
Arti�cial Intelligence as Structural Estimation:

Economic Interpretations of Deep Blue, Bonanza, and

AlphaGo�

Mitsuru Igamiy

March 1, 2018

Abstract

Arti�cial intelligence (AI) has achieved superhuman performance in a growing num-

ber of tasks, but understanding and explaining AI remain challenging. This paper

clari�es the connections between machine-learning algorithms to develop AIs and the

econometrics of dynamic structural models through the case studies of three famous

game AIs. Chess-playing Deep Blue is a calibrated value function, whereas shogi-

playing Bonanza is an estimated value function via Rust�s (1987) nested �xed-point

method. AlphaGo�s �supervised-learning policy network� is a deep neural network

implementation of Hotz and Miller�s (1993) conditional choice probability estimation;

its �reinforcement-learning value network�is equivalent to Hotz, Miller, Sanders, and

Smith�s (1994) conditional choice simulation method. Relaxing these AIs� implicit

econometric assumptions would improve their structural interpretability.

Keywords: Arti�cial intelligence, Conditional choice probability, Deep neural network,

Dynamic game, Dynamic structural model, Simulation estimator.

JEL classi�cations: A12, C45, C57, C63, C73.

�First version: October 30, 2017. This paper bene�ted from seminar comments at Riken AIP, Georgetown,
Tokyo, Osaka, Harvard, Johns Hopkins, and The Third Cambridge Area Economics and Computation Day
conference at Microsoft Research New England, as well as conversations with Susan Athey, Xiaohong Chen,
Jerry Hausman, Greg Lewis, Robert Miller, Yusuke Narita, Aviv Nevo, Anton Popov, John Rust, Takuo
Sugaya, Elie Tamer, and Yosuke Yasuda.

yYale Department of Economics and MIT Department of Economics. E-mail: mitsuru.igami@gmail.com.

1

1 Introduction

Arti�cial intelligence (AI) has achieved human-like performance in a growing number of

tasks, such as visual recognition and natural language processing.1 The classical games

of chess, shogi (Japanese chess), and Go were once thought to be too complicated and

intractable for AI, but computer scientists have overcome these challenges. In chess, IBM�s

computer system named Deep Blue defeated Grandmaster Garry Kasparov in 1997. In shogi,

a machine-learning-based program called Bonanza challenged (and was defeated by) Ryūō

champion Akira Watanabe in 2007, but one of its successors (Ponanza) played against Meijin

champion Amahiko Satoh and won in 2017. In Go, Google DeepMind developed AlphaGo,

a deep-learning-based program, which beat the 2-dan European champion Fan Hui in 2015,

a 9-dan (highest rank) professional Lee Sedol in 2016, and the world�s best player Ke Jie in

2017.

Despite such remarkable achievements, one of the lingering criticisms of AI is its lack

of transparency. The internal mechanism seems like a black box to most people, including

the human experts of the relevant tasks,2 which raises concerns about accountability and

responsibility. The desire to understand and explain the functioning of AI is not limited to

the scienti�c community. For example, the US Department of Defense airs its concern that

�the e¤ectiveness of these systems is limited by the machine�s current inability to explain

their decisions and actions to human users,�which led it to host the Explainable AI (XAI)

program aimed at developing �understandable�and �trustworthy�machine learning.3

This paper examines three prominent game AIs in recent history: Deep Blue, Bonanza,

and AlphaGo. I have chosen to study this category of AIs because board games represent an

archetypical task that has required human intelligence, including cognitive skills, decision-

making, and problem-solving. They are also well-de�ned problems for which economic inter-

pretations are more natural than for, say, visual recognition and natural language processing.

The main �nding from this paper�s case studies is that these AIs�key components are math-

ematically equivalent to well-known econometric methods to estimate dynamic structural

models.

Chess experts and IBM�s engineers manually adjusted thousands of parameters in Deep

1The formal de�nition of AI seems contentious, partly because scholars have not agreed on the de�nition
of intelligence in the �rst place. This paper follows a broad de�nition of AI as computer systems able to
perform tasks that traditionally required human intelligence.

2For example, Yoshiharu Habu, the strongest shogi player in recent history, states he does not understand
certain board-evaluation functions of computer shogi programs (Habu and NHK [2017]).

3See https://www.darpa.mil/program/explainable-arti�cial-intelligence (accessed on October 17, 2017).

2

Blue�s �evaluation function,�which quanti�es the probability of eventual winning as a func-

tion of the current positions of pieces (i.e., state of the game) and therefore could be inter-

preted as an approximate value function. Deep Blue is a calibrated value function with a

linear functional form.

By contrast, the developer of Bonanza constructed a dataset of professional shogi games,

and used a discrete-choice regression and a backward-induction algorithm to determine the

parameters of its value function. Hence, his method of �supervised learning�is equivalent to

Rust�s (1987) nested �xed-point (NFXP) algorithm, which combined a discrete-choice model

with dynamic programming (DP) in the maximum likelihood estimation (MLE) framework.

Bonanza is an empirical model of human shogi players that is estimated by this direct (or

�full-solution�) method.

Google DeepMind�s AlphaGo (its original version) embodies an alternative approach

to estimating dynamic structural models: two-step estimation.4 Its �rst component, the

�supervised-learning (SL) policy network,�predicts the moves of human experts as a function

of the board state. It is an empirical policy function with a class of nonparametric basis

functions (DNN: deep neural network) that is estimated by MLE, using data from online Go

games. Thus, the SL policy network is a DNN implementation of Hotz and Miller�s (1993)

�rst-stage conditional choice probability (CCP) estimation.

AlphaGo�s value function, called �reinforcement-learning (RL) value network,� is con-

structed by simulating many games based on the self-play of the SL policy network and

estimating another DNN model that maps state to the probability of winning. This pro-

cedure is equivalent to the second-stage conditional choice simulation (CCS) estimation,

proposed by Hotz, Miller, Sanders, and Smith (1994) for single-agent DP, and by Bajari,

Benkard, and Levin (2007) for dynamic games.

Thus, these leading game AIs and the core algorithms for their development turn out

to be successful applications of the empirical methods to implement dynamic structural

models. After introducing basic notations in section 2, I describe the main components of

Deep Blue, Bonanza, and AlphaGo in sections 3, 4, and 5, respectively, and explain their

structural interpretations. Section 6 clari�es some of the implicit assumptions underlying

these AIs, such as (the absence of) unobserved heterogeneity, strategic interactions, and

various constraints human players are facing in real games. Section 7 concludes by suggesting

that relaxing some of these assumptions and explicitly incorporating more realistic features

4This paper focuses on the original version of AlphaGo, published in 2016, and distinguishes it from its
later version, �AlphaGo Zero,�published in 2017. The latter version contains few econometric elements, and
is not an immediate subject of my case study, although I discuss some of its interesting features in section 5.

3

of the data-generating process could help make AIs both more human-like (if needed) and

more amenable to structural interpretations.

Literature This paper clari�es the equivalence between some of the algorithms for devel-

oping game AI and the aforementioned econometric methods for estimating dynamic models.

As such, the most closely related papers are Rust (1987), Hotz and Miller (1993), and Hotz,

Miller, Sanders, and Smith (1994). The game AIs I analyze in this paper are probably the

most successful (or at least the most popular) empirical applications of these methods. For

a historical review of numerical methods for dynamic programming, see Rust (2017).

At a higher level, the purpose of this paper is to clarify the connections between machine

learning and econometrics in certain areas. Hence, the paper shares the spirit of, for example,

Belloni, Chernozhukov, and Hansen (2014), Varian (2014), Athey (2017), and Mullainathan

and Spiess (2017), among many others in the rapidly growing literature on data analysis at

the intersection of computer science and economics.

2 Model

Rules

Chess, shogi, and Go belong to the same class of games, with two players (i = 1; 2), discrete

time (t = 1; 2; :::), alternating moves (players 1 and 2 choose their actions, at, in odd and

even periods, respectively), perfect information, and deterministic state transition,

st+1 = f (st; at) ; (1)

where both the transition, f (�), and the initial state, s1, are completely determined by the
rule of each game.5

Action space is �nite and is de�ned by the rule as �legal moves,�

at 2 A (st) : (2)

State space is �nite as well, and consists of four mutually exclusive subsets:

st 2 S = Scont t Swin t Sloss t Sdraw; (3)

5This setup abstracts from the time constraints in o¢ cial games because the developers of game AIs
typically do not incorporate them at the data-analysis stage. Hence, t represents turn-to-move, not clock
time. Section 6 investigates this issue.

4

where I denote �win�and �loss� from the perspective of player 1 (e.g., player 1 wins and

player 2 loses if st 2 Swin). Neither player wins if st 2 Sdraw. The game continues as long as
st 2 Scont.
The two players�payo¤s sum to zero:

u1 (st) =

8>><>>:
1 if st 2 Swin;
�1 if st 2 Sloss; and
0 otherwise,

(4)

with u2 (st) de�ned in a similar manner (but with win/loss payo¤s �ipped). This setup

means chess, shogi, and Go are well-de�ned �nite games. In principle, such games can be

solved exactly and completely by backward induction from the terminal states.

In practice, even today�s supercomputers and a cloud of servers cannot solve them within

our lifetime, because the size of the state space, jSj, is large. The approximate jSj of
chess, shogi, and Go are 1047, 1071, and 10171, respectively, which are comparable to the

number of atoms in the observable universe (1078 � 1082) and certainly larger than the total
information-storage capacity of humanity (in the order of 1020 bytes).6

3 Chess: Deep Blue

3.1 Algorithms

IBM�s Deep Blue is a computer system with custom-built hardware and software components.

I focus on the latter, programming-related part. Deep Blue�s program consists of three key

elements: an evaluation function, a search algorithm, and databases.

Evaluation Function

The �evaluation function�of Deep Blue is a linear combination of certain features of the cur-

rent board state st. It quanti�es the probability of eventual winning (Prwin) or its monotonic

transformation, g (Prwin):

VDB (st; �) = �1x1;t + �2x2;t + � � �+ �KxK;t; (5)

6In 2016, the world�s hard disk drive (HDD) industry produced a total of 693 exabytes (EB), or 6:93�1020
bytes.

5

where � � (�1; �2; : : : ; �K) is a vector ofK parameters and xt � (x1;t; x2;t; : : : ; xK;t) is a vector
of K observable characteristics of st. The published version featured K = 8; 150 parameters

(Campbell, Hoane, and Hsu [2002]).

A typical evaluation function for computer chess considers the �material value�associated

with each type of piece, such as 1 point for a pawn, 3 points for a knight, 3 points for a

bishop, 5 points for a rook, 9 points for a queen, and an arbitrarily many points for a

king (e.g., 200 or 1 billion), because the game ends when a king is captured. Other factors

include the relative positions of these pieces, such as pawn structure, protection of kings,

and experts�opinion that a pair of bishops are usually worth more than the sum of their

individual material values. Finally, the importance of these factors may change depending

on the phase of the game: opening, middle, or endgame.

Reasonable parameterization and the choice of board characteristics (variables) require

expert knowledge. Multiple Grandmasters (the highest rank of chess players) advised the

Deep Blue development team. However, they did not use statistical analysis or data from

professional players�games. In other words, they did not estimate �. Each of the 8,150

parameters, �, was manually adjusted until the program�s performance reached a satisfactory

level.

Search Algorithm

The second component of Deep Blue is �search,�or a solution algorithm to choose the optimal

action at each turn to move. In its �full-width search�procedure, the program evaluates

every possible position for a �xed number of future moves along the game tree, using the

�minimax algorithm�and some �pruning�methods. This �search�is a version of numerical

backward induction.

Databases

Deep Blue uses two databases: one for the endgame and the other for the opening phase.

The endgame database embodies the cumulative e¤orts by the computer chess community

to solve the game in an exact manner. Ken Thompson and Lewis Stiller developed Deep

Blue�s endgame database with all �ve-piece positions (i.e., the states with only �ve pieces,

and all possible future states that can be reached from them), as well as selected six-piece

positions.7

7A database with all �ve-piece endings requires 7.05 gigabytes of hard disk space; storing all six-piece
endings requires 1.2 terabytes.

6

The second database is an �opening book,�which is a collection of common openings

(i.e., move patterns at the beginning of the game) experts consider good plays. It also

contains good ways to counter the opponent�s poor openings, again based on the judgment

by experts. Grandmasters Joel Benjamin, Nick De Firmian, John Fedorowicz, and Miguel

Illescas created one with about 4,000 positions, by hand.

The team also used some data analysis to prepare an �extended book�to guard against

non-standard opening positions. Campbell, Hoane, and Hsu�s (2002) description suggests

they constructed a parametric move-selection function based on the data analysis of 700,000

human games. They even incorporated annotators�commentary on the moves. Nevertheless,

the use of data analysis seems limited to this back-up database.

Performance

Deep Blue lost a match to the top-ranked Grandmaster Garry Kasparov in 1996, but defeated

him in 1997. Since then, the use of computer programs has become widespread in terms of

both training and games (e.g., those played by hybrid teams of humans and computers).8

3.2 Deep Blue Is a Calibrated Value Function

The fact that IBM manually adjusted the parameter � by trial and error means Deep Blue

is a fruit of painstaking e¤orts to �calibrate�a value function with thousands of parameters:

Deep Blue is a calibrated value function.

A truly optimal value function would obviate the need for any forward-looking and

backward-induction procedures to solve the game (i.e., the �search algorithm�), because the

true value function should embody such solution. However, the parametric value function

is merely an attempt to approximate the optimal one. Approximation errors (or misspeci�-

cation) seem to leave room for performance improvement by the additional use of backward

induction, although such bene�ts are not theoretically obvious.

The �full-width search�procedure is a brute-force numerical search for the optimal choice

by backward induction, but solving the entire game is infeasible. Hence, this backward

induction is performed on a truncated version of the game tree (truncated at some length L

from the current turn t). The �terminal�values at turn (t+ L) are given by the parametric

value function (5). The opponent is assumed to share the same terminal-value function at

(t+ L) and to choose its move to minimize the focal player�s VDB (st+L; �).

8See Kasparov (2007), for example.

7

Thus, Deep Blue is a parametric (linear) function to approximate the winning probability

at the end of a truncated game tree, VDB (st+L; �), in which the opponent shares exactly

the same value function and the time horizon. In other words, Deep Blue is a calibrated,

approximate terminal-value function in a game the program plays against its doppelgänger.

4 Shogi: Bonanza

4.1 Algorithm

In 2005, Kunihito Hoki, a chemist who specialized in computer simulations at the University

of Toronto, spent his spare time developing a shogi-playing program named Bonanza, which

won the world championship in computer shogi in 2006. Hoki�s Bonanza revolutionized the

�eld of computer shogi by introducing machine learning to �train� (i.e., estimate) a more

�exible evaluation function than either those for chess or those designed for the existing

shogi programs.9

More Complicated Evaluation Function

The developers at IBM could manually adjust 8,150 parameters in VDB (st; �) and beat the

human chess champions. The same approach did not work for shogi. Shogi programs before

Bonanza could only compete at amateurs�level at best. This performance gap between chess

and shogi AIs is rooted in the more complicated state space of shogi, with jSshogij � 1071 >
1047 � jSchessj.
Several factors contribute to the complexity of shogi: a larger board size (9� 9 > 8� 8),

more pieces (40 > 32), and more types of pieces (8 > 6). In addition, most of the pieces have

limited mobility,10 and, other than kings, never die. Non-king pieces are simply �captured,�

not killed, and can then be �dropped�(re-deployed on the capturer�s side) almost anywhere

on the board at any of the capturer�s subsequent turns. This last feature is particularly

troublesome for an attempt to solve the game exactly, because the e¤ective jSj does not
decrease over time.

9Hoki acknowledges machine-learning methods had previously been used in computer programs to play
Backgammon and Reversi (�Othello�), but says he could not �nd any successful applications to chess or
shogi in the literature (Hoki and Watanabe [2007]).
10Four of the eight types of pieces in shogi can move only one unit distance at a time, whereas only two

of the six types of pieces in chess (pawn and king) have such low mobility. The exact positions of pieces
becomes more important in characterizing the state space when mobility is low, whereas high mobility makes
pure �material values�relatively more important, because pieces can be moved to wherever they are needed
within a few turns.

8

Hoki designed a �exible evaluation function by factorizing the positions of pieces into (i)

the positions of any three pieces including the kings and (ii) the positions of any three pieces

including only one king. This granular characterization turned out to capture important

features of the board through the relative positions of three-piece combinations. Bonanza�s

evaluation function, VBO (st; �), also incorporated other, more conventional characteristics,

such as individual pieces�material values (see Hoki and Watanabe [2007], pp. 119�120, for

details). As a result, VBO (st; �) has a linear functional form similar to (5) but contains

K = 50 million variables and the same number of parameters (Hoki [2012]).

Machine Learning (Logit-like Regression)

That the Deep Blue team managed to adjust thousands of parameters for the chess program

by human hands is almost incredible. But the task becomes impossible with 50 million

parameters. Hoki gave up on manually tuning Bonanza�s � and chose to use statistical

methods to automatically adjust � based on the data from the professional shogi players�

50,000 games on o¢ cial record: supervised learning.

Each game takes 100 moves on average. Hence, the data contain approximately 5 million

pairs of (at; st).11 The reader might notice the sample size is smaller than j�j (50 million).
Hoki reduced the e¤ective number of parameters by additional restrictions to �stabilize the

numerical optimization process.�

Like Deep Blue, Bonanza chooses its move at each of its turns t by searching for the

action at that maximizes VBO in some future turn t+ L,

a�t = arg max
a2A(st)

fVBO (st+L; �)g ; (6)

assuming the opponent shares the same terminal-value function and tries to minimize it. Note

the �optimal�choice a�t is inherently related to � through the objective function VBO (st+L; �).

This relationship can be exploited to infer � from the data on (at; st). Hoki used some variant

of the discrete-choice regression method to determine the values of �.12

11In earlier versions of Bonanza, Hoki also used additional data from 50,000 uno¢ cial, online game records
as well, to cover some rare states such as nyuu-gyoku positions (in which a king enters the opponent�s
territory and becomes di¢ cult to capture, because the majority of shogi pieces can only move forward, not
backward). However, he found the use of data from amateur players�online games weakened Bonanza�s play,
and subsequently abandoned this approach (Hoki [2012]).
12Tomoyuki Kaneko states he also used some machine-learning methods as early as 2003 for his program

named GPS Shogi (Kaneko [2012]). Likewise, Yoshimasa Tsuruoka writes he started using logit regressions
in 2004 for developing his own program, Gekisashi (Tsuruoka [2012]). But shogi programmers seem to agree
that Hoki�s Bonanza was the �rst to introduce data-analysis methods for constructing an evaluation function

9

Performance

Bonanza won the world championship in computer shogi in 2006 and 2013. In 2007, the Ryūō

(�dragon king,� one of the two most prestigious titles) champion Akira Watanabe agreed

to play against Bonanza and won. After the game, however, he said he regretted agreeing

to play against it, because he felt he could have lost with non-negligible probabilities. Hoki

made the source code publicly available. The use of data and machine learning for computer

shogi was dubbed the �Bonanza method�and copied by most of the subsequent generations

of shogi programs.

Issei Yamamoto, a programmer, named his software Ponanza out of respect for the pre-

decessor, claiming his was a lesser copy of Bonanza. From 2014, Ponanza started playing

against itself in an attempt to �nd �stronger�parameter con�gurations than those obtained

(estimated) from the professional players�data: reinforcement learning (Yamamoto [2017]).

Eventually, Ponanza became the �rst shogi AI to beat the Meijin (�master,�the other most

prestigious title) champion in 2017, when Amahiko Satoh lost two straight games.

4.2 Structural Interpretation: Bonanza Is Harold Zurcher

Bonanza is similar to Deep Blue. Its main component is an approximate terminal-value

function, and the �optimal� action is determined by backward induction on a truncated

game tree of self play (equation 6). The only di¤erence is the larger number of parameters

(50 million), which re�ects the complexity of shogi and precludes any hopes for calibration.

Hence, Hoki approached the search for � as a data-analysis problem.

Accordingly, Bonanza is an empirical model of professional shogi players, in the same

sense that Rust (1987) is an empirical model of Harold Zurcher, a Madison, Wisconsin, city-

bus superintendent. Rust studied his record of engine-replacement decisions and estimated

his utility function, based on the principle of revealed preference. This comparison is not just

a metaphor. The machine-learning algorithm to develop Bonanza is almost exactly the same

as the structural econometric method to estimate an empirical model of Harold Zurcher.

Rust�s (1987) �full-solution�estimation method consists of two numerical optimization

procedures that are nested. First, the overall problem is to �nd � that makes the model�s

prediction a�t (as a function of st and �) �t the observed action-state pairs in the data (at; st).

Second, the nested sub-routine takes particular � as an input and solves the model to �nd

in a wholesale manner.

10

the corresponding policy function (optimal strategy),

a�t = � (st;VBO (�; �)) : (7)

The �rst part is implemented by the maximum likelihood method (i.e., the �t is evaluated

by the proximity between the observed and predicted choice probabilities). The second part

is implemented by value-function iteration, that is, by numerically solving a contraction-

mapping problem to �nd a �xed point, which is guaranteed to exist and is unique for a

well-behaved single-agent dynamic programming (DP) problem. This algorithm is called

nested �xed-point (NFXP) because of this design.

Hoki developed Bonanza in the same manner. The overall problem is to �nd � that makes

Bonanza predict the human experts�actions in the data (7). The nested sub-routine takes �

as an input and numerically searches for the optimal action a�t by means of backward induc-

tion. The �rst part is implemented by logit-style regressions (i.e., the maximum-likelihood

estimation of the discrete-choice model in which the error term is assumed i.i.d. type-1

extreme value). This speci�cation is the same as Rust�s. The second part proceeds on a

truncated game tree, whose �leaves�(i.e., terminal values at t+L) are given by the approx-

imate value function VBO (st+L; �), and the opponent is assumed to play the same strategy

as itself:

��i = �i: (8)

Strictly speaking, Bonanza di¤ers from (the empirical model of) Harold Zurcher in two

aspects. Bonanza plays a two-player game with a �nite horizon, whereas Harold Zurcher

solves a single-agent DP with an in�nite horizon. Nevertheless, these di¤erences are not as

fundamental as one might imagine at �rst glance, because each of them can be solved for a

unique �optimal�strategy �� in the current context. An alternating-move game with a �nite

horizon has a unique equilibrium when i.i.d. utility shock is introduced and breaks the tie

between multiple discrete alternatives. Igami (2017, 2018) demonstrates how Rust�s NFXP

naturally extends to such cases with a deterministic order of moves; Igami and Uetake (2017)

do the same with a stochastic order of moves. Thus, Bonanza is to Akira Watanabe what

Rust (1987) is to Harold Zurcher.

11

5 Go: AlphaGo

5.1 Algorithm

The developers of AIs for chess and shogi had successfully parameterized state spaces and

constructed evaluation functions. Meanwhile, the developers of computer Go struggled to

�nd any reasonable parametric representation of the board.

Go is more complicated than chess and shogi, with jSgoj � 10171 > 1071 � jSshogij. Go
has only one type of piece, a stone, and the goal is to occupy larger territories than the

opponent when the board is full of black and white stones (for players 1 and 2, respectively).

However, the 19 � 19 board size is much larger, and so is the action space. Practically all
open spaces constitute legal moves. The local positions of stones seamlessly interact with

the global ones. Even the professional players cannot articulate what distinguishes good

positions from bad ones, frequently using phrases that are ambiguous and di¢ cult to codify.

The construction of a useful evaluation function was deemed impossible.

Instead, most of the advance since 2006 had been focused on improving game-tree search

algorithms (Yoshizoe and Yamashita [2012], Otsuki [2017]). Even though the board states

in the middle of the game are di¢ cult to codify, the terminal states are unambiguous, with

either win or loss. Moreover, a �move�in Go does not involve moving pieces that are already

present on the board; it comprises simply dropping a stone on an open space from outside

the board. These features of Go make randomized �play-out�easy. That is, the programmer

can run Monte Carlo simulations in which black and white stones are alternatingly dropped

in random places until the board is �lled. Repeat this forward simulation many times, and

one can calculate the probability of winning from any arbitrary state of the board st. This

basic idea is behind a method called Monte Carlo tree search (MCTS).

Given the large state space, calculating the probability of winning (or its monotonic

transformation V (st)) for all st�s remains impractical. However, a computer program can

use this approach in real time to choose the next move, because it needs to compare only

jA (st)j < 361 = 19�19 alternative actions and their immediate consequences (i.e., states) at
its turn to move. Forward simulations involve many calculations, but each operation is simple

and parallelizable. That is, computing one history of future play does not rely on computing

another history. Likewise, simulations that start from a particular state st+1 = f (st; a) do

not have to wait for the completion of other simulations that start from s0t+1 = f (st; a
0),

where a 6= a0. Such computational tasks can be performed simultaneously on multiple

computers, processors, cores, or GPUs (graphic processing units). If the developer can use

12

many computers during the game, the MCTS-based program can perform su¢ ciently many

numerical operations to �nd good moves within a short time.

Thus, MCTS was the state of the art in computer Go programming when Demis Hassabis

and his team at Google DeepMind proposed a deep-learning-based AI, AlphaGo. The four

components of AlphaGo are (i) a policy network, (ii) RL, (iii) a value network, and (iv)

MCTS. Among these four components, (i) and (iii) were the most novel features relative to

the existing game AIs.

Component 1: Supervised Learning (SL) of the Policy Network

The �rst component of AlphaGo is a �policy network,� which is a deep neural network

(DNN) model to predict professional players�move at as a function of current state st. It is

a policy function as in (7), with a particular functional form and 4.6 million �weights�(i.e.,

parameter vector).13

Like Hoki did for Bonanza, the AlphaGo team determined by using the data from an

online Go website named Kiseido Go Server (KGS). Speci�cally, they used the KGS record

on 160,000 games played by high-level (6-9 dan) professionals. A game lasts 200 moves

on average, and eight symmetric transformations (i.e., rotations and �ipping) of the board

generate nominally di¤erent states. Hence, the e¤ective size of the dataset is

256 million (action-state pairs) = 160; 000 (games)� 200 (moves/game)

�8 (symmetric transformations).

Note the sample size is still small (negligible) relative to jSgoj � 10171.
Its basic architecture is a standard Convolutional Neural Network (CNN), which is known

to perform well in image-recognition tasks, among others. The Appendix describes the details

of AlphaGo�s DNN functional-form speci�cation. Its �nal output is the prediction of choice

probabilities across all legal moves based on the following logit formula:

Pr (at = jjst;) =
exp (yj (st;))P

j02A(st) exp (yj0 (st;))
; (9)

where j indexes actions and yj (st;) is the deterministic part of the latent value of choosing

action j in state st given parameter .

This speci�cation is �deep�in the sense that the model contains multiple layers, through

13I use to denote the parameter vector of policy function, and distinguish it from the parameter vector
of the value function �.

13

which yj (st) is calculated. It is named �neural network�because the layers contain many

units of simple numerical operations (e.g., convolution and zero-truncation), each of which

transmits inputs and outputs in a network-like architecture, with the analogy of computa-

tional nodes as biological neurons that transmit electric signals.

The approximate number of parameters in AlphaGo�s policy network is

4:6 million (weights) = (192 kernels)2 �
�
52 + 32 � 11 + 12

�
;

where each of the �kernels�is a 3�3 (or 5�5) matrix that is designed to indicate the presence
or absence of a particular local pattern, in each 3 � 3 (or 5 � 5) part of the board. Note
the number of parameters of AlphaGo�s policy function j j is smaller than the 50 million
parameters in Bonanza, despite the fact that Go has a larger state space than shogi.

The supervised learning (i.e., estimation) of uses a standard numerical optimization

algorithm to maximize the likelihood function that aggregates the optimal choice probabil-

ities implied by the model, the data, and the parameter values. That is, AlphaGo�s policy

function is estimated by the classical maximum likelihood method. The team did not add

any �regularization�term in the objective function, which is a common practice in machine

learning to improve the out-of-sample prediction accuracy at the expense of biased esti-

mates. Nevertheless, the estimated policy function, �
�
st; ̂

�
, could predict 55.7% of the

human players�moves outside the sample, and its top-�ve move predictions contained the

actual human choices almost 90% of the time.14

Component 2: Reinforcement Learning (RL) of the Policy Network

The ultimate goal of the AlphaGo team was the creation of a strong AI, not the prediction

of human play per se (or the unbiased estimation of). The second ingredient of AlphaGo is

the process of reinforcement learning to make a stronger policy function than the estimated

one from the previous step, �
�
st; ̂

�
.

Reinforcement learning is a generic term to describe a numerical search for �better�

actions based on some performance criteria, or �reward,� such as the average score of the

game. The speci�c task in the current case is to �nd some ~ 6= ̂ such that the winning

14By contrast, a simple parametric (logit without a DNN inside) version of the empirical policy function
(for the MCTS purposes) achieved only 27% accuracy, which is still remarkable but less impressive than the
DNN version�s performance.

14

probability is higher under strategy �
�
st; ~

�
than �

�
st; ̂

�
:

Pr
win

�
�
�
st; ~

�
; �
�
st; ̂

��
> Pr

win

�
�
�
st; ̂

�
; �
�
st; ̂

��
; (10)

where Prwin (�i; ��i) is the probability that player i wins with strategy �i against the oppo-

nent who uses ��i, in terms of the average performance across many simulated plays of the

game.

Because the outcome of the game depends on both �i and ��i, condition (10) does not

guarantee the superiority of �
�
st; ~

�
in general (i.e., when playing against any strategies

other than �
�
st; ̂

�
). The only way to completely address this issue is to solve the game

exactly for the optimal strategy �� (st), but such a solution is computationally impossible.

Accordingly, the development team tries to �nd �satis�cing� ~ , by making each candidate

policy play against many di¤erent policies that are randomly sampled from the previous

rounds of iteration (i.e., various perturbed versions of ̂ in the numerical search process),

and by simulating plays from a wide variety of st that are also randomly sampled from those

in the data (as well as those from perturbed versions of such historical games).

Component 3: SL/RL of Value Network

The third ingredient of AlphaGo is the evaluation function, V (st; �), to assess the probability

of winning from any st. Constructing such an object had been deemed impossible in the

computer Go community, but the team managed to construct the value function from the

policy function through simulations. Speci�cally, they proceeded as follows:

� Simulate many game plays between the RL policy function, �
�
st; ~

�
, and itself.

� Pick many (30 million) di¤erent states from separate games in the simulation and

record their winners, which generates a synthetic dataset of 30 million (win=loss; st)

pairs.

� Use this dataset to �nd the value function that predicts Prwin from any st.

In other words, strategy �
�
st; ~

�
implies certain outcomes in the game against itself,

and these outcomes become explicit through simulations:

Pr
win

�
�
�
st; ~

�
; �
�
st; ~

��
: (11)

15

Once the outcomes become explicit, the only remaining task is to �t some �exible functional

form to predict Prwin as a function of st, which is a plain-vanilla regression (supervised

learning) task.

The developers prepared another DNN (CNN) with a design that is similar to the policy

network: 49 channels, 15 layers, and 192 kernels. The only di¤erences are an additional

state variable that re�ects the identity of the player (to attribute the win/loss outcome

to the correct player) and an additional computational step at the end of the hierarchical

architecture that takes all arrays of intermediate results as inputs and returns a scalar (Prwin)

as an output.

Let us denote the estimated value network by

V
�
st; �̂; �i = ��i = �

�
st; ~

��
; (12)

where the expression �i = ��i = �
�
st; ~

�
clari�es the dependence of V (�) on the use of

speci�c strategy by both the focal player and the opponent in the simulation step to calculate

Prwin. These notations are cumbersome but help us keep track of the exact nature of the

estimated value network when we proceed to their structural interpretation.

Component 4: Combining Policy and Value with MCTS

The fourth component of AlphaGo is MCTS, the stochastic solution method for a large game

tree. When AlphaGo plays actual games, it combines the RL policy �
�
st; ~

�
and the RL

value (equation 12) within an MCTS algorithm.

Each of these components can be used individually, or in any combinations (Silver et al.

[2016], Figure 4). The policy function directly proposes the optimal move from any given

state. The value function indirectly suggests the optimal move by comparing the winning

probabilities across the next states that result from candidate moves. An MCTS can perform

a similar state-evaluation task by simulating the outcomes of the candidate moves. They

represent more or less the same concept: approximate solutions to an intractable problem

that is guaranteed to have a unique exact solution. Nevertheless, positive �ensemble e¤ects�

from combining multiple methods are frequently reported, presumably because di¤erent

types of numerical approximation errors may cancel out each other.15

15This ensemble part involves many implementation details of purely computational tasks, and hence is
beyond the scope of this paper.

16

5.2 Structural Interpretation: AlphaGo Is Two-step Estimation

Component 1: SL Policy Network Is First-Stage CCP Estimates

Deep Blue and Bonanza embody parametric value functions, whereas AlphaGo�s �rst key

component (SL policy network) is a nonparametric policy function, which is equivalent to

the estimation of CCPs in Hotz and Miller�s (1993) two-step method.

In case the reader is unfamiliar with the literature on dynamic structural models, I provide

a brief summary. The NFXP method (see section 4.2) requires the solution of a DP problem,

which becomes computationally expensive as the size of the state space increases. Moreover,

this solution step has to be repeated for each candidate vector of parameter values �.

Hotz and Miller (1993) proposed an estimation approach to circumvent this problem. To

the extent that the actual choices in the data re�ect the optimal choice probabilities that are

conditional on the observed state in the data, we can estimate the policy function directly

from the data. This procedure is the estimation of CCPs in their �rst stage. The bene�t

of this approach is that the procedure does not require solving a fully dynamic model. The

cost of this approach is that the requirement for data becomes more demanding.

One should avoid imposing parametric assumptions on the �rst-stage policy function,

because a typical goal of empirical analysis is to �nd the parameters of the value function (and

its underlying structural components, e.g., preference and technology), �, that are implied

by observed actions in data and not by their parametric surrogates. A priori restrictions

on the policy function could potentially contradict the solution of the underlying DP. Thus,

being nonparametric and preserving �exible functional forms are crucial for an adequate

implementation of the Hotz-Miller method. In this sense, the CCP method is demanding of

data. It trades the computational curse of dimensionality for the data curse of dimensionality.

Given this econometric context, the use of DNN seems a sensible choice of functional

form. In one of the foundational works for deep learning, econometrician Halbert White

and his coauthors proved such a multi-layer model with many nodes can approximate any

arbitrary functions (Hornik, Stinchcombe, and White [1989]), as long as the network is

su¢ ciently large and deep (i.e., has a su¢ cient degree of �exibility) to capture complicated

data patterns.16 The sole purpose and requirement of Hotz and Miller�s �rst stage is to

capture the actual choice patterns in the data as �exibly as possible. Silver et al. (2016)

report SL policy network�s out-of-sample move-prediction accuracy is 55% (and close to 90%

with top-�ve predictions in Maddison et al. [2015]), whereas that of a simple parametric

16See also Chen andWhite (1999). For an overview on deep learning, see Goodfellow, Bengio, and Courville
(2016), for example.

17

(logit) version is 27%. This level of �t is a remarkable achievement, because the sample size

is small (practically zero) relative to the size of the state space.

Component 2: RL Policy Network Is Like a �Counterfactual�with Long-Lived

Players

The making of the RL policy network does not involve raw data. Rather, it is a pure

numerical search for a better approximation of the truly optimal solution of the game (which

is known to exist and be unique). Although this paper focuses on the original version of

AlphaGo, discussing its pure-RL version (AlphaGo Zero) might be useful for a comparison:

� In the case of (original) AlphaGo, RL starts from the top human players� strategy

�
�
st; ̂

�
as an initial value, and iteratively searches for a �stronger�strategy �

�
st; ~

�
.

� In the case of AlaphGo Zero, RL starts from tabula rasa (i.e., nothing but purely

random play).17

Regardless of the choice of the initial value, RL in this context is a policy-function itera-

tion (or best-response iteration) approach that has been used in many economic applications,

such as Pakes and McGuire�s (1994, 2001) implementation of dynamic oligopoly games.

In the case of (original) AlphaGo, the resulting strategy �
�
st; ~

�
could be interpreted

as an outcome of some �counterfactual� experiment in which the top human players (as

embodied and immortalized in ̂) lived long careers and accumulated additional experience.

By the same token, the RL for AlaphGo Zero has a �avor of simulating the learning trajectory

of a �rst-time player without any teacher or textbook, although the exact form of human

learning from the actual games and training would be quite di¤erent.

Component 3: SL/RL Value Network Is Second-Stage CCS Estimates

According to Silver et al. (2016), AlphaGo�s SL/RL value network is the �rst successful

evaluation function for Go, which is a remarkable achievement. The procedure to obtain

this value function is a straightforward application of Hotz, Miller, Sanders, and Smith�s

(1994, henceforth, HMSS) CCS estimator, combined with another DNN to approximate the

complicated relationship between Prwin and st in the high-dimensional state space.

The literature context is the following. Hotz and Miller (1993) proved the existence of a

one-to-one mapping between the policy function and the value function, so that the former

17See Silver et al. (2017).

18

can be inverted to estimate the latter. This procedure is implemented by means of matrix

inversion in the second stage of their original method. However, this procedure requires the

inversion of a large matrix, the size of which increases with jSj, and poses computational
problems for the actual implementation.

HMSS (1994) proposed an alternative approach to Hotz and Miller�s second step. They

suggest running many forward simulations based on the �rst-stage CCPs. With su¢ ciently

many simulations, the implied value function and its underlying structural parameters can

be estimated. This principle underlies AlphaGo�s success in constructing a useful evaluation

function for Go.

Although AlphaGo is developed for the game of Go and therefore a dynamic game, its de-

velopment goal is a �strong�program to beat human champions (and not about studying the

strategic interactions among multiple human players in the data). Consequently, AlphaGo�s

connection to the empirical dynamic-game methods seems limited. For example, Bajari,

Benkard, and Levin (2007, henceforth BBL) extended HMSS (1994) to dynamic games and

proposed a moment-inequality-based estimation approach. The development process of game

AIs (including AlphaGo) typically abstracts from strategic interactions.18

Component 4: MCTS and Ensemble

The actual play of AlphaGo is generated by a complex combination of the estimated/reinforced

policy function, the value function, and MCTS.

The MCTS part involves randomly playing out many games. This �random� play is

generated from a simple version of the empirical policy function that resembles a standard

logit form (i.e., one without the multi-layer architecture of DNN to compute yj (st) as in

equation 9). Hence, AlphaGo in the actual game is a hybrid of the following:

� the reinforced version of top human players�strategy (as represented in a deep, convo-
lutional logit functional form),

� their implicit value function (with a similar DNN speci�cation), and

� real-time forward simulation based on the estimated �quick-and-dirty�policy function
(in a simple logit form).

18Section 6 discusses this and other related issues.

19

AlphaGo Zero: All-in-One Package

The new version of the program published in 2017, AlphaGo Zero (Silver et al. [2017]), does

not use any human data (or handcrafted features to represent the board state). Because it

has no empirical (human data-related) component, this new AI is not an obvious subject in

terms of econometrics.19

Nevertheless, one aspect of its architectural design seems intriguing: a single neural

network to perform the functions of both the policy network and value network in the

original version. This single network is larger than the previous networks and is combined

with MCTS for purely simulation-based search for the optimal strategy to play Go.

This design change is reasonable from the perspective of economic modeling, because

the construction of all three of the policy network, value network, and MCTS algorithm

in the original AlphaGo was conceptually redundant. Policy and value are dual objects;

one implies the other. Likewise, MCTS is a search for the optimal strategy on its own.

The �ensemble�e¤ect from combining the three components might have conferred an addi-

tional performance gain, but it is ultimately a manifestation of approximation errors within

individual components.

Finally, much of the performance gains in AlphaGo Zero seem to stem from the signi�-

cantly larger size of the neural network architecture (i.e., a more �exible functional form to

parameterize the state space). Hence, its superior performance against the original version

does not necessarily speak to the costs and bene�ts of using human data by themselves.

6 Implicit Assumptions

Sections 3, 4, and 5 explained how the concepts and algorithms behind the three game

AIs correspond to more familiar ideas and methods in the economics of dynamic structural

models.

� Deep Blue is a calibration of a linear value function.

� Bonanza�s machine-learning method is equivalent to Rust�s (1987) NFXP algorithm.

� AlphaGo�s SL policy network is a DNN implementation of Hotz and Miller�s (1993)

�rst-stage nonparametric CCP estimator.

19See paragraphs on RL policy function in the earlier part of this section.

20

� AlphaGo�s SL/RL value network is a DNN implementation of HMSS�s (1994) second-
stage CCS estimator.

This section clari�es some of the implicit assumptions underlying (the algorithms to

develop) these AIs, and discusses their implications.

Deep Blue does not use data analysis (at least for its main component), but both Bonanza

and AlphaGo use logit-style discrete-choice models, and therefore implicitly assume the

presence of an error term associated with each of the available actions at 2 A (st): " (at) �
type-1 extreme value.20 The inclusion of this continuous random variable to each discrete

alternative eliminates the possibility of ties between the payo¤s of multiple actions j and j0,

thereby making the mapping between the value function and the policy function unique.

In the plain-vanilla application of discrete-choice models, including Bonanza and Al-

phaGo, this error term is assumed i.i.d. across actions, players, time, and games. In some

empirical contexts, however, one might want to consider relaxing this distributional assump-

tion.

(1) Consideration Sets and Selective Search For example, a subset of legal moves

C � A (st) could belong to joseki, or commonly known move patterns, whereas other moves
are not even considered by human experts (i.e., outside their �consideration sets�) unless new

research shows their e¤ectiveness. Similarly, experts are forward-looking but focus on only

a few moves per decision node, conducting a highly selective game-tree search. Capturing

these aspects of human play would require the econometrician to distinguish between choice

sets and consideration sets.

(2) Cross-sectional Heterogeneity Large jAj, j�j, and j j necessitate the data-analysis
part of the AIs to pool data from all games regardless of the identity of players or occasions.

However, players are heterogeneous in their styles and strengths. Such di¤erences would

become a source of systematic heterogeneity in " (at) across players and contradict the i.i.d.

assumption.

(3) Inter-temporal Heterogeneity Likewise, the state of knowledge about desirable

moves, or joseki, evolves over time as a result of new games, experimentation, and research

(including the emergence of game AIs and their play styles). The evolving nature of knowl-

edge and strategies becomes a source of systematic heterogeneity in " (at) across time.

(4) Strategic Interactions Each game in the data embodies two speci�c players�at-

tempts to out-maneuver each other. When experts prepare for games, they study rival
20Because the goal of these games is to win, " (at) does not contribute to the eventual payo¤ ui (st). The

AIs�formulation treats " (at) as a purely transient, random component of payo¤s that players care about
only at the time of choosing concurrent at.

21

players�past and recent strategies to form beliefs about their choice probabilities and ex-

ploit any weaknesses. Such interactions continue during the actual games, as players keep

updating their beliefs and adjust strategies accordingly. By contrast, both the development

process and the actual play of game AIs are based on the assumption that ��i = �i (and

more or less equivalently, V�i = Vi), abstracting from strategic interactions.

(5) Time and Physical Constraints The exposition so far has mostly abstracted from

the notion of time constraints, but o¢ cial games impose limits on the amount of time each

player can spend on thinking. This time constraint makes the game nonstationary in terms

of clock time, and adds another dimension to the player�s optimization problem in terms of

the intertemporal allocation of thinking time. The data analysis for the game AIs abstracts

from these fundamental aspects of human play, although computers face the same constraint

in actual games. For AIs, time constraints manifest themselves either as the length L of a

truncated game tree (in the case of Deep Blue and Bonanza) or as the number of play-out

simulations for MCTS (in the case of AlphaGo).

Similar constraints exist in terms of physical (or mental) capacity in terms of computation

speed, information storage, and precision of these operations. Human players are more

constrained than computers and more prone to obvious mistakes, especially under severe

time constraints. In fact, an important aspect of strategic interactions between human

experts is about encouraging the opponent to make mistakes. Mistakes would make the

implicit " (at) irregular, and explicitly incorporating time and physical constraints would

lead to di¤erent modeling approaches.

7 Opportunities for Future Research

Relaxing the Implicit Assumptions to Capture Human Behavior

Relaxing these implicit assumptions (in the previous section) would make the underlying

models of human behavior for game AIs more realistic (i.e., more human-like). Having

achieved performance milestones in terms of pure strength (i.e., approximating the optimal

strategy better than top human players), approximating human behavior could be one of

the renewed research goals for game AI development. Adding ad hoc features to emulate

humans is one way, but developing and estimating a more realistic model could be another,

perhaps more fundamental approach.

The econometrics of dynamic structural models have advanced considerably since the time

of Rust (1987), Hotz and Miller (1993), and HMSS (1994) to address the issues in section 6.

22

Incorporating various kinds of heterogeneity as well as analyzing strategic interactions has

been central to this progress.21 Such new methods can be applied to the task of making the

AIs�underlying models more realistic.

Structural Econometrics for �Explainable AI�

Relaxing the implicit econometric assumptions would make the models not only more re-

alistic, but also more interpretable. One of the bene�ts of developing and estimating a

structural model is that the results are economically interpretable, above and beyond the

basic notions of causation and correlation in simpler settings (e.g., determining a statistical

relationship between some variables X and Y). The words �interpretable�and �explainable�

could mean di¤erent things in di¤erent �elds, but the concept of �structural interpretability�

seems useful as a guide for a more formal de�nition.

Note this proposal about structural interpretation should not be confused with the chal-

lenge concerning �explaining DNNs.�DNNs are a �exible functional form, or a class of basis

functions for nonparametric estimation, and therefore do not have economic interpretation

by themselves. By contrast, the object for which these functional forms are speci�ed could

have a structural interpretation (e.g., AlphaGo�s SL policy network is a CCP estimate of

the average professional player�s strategy under the maintained assumptions of homogeneity

etc.).

DNN for Nonparametric CCP Estimation

The use of DNN speci�cations for the �rst-stage nonparametric estimation of CCPs seems

a good idea. This class of model speci�cation has long been known to be capable of ap-

proximating arbitrary functions, but AlphaGo o¤ers a proof of concept in the dynamic-game

context, which is su¢ ciently complicated and potentially relevant for economic applications.

Clarifying the mapping between the two �elds is only a �rst step toward cross-fertilization,

but the opportunities for future research seem to suggest themselves.

21Bajari, Benkard, and Levin (2007), Aguirregabiria and Mira (2007), Pakes, Ostrovsky, and Berry (2007),
and Pesendorfer and Schmidt-Dengler (2008) proposed methods for analyzing dynamic games along the lines
of the two-step estimation method, whereas recent empirical applications, such as Igami (2017, 2018), Zheng
(2016), Yang (2017), and Igami and Uetake (2017), build on the full-solution method.
Kasahara and Shimotsu (2009) propose a method (based on rank conditions of the state transition dy-

namics) to identify the lower bound of the number of unobserved types that is required to rationalize data
patterns. Arcidiacono and Miller (2011) use an expectation-maximization algorithm to estimate CCPs in the
presence of such unobserved types. Berry and Compiani (2017) advance an instrumental-variables approach
to address unobserved heterogeneity in dynamic models.

23

Appendix: Functional-Form Speci�cation of AlphaGo

AlphaGo�s policy function uses the following functional form, and its value function has a

similar architecture. It consists of 48 input �channels�(variables), 13 �layers�(stages within

a hierarchical architecture), and 192 �kernels� (�lters to �nd local patterns). A complete

review of deep neural networks in general (or AlphaGo�s model speci�cation in particular) is

beyond the scope of this paper, but these objects interact as follows. Each of the 48 channels

represents a binary indicator variable that characterizes st:

xkt =

(
1 if feature k is present in st; and

0 otherwise.
(13)

�Features� include the positions of black stones, white stones, and blanks (see Extended

Data Table 2 of Silver et al. [2016] for the full list).

These xkt�s are not combined linearly (as in VDB or VBO) but are processed by many

kernels across multiple hierarchical layers. In the �rst layer, each of the 192 kernels is a 5�5
grid with 25 parameters that responds to a particular pattern within 25 adjacent locations.22

As the name �kernel�suggests, this 5�5 matrix is applied to perform convolution operations
at every one of the 225 (= 15� 15) locations within the 19� 19 board:

zr;c =
192X
l=1

5X
p=1

5X
q=1

wl;p;q � xl;r+p;c+q + b; (14)

where zr;c is the result of convolution for row r and column c, wl;r;q is the weight for kernel

l, row r, and column c, (p; q) denote the row and column of the kernel, xl;r+p;c+q is an input,

and b is the intercept term (�bias�). The weights and intercepts constitute the parameters

of the model (collectively denoted by in the main text). DNNs of this type are called

convolutional neural networks (CNNs) in the machine-learning literature, and are primarily

used for image-recognition tasks. The results of convolution are subsequently transformed

by a function,

yr;c = max f0; zr;cg ; (15)

where yr;c is the transformed output (to be passed on to the next layer as input). This

function is called recti�ed linear unit (or �ReLU�). The resulting 15� 15 output is smaller
22The �patterns� that these kernels are designed to pick up should be distinguished from the initial 48

�features�(variables) representing the board state in the original input data.

24

than the 19�19 board; the margins are �lled by zeros to preserve the 19�19 dimensionality
(�zero padding�).

In the second layer, another set of 192 kernels is used to perform convolution on the

outputs from the �rst layer. The results go through the ReLU transformation again, and

proceed to the third layer. The size of the kernels in layers 2 through 12 is 3 � 3, instead
of 5� 5 in layer 1. In layer 13, the size of the layer is 1� 1, because the goal of the policy
network is to put a number on each of the 19�19 board positions without �zero padding�the
margins. Each of the 19� 19 outputs in this last layer goes through a logit-style monotonic
(�softmax�) transformation into the [0; 1] interval,

CCPr;c =
exp (yr;c)P

r0
P

c0 exp (yr0;c0)
; (16)

so that the �nal output can be interpreted as the players�conditional choice probabilities of

choosing action j (or board location (r; c)).

References

[1] Arcidiacono, P., and R. A. Miller. 2011. �Conditional Choice Probability Estimation of

Dynamic Discrete Choice Models With Unobserved Heterogeneity.�Econometrica, 79:

1823�1867.

[2] Athey, Susan. 2017. �Beyond prediction: Using big data for policy problems.�Science,

355: 483�485.

[3] Bajari, P., C. L. Benkard, and J. Levin. 2007 �Estimating Dynamic Models of Imperfect

Competition.�Econometrica, 75: 1331�1370.

[4] Belloni, A., V. Chernozhukov, and C. Hansen. 2014. �High-Dimensional Methods and

Inference on Structural and Treatment E¤ects.�Journal of Economic Perspectives, 28:

29�50.

[5] Berry, S. T., and G. Compiani. 2017. �An Instrumental Variable Approach to Dynamic

Models.�Manuscript, Yale University.

[6] Campbell, M., A. Hoane, and F. Hsu. 2002. �Deep Blue.�Arti�cial Intelligence, 134:

57�83.

25

[7] Chen, Xiaohong, and Halbert White. 1999. �Improved Rates and Asymptotic Normality

for Nonparametric Neural Network Estimators.� IEEE Transactions on Information

Theory, 45 (2): 682�691.

[8] Goodfellow, I., Y. Bengio, and A. Courville. 2016. Deep Learning. Cambridge, MA: The

MIT Press.

[9] Habu, Yoshiharu, and NHK. 2017. Jinkou chinou no kakushin. Tokyo: NHK shuppan.

[10] Hoki, K. 2012. �Kazuno bouryoku de ningen ni chousen! Bonanza no tanjou,�in Com-

puter Shogi Association, ed., Ningen ni katsu computer shogi no tsukuri kata. Tokyo:

Gijutsu hyouron sha.

[11] Hoki, K., and A. Watanabe. 2007. Bonanza Vs Shoubunou: Saikyou shogi sohuto wa

ningen wo koeruka. Tokyo: Kadokawa (in Japanese).

[12] Hornik, K., M. Stinchcombe, and H. White. 1989. �Multilayer Feedforward Networks

are Universal Approximators,�Neural Networks, 2: 359�366.

[13] Hotz, V. J., and R. A. Miller. 1993. �Conditional Choice Probabilities and the Estima-

tion of Dynamic Models.�Review of Economic Studies, 60: 497�529.

[14] Hotz, V. J., R. A. Miller, S. Sanders, and J. Smith. 1994. �A Simulation Estimator for

Dynamic Models of Discrete Choice.�Review of Economic Studies, 61: 265�289.

[15] Igami, M.. 2017. �Estimating the Innovator�s Dilemma: Structural Analysis of Creative

Destruction in the Hard Disk Drive Industry, 1981�1998,�Journal of Political Economy,

125: 798�847.

[16] Igami, M.. 2018 �Industry Dynamics of O¤shoring: The Case of Hard Disk Drives.�

American Economic Journal: Microeconomics, forthcoming.

[17] Igami, M., and K. Uetake. 2017. �Mergers, Innovation, and Entry-Exit Dynamics: Con-

solidation of the Hard Disk Drive Industry, 1996�2016.�Manuscript, Yale University.

[18] Kaneko, Tomoyuki. 2012. �GPS Shogi no tanjou,�in Computer Shogi Association, ed.,

Ningen ni katsu computer shogi no tsukuri kata. Tokyo: Gijutsu hyouron sha.

[19] Kasahara, H., and K. Shimotsu. 2009. �Nonparametric Identi�cation of Finite Mixture

Models of Dynamic Discrete Choices.�Econometrica, 77: 135�175.

26

[20] Kasparov, G.. 2007. How Life Imitates Chess: Making the Right Moves, from the Board

to the Boardroom. London: Bloomsbury.

[21] Maddison, C. J., A. Huang, I. Sutskever, and D. Silver. 2015. �Move Evaluation in Go

Using Deep Convolutional Neural Networks.�ICLR.

[22] Mullainathan, S., and J. Spiess. 2017. �Machine learning: an applied econometric ap-

proach.�Journal of Economic Perspectives, 31: 87�106.

[23] Otsuki, T.. Saikyou igo AI AlphaGo kaitai shinsho. Tokyo: Shoeisha (in Japanese).

[24] Pakes, A., and P. McGuire. 1994. �Computing Markov-Perfect Nash Equilibria: Nu-

merical Implications of a Dynamic Di¤erentiated Product Model.�RAND Journal of

Economics, 25 (4): 555�589.

[25] Pakes, A., and P. McGuire. 2001. �Stochastic Algorithms, Symmetric Markov Perfect

Equilibrium, and the �curse�of Dimensionality.�Econometrica, 69 (5): 1261�1281.

[26] Pakes, A., Ostrovsky, M., and Berry, S. 2007. �Simple estimators for the parameters of

discrete dynamic games (with entry/exit examples).�RAND Journal of Economics, 38:

373�399.

[27] Pesendorfer, M., and P. Schmidt-Dengler. 2008. �Asymptotic Least Squares Estimators

for Dynamic Games.�Review of Economic Studies, 75: 901�928.

[28] Rust, J.. 1987. �Optimal Replacement of GMC Bus Engines: An Empirical Model of

Harold Zurcher.�Econometrica, 55: 999�1033.

[29] Rust, J.. 2017. �Dynamic Programming, Numerical.�Wiley StatsRef: Statistics Refer-

ence Online.

[30] Silver, D., A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J.

Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe,

J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T.

Graepel, and D. Hassabis. 2016. �Mastering the game of Go with deep neural networks

and tree search.�Nature, 529: 484�489.

[31] Silver, D., J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert,

L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den Driess-

che, T. Graepel, and D. Hassabis. 2017. �Mastering the game of Go without human

knowledge.�Nature, 550: 354�359.

27

[32] Tsuruoka, Yoshimasa. 2012, �Gekisashi no tanjou,�in Computer Shogi Association, ed.,

Ningen ni katsu computer shogi no tsukuri kata. Tokyo: Gijutsu hyouron sha.

[33] Varian, Hal. 2014. �Big Data: New Tricks for Econometrics.� Journal of Economic

Perspectives, 28: 3�28.

[34] Watanabe, Akira. 2013. Shōbushin. Tokyo: Bungei shunju (in Japanese).

[35] Watanabe, Akira. 2014. Watanabe Akira no shikou: Banjou bangai mondou. Tokyo:

Kawade shobou shinsha (in Japanese).

[36] Yamamoto, I.. 2017. Jinkou chinou wa donoyouni shite �Meijin�wo koetanoka? Tokyo:

Diamond sha (in Japanese).

[37] Yang, Chenyu. 2017. �Could Vertical Integration Increase Innovation?� Manuscript,

University of Rochester.

[38] Yoshizoe, K., and H. Yamashita. 2012. Computer Go: Theory and Practice of Monte

Carlo Method (ed. by H. Matsubara). Tokyo: Kyouritsu shuppan (in Japanese).

[39] Zheng, Fanyin. 2016. �Spatial Competition and Preemptive Entry in the Discount Retail

Industry.�Manuscript, Columbia University.

28

