) (0.015)
interim 0.060 −0.088∗∗∗ 0.106∗∗∗

(0.039) (0.012) (0.013)
log(real-time load) 3.213∗∗∗ 3.210∗∗∗

(0.021) (0.021)
Trend 0.00000

(0.000)
log(oil price) 0.136 0.138

(0.101) (0.101)
log(natural gas price) −0.131∗ −0.117

(0.074) (0.074)
log(coal price I) −0.605∗∗∗ −0.553∗∗∗

(0.140) (0.140)
log(coal price PRB) −0.417 −0.514∗

(0.284) (0.284)
log(oil price)t−24 0.219∗∗ 0.199

(0.138) (0.138)
log(oil price)t−48 0.533∗∗∗ 0.519∗∗∗

(0.096) (0.096)
log(natural gas price)t−24 −0.490∗∗ −0.504∗∗∗

(0.101) (0.101)
log(natural gas price)t−48 0.803∗∗∗ 0.786∗∗∗

(0.073) (0.072)
log(coal price I)t−24 0.279 0.280

(0.191) (0.193)
log(coal price I)t−48 0.340 0.275∗

(0.152) (0.153)
log(coal price PRB)t−24 −0.408 −0.403

(0.340) (0.339)
log(coal price PRB)t−48 0.172 0.282

(0.217) (0.217)
Constant −36.241∗∗∗ −23.915∗∗∗ 14.488∗∗∗

(3.261) (0.595) (0.011)

Observations 8,757 8,757 8,757
R2 0.916 0.916 0.025

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.0149
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Online appendix - For online publication

A Clearing prices in the MISO market

Typically, the energy market is organized as an auction in which participants

submit bids to buy or sell energy at particular locations; the ISO then clears the

market solving a linear programming problem that minimizes cost subject to the

capacity constraints imposed by the transmission network. Because the latter has

limited capacity, electricity supplied at different locations is not a homogeneous good.

Therefore, both the cost of a MWh and the willingness to pay for it vary across the

market footprint, and it is not obvious how the market should be cleared.

There are two alternative market designs to determine clearing prices in markets in

which transmission lines reach capacity. The first is zonal pricing, which divides the

market into a few zones and allows for a different price at each zone, but a uniform

price within each of them. This makes sense particularly when there is enough capacity

within each zone. The second is nodal pricing, in which each location is allowed to

be cleared at a different price. Although there were more zonal markets when the

deregulation of electricity markets started, today all market in the US have nodal

pricing.37

MISO uses nodal pricing to clear the energy market. The clearing price at each

node or location where energy is produced or demanded represents the marginal cost of

bringing 1 MW to that particular node, and it is called locational marginal price (LMP).

The LMP has three components: marginal cost, congestion, and losses. The marginal

cost component is common across nodes and represents the cost of buying 1 more MW

of energy given the supply bids submitted by generators. Moving electricity from one

location to another requires some energy, so less than 1 MW arrives to a node when

it is produced at a different node. This is captured by the losses component. Lastly,

the marginal congestion component of price represents the increase in price required

to clear the market when transmission lines are at capacity. For instance, if demand

at the marginal cost is larger than what can be transmitted to that node, the price

at that node has to increase until there is no excess demand. Summary statistics for

prices are presented in Table ??.

To better understand congestion pricing, consider a simple example without losses

37See Wolak (2011) for a discussion on the benefits of nodal vs. zonal pricing, and a quantification
of the benefits of the former.

54



in which there are only two nodes. At node A there is only demand and it is given

by Q = 120 − P , and node B only produces energy and has a marginal cost of 10.

The transmission line connecting these nodes has a capacity of 100MW. Suppose there

are enough generators at node B to have them selling at marginal cost. Demand at

that price is 110, but that quantity cannot be brought to A because it exceeds the

line’s capacity. Therefore, the clearing locational marginal price at node A is 110. The

marginal cost component is 100 and the congestion component is 10.

The MISO energy market has over 2000 nodes and often becomes congested, so in

practice there is significant price dispersion. Figure 4 presents a heat map of the MISO

footprint, and illustrates how prices can substantially differ geographically and over

time.

B Revenue Sufficiency Guarantee (RSG) charges

In the MISO market, some eligible generators are guaranteed the full recovery of

their production cost when MISO commits them to produce a quantity that differs from

their day-ahead schedule. The production cost has three components: the start-up cost,

incurred when the generating units start running, the no-load cost, which is the cost of

operating and producing zero MWs, and the marginal cost. Only the latter is covered

by the market clearing price (LMP), so the eligible generators need to be compensated

for their incurred start-up and no-load costs. This is funded by imposing Revenue

Sufficiency Guarantee (RSG) charges on deviations from the day-ahead schedule, i.e.

on differences between the MWs that a market participant cleared in the day-ahead

market and what she produces in the real-time market. As virtual participants do not

physically buy or sell energy, the total virtual MWs are considered a deviation and are

subject to RSG charges.

MISO’s treatment of virtual bidders with respect to the RSG has varied over time

in a way that affects incentives. When the market was opened to financial participants

in April 2005, virtual transactions were not subject to RSG charges. In April 2006,

the FERC issued an order according to which virtual offers had to pay RSG charges

retroactively until 2005. This was reversed in October of the same year. After a

long discussion between MISO, market participants, and the FERC, in November 2008

the latter determined that virtual supply had to pay RSG charges. This applied to

future trades as well as retroactively until April 2006. The discussion about what

trades should be subject to the charges and how these should be computed continued
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until April 2011. During this period, charges were constant across nodes, computed as

RSGi = MWS
i · RSG RATE, where i is a bid and MWS are MWs of virtual supply.

This means that if a virtual bidder was buying 1 MW at a node, her payoff was just the

real-time price minus the day-ahead one. For a virtual participant selling 1 MW in the

day-ahead market, the payoff was pF − pS − RSG RATE. Charges during this period

were on average larger than the day-ahead premium (see Tables 1 and 3). On March

2011 the FERC accepted MISO’s proposal for a change in the computation of the RSG

charges. Since April 1st, 2011, both virtual supply and virtual demand are subject to

these charges and their calculation has changed. In addition to a component that is

common across nodes, the Day-Ahead Deviation & Headroom Charge or DDC, there

is a component that depends on congestion at each specific node called the Constraint

Management Charge or CMC. As shown in the formula below, the CMC depends on the

sum of deviations weighted by a congestion factor called the Constraint Contribution

Factor or CCF which is between -1 and 1. When it is positive, the constraint is relaxed

by more demand or less supply, so charges are imposed only on supply; when the factor

is negative, only demand has to pay deviation charges. The calculation of the charges

for each participant is as follows:

RT RSG DIST1h = CMC DISTh + DDC DISTh

CMC DISTh =
∑
n

max
{(
MW S

n −MWD
n

)
· CCFh,n, 0

}
· CMC RATEh,n

DDC DISTh =
∑
n

max
{(
MW S

n −MWD
n

)
, 0
}
·DDC RATEh,n

where h is an hour, MW S
n and MWD

n are the virtual supply and demand,

respectively, cleared by the participant at node n for hour h.

C Model with strategic demand and supply

This appendix extends the model presented in section A to include strategic

demand. Instead of taking demand given, I model buyers strategically choosing how

to distribute their purchases between the spot and the forward markets. Because in

wholesale electricity markets most purchases come from utilities serving downstream

consumers, I will refer to buyers as utilities. Additionally, I will assume that firms do

not hold hedging contracts for the spot price, i.e. xS = 0. The market subindexes
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are omitted in this section, but the analysis is always done under the assumption of

independent separate markets.

Demand Unlike generators, utilities’ only decision is how to split purchases between

the forward and the spot markets. They do not choose how much electricity to buy in

the spot market, because final demand is given by households’ electricity consumption.

Therefore, the spot market is cleared such that there is enough generation to cover

the load forecast L, which has a deterministic component l and a random component

ε. In the forward market, each buyer submits a schedule D(pF ) indicating how much

she is willing to buy at each price. The difference between the quantity cleared in the

forward market and L has to be purchased in the spot market.

Like generators, buyers may have financial contracts that affect their position in

the forward market. I denote the contract terms as above: a firm holds a contract for

a quantity x at a price h. Profits from the hedging contract are computed differently

from generators though, because utilities are on the other side of the contract. If the

clearing price is larger than h, the buyer gets payed the difference; if the clearing price

is smaller than h, the buyer pays the difference to the other side (a generator).

Market clearing The market clearing prices p̄F and p̄S are determined by the market

clearing conditions below

∑
j∈Sellers

Qj(p̄
F ) =

∑
b∈Buyers

Db(p̄
F ) (16)∑

j∈Sellers

Sj(p̄
S) = l + ε (17)

Generators’ uncertainty As before, each generator i faces uncertainty over the

clearing prices p̃F and p̃S, because she does not know what clearing price will result

from submitting different schedules. In the spot market, uncertainty comes from the

random component of demand, as in the section without strategic demand. In the

forward market, it comes from the unknown hedging positions of other firms, which are

private information and therefore make the clearing price uncertain. In other words, the

generator is uncertain about the residual demand she faces, because residual demand

depends on other firms’ bidding behavior.
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Bidder i’s uncertainty in the forward market is represented by Fx(x−i|xi), the

distribution of other firms’ contract positions. It is conditional on i’s own position

because i’s position may contain information about others’ contracts. Note that this

remains a private value setting since i’s profits do not depend on its competitors’

hedging positions. In the spot market, uncertainty comes from ε, which has distribution

Fε(ε).

As above, I define a probability measure over the realizations of the forward clearing

price from the perspective of firm i, conditional on i’s private information about its

contract position xFi , i’s submission of a schedule Q̂i(p, x
F
i ), and her competitors playing

their equilibrium strategies {Qj(p, x
F
j ), j 6= i}.

H(p, Q̂i(p);x
F
i ) ≡ Pr(p̃F ≤ p | xFi , Q̂i) (18)

H(p, Q̂i(p);x
F
i ) represents the uncertainty over the forward market clearing price

faced by firm i. It is the probability, given i ’s contract position, that generator i will

be paid a price p when she sells a quantity Q̂i(p) and all other generators submit the

equilibrium offer functions. The event p̃F ≤ p is equivalent to the event of excess supply

at price p. Using the market clearing condition in Equation 17, H can be written as

H(p, Q̂(p);xFi ) = Pr
(∑

j 6=i

Qj(p, x
F
i ) + Q̂i(p) ≥

∑
d∈Buyers

DF
d (p, xFd )|xFi , Q̂

)
=

∫
xF−i

1
{∑

j 6=i

Qj(p, x
F
i ) + Q̂i(p) ≥

∑
d∈Buyers

DF
d (p, xFd )

}
dF F (xF−i|xFi )

(19)

The generator’s problem The problem of the firm is to choose forward and spot

bids that maximize its expected profits. As in the case without strategic demand, the

generator’s expected profits are given by:

max
Q(pF ),S(pS)

∫ p

p

∫ p

p

U
(

Π(Q(pF , xF ), S(pS))
)
dH(pF , Q(pF );xF ) dG(pS, S(pS);xS)

The Euler-Lagrange conditions for the bids that maximize the generator’s profits

are (proof analogous to the one in Appendix D)
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pF − pS = [Q(pF )− xF ]
HS

HP

(20)

pS − c′ = [S(pS)−Q(pF )− xS]
GS

GP

(21)

Additive separability If the schedules submitted by both buyers and sellers satisfy

additive separability, the optimality conditions can be written in terms of the residual

demand or supply. To see this, assume that demand and supply schedules are additively

separable and therefore can be written as D(p) = a(p) + b(x) and Q(p) = α(p) + β(x).

The event of excess supply at price p can then be written

∑
i∈IS

αi(p) +
∑
i∈IS

βi(x) ≥
∑
i∈ID

ai(p) +
∑
i∈ID

bi(x)∑
i∈IS

αi(p)−
∑
i∈ID

ai(p) ≥
∑
i∈ID

bi(x)−
∑
i∈IS

βi(x)

Defining θ ≡
∑

i∈ID bi(x) −
∑

i∈IS βi(x), a random variable with distribution Γ.

Then, the expectation of excess supply from the perspective of a generator is

H(p, Q̂(p);xFi ) = Pr
(∑

j 6=i

Qj(p, x
F
i ) + Q̂i ≥ DF (p)|xFi , Q̂

)
Pr
(∑
j∈ID

aj(p)−Qi −
∑

αj(p
F ) ≥

∑
βj(x

F
j )−

∑
j∈ID

bj(x)
)

Γ
(∑
j∈ID

aj(p)−Qi −
∑

αj(p
F )
)

And equivalently for demand. Taking derivatives and simplifying, the optimality

conditions can be rewritten as Equations 10 and 11 for sellers and an equivalent one

for buyers.
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D Derivation of the Euler-Lagrange conditions for the

generator’s problem

From Section A, the problem of the firm is the following:

max
Q(pF ),S(pS)

∫ p

p

∫ p

p

U
(

Π(Q,S)
)
dH(pF , Q(pF );xF ) dG(pS, S(pS);xS)

We can rewrite dH(pF , Q(pF );xF ) and dG(p, Ŝ(p);xS) as:

dH(pF , Q(pF );xF ) =
dH

dpF
dpF = (HQQ

′ +HP )dpF

dG(pS, S(pS);xS) =
dG

dpS
dpS = (GSS

′ +GP )dpS
(22)

Replacing the above and defining the integrand as J(Q,Q′, pF , S, S ′, pS), the

integrand now becomes

J(Q,Q′, pF , S, S ′, pS) ≡ U [HQQ
′ +HP ][GSS

′ +GP ]

where U = U
(
pFQ(pF ) + pS[S(pS)−Q(pF )]−C(S(pS))− [pF − hF ]xF − [ps− hS]xS

)
.

The argument is omitted from now on. The Euler-Lagrange equations are:

JQ =
∂

∂pF
JQ′

JS =
∂

∂pS
JS′

(23)

Taking derivatives:

JQ = U ′[pF − pS][HQQ
′GSS

′ +HQQ
′GP +HPGSS

′ +HPGP ] +

U [HQQQ
′GSS

′ +HQQQ
′GP +HPQGSS

′ +HPQGP ]

JS = U ′[pS − c′][HQQ
′GSS

′ +HQQ
′GP +HPGSS

′ +HPGP ] +

U [HQQ
′GSSS

′ +HQQ
′GPS +HPGSSS

′ +HPGPS]

JQ′ = U [HQGSS
′ +HQGP ]

JS′ = U [HQQ
′GS +HPGS]
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∂

∂pF
JQ′ = U ′[Q+ pFQ′ − pSQ′ − xF ][HQGSS

′ +HQGP ] +

U [HQQQ
′GSS

′ +HQPGSS
′ +HQQGPQ

′ +HQPGP ]

∂

∂pS
JS′ = U ′[pSS ′ + S −Q− c′S ′ − xS][HQQ

′GS +HPGQ] +

U [HQQ
′GSSS

′ +HQQ
′GSP +HPGSSS

′ +HPGSP ]

After substituting and canceling terms, the Euler-Lagrange conditions are:

pF − pS = [Q(pF )− xF ]
HS

HP

(24)

pS − c′ = [S(pS)−Q(pF )− xS]
GS

GP

(25)

E Additive Separability

If schedules are additively separable in the contract position and the price, then

the event of excess supply can be written

DF (pF )−Qi −
∑

αj(p
F ) <

∑
βj(x

F
j )− εF (26)

Define θ ≡
∑
βj(x

F
j )−εF , a random variable with distribution Γ(·). This variable θ

contains the uncertain components determining the clearing price. Using the definition

of θ, H can be rewritten as follows

H(p, Q̂(p);xFi ) = Pr
(∑

j 6=i

Qj(p, x
F
i ) + Q̂i ≥ DF (p)|xFi , Q̂

)
Pr
(
DF (pF )−Qi −

∑
αj(p

F ) <
∑

βj(x
F
j )− εF

)
1− Γ

(
DF (pF )−Qi −

∑
αj(p

F )
)

and an equivalent expression holds for G. Taking derivatives of this expression and

simplifying,

HS

Hp

=
1

D′(p)−
∑
α′(p)

(27)

Notice that the denominator of the right hand side of equation 27 is the derivative
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of the ex-post residual demand faced by generator i. For a given realization of ε and

x−i, the residual demand faced by i is

R(p) = D(p) + ε−
∑
j 6=i

αj(p)−
∑
j 6=i

β(xj) (28)

therefore its derivative is D′(p)−
∑
α′(p). Replacing this in the optimality conditions,

they become

pF − pS = −[Q∗(pF )− xF ]
1

R′(pF )

pS − c′ = −[S∗(pS)−Q∗(pF )− xS]
1

R′(pS)

F Test of additive separability of the bids

The empirical strategy in this paper relies on the assumption of additive separability

of the optimal bid in the hedging contract position and the price. If this assumption

holds, changes in the contract position will shift the bid without affecting the slope. I

follow Hortacsu and Puller (2008) and use the data to test the assumption , which is

described in section A. The test evaluates whether the slope of the bids changes with

variations in the contract position. Under additive separability, contracts should only

cause parallel shifts in the bids, with no effect on the slope.

I fit a linear function to the submitted bids to obtain their slope,;the fit is around

68%, a decent approximation. I then regress the slope of the bid on the hedging contract

position obtained as explained in Section C. The first column of Table 6 present the

results of this regression, using firm-market fixed effects. The correlation between the

slope of a firm’s bid and its contract position is not statistically significant, which

supports the additive separability assumption.

Because the optimal bid submitted depends on the other players’ strategy, I add

the slope of the residual demand faced by each firm as a control. I also control for

the spot price, since it is the opportunity cost of bidding in the forward market. After

controlling for these factors, the forward position is still not significantly correlated

with the slope of the bids, as the last three columns of Table 6 show.

G Market-clearing algorithm

In the MISO market, generators submitted schedules consist of more information

that the 10 steps of the bid. They additionally indicate the maximum and minimum
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quantity that they can produce economically, and under an emergency, as well as

whether they act as price-takers. Additionally, they may indicate that the unit is

already working, so it must run during that hour but they do not need to payed the

start costs. They also provide technical information about the plant like the maximum

and minimum temperatures, ramping times and costs, and the number of hours in a

row a unit needs to run. The effect of these cost complementarities has been studied

by Reguant (2014)

MISO only publishes some of the information provided by the generators at each

moment. The main part missing are the complementarities between hours that the

market authority must consider when clearing the market. As a simplification, I do

not consider this when I clear the markets either, but this does not seem to cause great

divergence between my simulated market clearing quantities and prices, and those

observed in the data.

I include the step function submitted by each bidder, as well as whether they

are price-takers. Additionally, I adjust some bids to reflex other parameters. For

instance, a good number of run-of-river and wind units submit offers for 999MW in the

second step, even though their capacity, as represented by the economic and emergency

maxima, is below this (usually around 10MW ).38 As keeping this would alter the

market clearing results, I modify the bids to reflect the unit’s capacity. I generally

restrict every step to be below the specified economic maximum. Additionally, when

a bid specifies a quantity in the first step, but no prices, I assume they are willing to

pay any price for that quantity.

When I compute the measure of fit for the different market definitions, I compute

a clearing price for each of the market and compare it to the observed price. I do

not observe a single price for any market, as prices differ across nodes. I compute

the observed clearing price by taking the quantity weighted average, where quantities

are given by the volume cleared by supply. This is better than using the mean of all

nodes in the market, since some nodes are hubs used only for financial trading, or not

active at all hours. Additionally, the fit is considerably better using quantity weighted

average than simple average.

38The economic minimum and maximum are part of the bids submitted by generators, and indicate
the minimum and maximum quantity that it is profitable to produce. They may be willing to produce
more under emergency conditions.
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H Figures and tables

Figure 6: Additive Separability Differences across the bids for a given firm seem to be parallel
shifts.
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Table 11: Summary statistics for demand bids Each variable is computed daily. For instance,
the number of bids is the total number of bids submitted each day. The sample goes from January
2010 to December 2011.

Statistic N Mean St. Dev. Min Max

Price takers

# bids 730 5,762 297.8 5,156 6,299
# nodes 730 228.6 15.7 197 246
# bidders 730 96.2 2.4 90 100
% bids cleared 730 1.000 0.000 1 1
Cleared MW 730 1,478,659 191,083 1,082,308 2,043,150

Price sensitive

# bids 730 1,015 63.5 792 1,152
# nodes 730 42.3 2.7 33 48
# bidders 730 25.2 2.16 18 31
% bids cleared 730 0.9 0.031 0.78 0.99
Cleared MW 730 30,992 5,846 17,030 52,089

Table 12: Virtual bids summary stats Each variable is computed daily. For instance, the
number of bids is the total number of bids submitted each day. The sample goes from January 2010
to December 2011.

Statistic N Mean St. Dev. Min Max

Virtual Demand

# bids 730 53,556 18,873 15,240 97,824
# nodes 730 874 274.9 318 1,280
# bidders 730 56.4 6.71 31 77
% bids cleared 730 0.102 0.038 0.028 0.228
Cleared MW 730 86,263 22,058 39,909 161,463

Virtual Supply

# bids 730 62,313 22,024 16,080 117,384
# nodes 730 993.6 309.4 351 1,378
# bidders 730 50.9 6.34 32 69
% bids cleared 730 0.095 0.032 0.034 0.197
Cleared MW 730 60,983 19,354 23,825 128,022
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