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Abstract

We analyze a long-term investor’s dynamic spending and asset allocation de-
cisions by incorporating an illiquid alternative asset into an otherwise standard
modern portfolio theory framework. The alternative asset has a lock-up period,
but can be voluntarily liquidated or increased by paying a proportional cost prior
to the lock-ups expiration. The investor benefits from liquidity diversification,
which results from the alternative assets’ staggered maturity dates. The quan-
titative results of our calibrated model match the spending and asset allocation
decisions of university endowment funds, if the alternative asset earns an expected
risk-adjusted net-of-fees return of 2-3% (with public equity as the benchmark).
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1. Introduction

Modern portfolio theory (MPT) developed by Markowitz (1952) and Merton (1969, 1971)

and widely-used asset allocation rules by institutional investors, such as the 60-40 rule,

frame the asset allocation problem within the set of perfectly liquid securities.1 There are,

however, many investable financial assets that are not liquid. The last several decades

have seen a large increase in the popularity of illiquid “alternative assets,” such as hedge

funds, private equity, venture capital, and illiquid natural resources. Figure 1 plots the

aggregate portfolio allocations of university endowment funds over time, and shows how

popular alternative assets have become, with alternative assets rising from only 7% of

holdings in 1990 to 54.7% in 2015.

A portfolio philosophy based on high allocations to alternative assets was popular-

ized, at least in part, by the success of David Swensen at the Yale University endowment

fund, and is often referred to as the Endowment Model (see Swensen (2000), Takahashi

and Alexander (2002), Liebowitz, Bova, and Hammond (2010), and Lerner (2015)). The

endowment model recommends that sophisticated institutional investors allocate a sig-

nificant fraction of their portfolio to illiquid alternative assets.2 Swensen (2000, pg. 87)

argues that investors should focus on “relatively illiquid markets, since rewarding invest-

ments tend to reside in dark corners, not in the glare of floodlights.” By following this

approach, Swensen is credited with earning more than $20 billion in excess returns over

1MPT recommends that a mean-variance investor (or an investor with constant-relative-risk-aversion
preferences over consumption and wealth) should allocate a constant fraction given by x = η/(γσ) to
public equity, where γ is the investor’s coefficient of relative risk aversion, η is the Sharpe ratio and and
σ is the volatility of public equity, respectively. This implies that with commonly used parameter values
for the U.S. stock market, i.e., 6% equity risk premium and 20% volatility implying a 30% Sharpe ratio,
investors with risk aversion γ = 2.5 should invest 60% = 30%/(2.5 × 20%) of total capital in public
equity and the remaining 40% in bonds. This is how MPT provides a justification for the 60-40 rule.

2The endowment models also advocates careful selection of active portfolio managers, with a focus
on aligning incentives and finding entrepreneurial managers. We do not consider this aspect of the
endowment model in this paper.
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a 20 year period (see Lerner (2015)).

The Endowment Model, however, has its limitations. As Swensen (2005) himself

notes, only sophisticated investors who can identify superior active managers should

include alternative assets in their portfolios, and many investors are better off completely

avoiding alternatives. Further, the Endowment Model’s emphasis on illiquid assets can

be costly. For example, during the financial crisis both Harvard and Stanford University

Endowments were forced to incur significant costs due to their portfolios’ illiquidity.3
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Figure 1: Endowment data are from the National Association of College and University
Business Officers (NACUBO) and Commonfund surveys of endowment funds. This figure
shows the portfolio allocations for the value weighted “aggregate fund” by summing up
the value of the holdings of the endowments in the sample in each year from 1990 to
2015. For the purpose of comparison, this sample includes only the endowment funds
that entered the sample by 1990. The green area shows the allocations to cash and fixed
income securities, the yellow area shows the allocations to public equity, and the red area
shows the allocations to alternative assets (hedge funds, private equity, venture capital,
private real estate, and illiquid natural resources).

3For further discussion of the effects of endowment illiquidity on Harvard University see Ang (2012)
and for Stanford see http://www.nytimes.com/2009/10/06/business/06sorkin.html.
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We develop a model to analyze a long-term investor’s dynamic spending/consumption

and asset allocation decisions by incorporating an illiquid investment opportunity into an

otherwise standard MPT framework. We capture the illiquidity of the alternative asset

as follows. First, the alternative asset has a finite target duration based on the lock-up

and holding period, meaning that the alternative asset (or a fraction of it) periodically

becomes fully liquid. This assumption corresponds to what Swensen (2000, pg. 161)

terms “natural asset turnover,” such as the liquidation of private equity funds or cash

distributions from alternative assets. Second, we assume that the alternative asset has

unspanned risk that cannot be diversified away by public equity, which creates an addi-

tional diversification benefit from investing in the alternative asset. Third, the investor

can choose to voluntarily liquidate a part of the alternative asset holding on dates other

than maturity dates, but doing so incurs a proportional liquidation cost. This cost cap-

tures the empirically observed discounts for alternative assets in the secondary markets,

for example, due to search and adverse selection costs. Fourth, for any voluntary acqui-

sition of the alternative asset the investor pays an acquisition cost, which allows us to

capture the costs of search, due diligence, legal and audit fees, etc. Fifth, we show how

the model can incorporate liquidity diversification by allowing the investor to stagger the

maturities of portions of the alternative asset holdings over time.

Our qualitative and quantitative results significantly differ from the standard predic-

tions implied by MPT. In addition to deciding how much risk to take (i.e., the allocation

between risky and risk-free assets), we show that liquidity considerations are also very

important for the welfare of a long-term investor. That is, the liquidity ratio w = W/A

between the total market value of liquid wealth W (e.g., stocks and bonds) and the value

of the alternative asset A plays a critical role for the investor’s asset allocation and wel-

fare, or equivalently her certainty equivalent wealth, which is the natural welfare measure
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in dollars.

We show that the optimal portfolio holding involves a range of w depending on the

history of realized shocks to public equity and the alternative asset, due to the transaction

costs and the alternative asset’s illiquidity. This is in sharp contrast with the single

level for the optimal portfolio holding w∗ when the alternative asset is fully liquid (full

spanning and no transaction costs). Although the optimal w involves a range of values,

we can still calculate the target portfolio holding that maximizes the investor’s long-term

welfare, which we use to compare with the frictionless case. Because the alternative asset

is illiquid and its risk is incompletely spanned by publicly traded equity, the investor

values liquid wealth more than its face value as it buffers shocks to alternative assets,

facilitates the acquisition of alternative assets, and enables the investor to rebalance the

portfolio.

Quantitatively, we show that the marginal (welfare) value of liquid wealth can be

significantly larger than one, especially when the investor’s liquidity ratio w is low. This

is because a long-term investor with low liquid wealth as a fraction of her net worth

values liquid wealth more due to portfolio balancing considerations.

We calibrate our model using parameters drawn from the literature, and compare

the results with the portfolio allocations of U.S. university endowment funds. As Figure

1 shows, in 2015 the value weighted “aggregate endowment fund” allocated 54.7% of

its holdings to alternative assets, 33.7% to public equity, and 11.8% to cash and fixed

income. There is, however, substantial cross-sectional variation. For example, the Yale

University endowment managed by Swensen for almost thirty years held 73.7% of its

holdings in alternative assets,4 18.6% in public equity, and 7.7% in cash and fixed income.

4The 2015 Yale University Endowment annual report listed allocations of 20.5% to hedge funds,
16.2% to private equity, 16.3% to venture capital, 14.0% to real estate, and 6.7% to natural resources.

4



In contrast, 8.1% of endowments hold no alternative assets at all. Thus, the challenge for

the model is to explain both the high allocations to illiquid assets by some endowments

and also the substantial cross-sectional variation in allocations.

Our calibration results show that the empirically observed portfolio allocations can

be justified with reasonable values of alpha. In our model, we define alpha relative to the

benchmark of public equity, and thus the alternative asset’s “alpha” may include com-

pensation for illiquidity, diversification benefits, managerial skill, and the value created

through improved corporate governance and incentive structures.5 For review studies

of the evidence that alternative asset funds generate alpha relative to a benchmark of

public equity, see Metrick and Yasuda (2011) for private equity funds and Agarwal, Mul-

lally, and Naik (2015) for hedge funds. Importantly, there is also evidence that investors’

vary in their ability to access the skill exhibited by alternative asset managers.6 Lerner,

Schoar, and Wang (2008) argue that the endowment funds of more selective universities

have access to superior alternative investment opportunities due to superior investment

committees and their alumni networks, and state that their findings do not imply that

ordinary endowments could achieve similar results to the top endowment funds.

In our calibration results, with an alpha of 3% per year our model implies an alter-

native asset allocation of 60.2% of the portfolio’s net worth, which is in line with the

actual allocation found among the largest decile of endowment funds. With expected

alphas of 1% and 2%, our model implies that alternative asset allocations of 12.7% and

34.5%, respectively, which approximately match the interquartile range of actual endow-

5Franzoni, Nowak, and Phalippou (2012) show empirical evidence that private equity funds earn
liquidity premia; Aragon (2007) and Sadka (2010) show similar findings for hedge funds. Kaplan and
Strömberg (2009) argue that private equity funds create value-add (i.e., alpha) by improving corporate
governance and operating efficiency.

6See Lerner, Schoar, and Wongsunwai (2007), Lerner, Schoar, and Wang (2008), and Hochberg,
Ljungqvist, and Vissing-Jorgensen (2014).
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ment fund allocations. Finally, for endowments without access to alternative assets that

earn alphas, our model implies that it is optimal for them to avoid alternative assets

altogether. Thus, our model matches the empirically observed variation in allocations

across endowment funds with reasonable variation in beliefs about alpha. Specifically,

with an alpha of 2% per year the model implies a payout rate of 5.3% per year, which is

close to the 5.2% average payout rate found by Brown, Dimmock, Kang, and Weisbenner

(2014). Unlike asset allocations, the payout rate is much less sensitive to changes in

alpha; increasing the expected alpha from 2% to 3% raises the implied payout rate by 20

basis points to 5.5%.

The calibration results show that asset allocations are very sensitive to the unspanned

volatility of the alternative asset. As the unspanned volatility changes from 15% to 5%,

investors reduce allocations to alternative assets from 34.5% of the entire portfolio to only

11.3%. This result suggests that both alpha and the diversification benefits provided by

alternatives are important drivers of investors’ asset allocation.

Practitioners, such as Hayes, Primbs, and Chiquoine (2015), argue that different in-

stitutional investors vary in their ability to substitute spending over time. For example,

defined benefit pension plans have little spending flexibility because payments to retirees

are firm commitments. In contrast, family offices have high spending flexibility and

university endowments have intermediate flexibility. As a simple way to model this pref-

erence heterogeneity across investors, we use non-expected utility preferences developed

by Epstein and Zin (1989) to separate risk aversion from the elasticity of intertempo-

ral substitution (EIS). The results show that risk aversion has a large effect on asset

allocation, with higher risk aversion resulting in lower allocations to public equity and

alternative assets. The EIS has large effects on the spending rate: changing the EIS

from 0.5 to 1 decreases the spending rate from 5.3% to 4.0%. The EIS also affects port-
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folio allocations when the alternative asset is illiquid. An investor with a high EIS is

more willing to substitute consumption across periods, and so is more willing to accept

portfolio illiquidity. For example, changing the EIS from 0.5 to 1 implies an increase in

alternative asset holdings of 5.7 percentage points. This is in contrast to the case of full

spanning, in which the EIS does not affect asset allocation.

Related Literature. Our paper is closely related to Sorensen, Wang, and Yang (2014),

henceforth SWY, which uses a dynamic portfolio choice model to value the cost of illiquid-

ity and management compensation (including both management fees and carried inter-

est) in private equity. There are several major differences between SWY and our paper.

First, SWY uses constant-absolute-risk-averse (CARA) utility, which rules out wealth

effects, while we use constant-relative-risk-averse (CRRA) utility. Our choice of CRRA

allows us to focus on the quantitative implications for the portfolio rule as a time-varying

percentage allocation of net worth, while CARA utility predicts a wealth-independent

dollar allocation to the alternative asset. Second, the two papers model illiquidity very

differently. SWY assumes that the investor must hold the alternative asset for a fixed T

years without any option to exit. We allow for both costly liquidation and automatic free

liquidity events at maturity for the alternative asset. Third, we allow for the investor to

recurrently acquire and liquidate her alternative asset. Finally, our model quantitatively

matches the Endowment Model for investors with access to sufficiently high alphas.

Ang, Papanikolaou, and Westerfield (2016), henceforth APW, develop a parsimonious

and tractable model of portfolio choice with an illiquid asset. APW assume that the

alternative asset cannot be traded for intervals of uncertain duration (modeled via a

stochastic Poisson arrival process). In their model the asset can be fully illiquid for very

long periods of time due to the long tails associated with exponential distributions. In
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contrast, our model has a secondary market that allows liquidation at all times by paying

a proportional transaction cost.

Bollen and Sensoy (2016) incorporate real options insight and develop a model for

valuing illiquid private equity when secondary markets exist. Bollen and Sensoy (2016)

assume that the investor must place their entire private equity allocation in a single fund,

and they exogenously fix the allocation to the risk-free asset and the spending rate rather

than allowing investors to make optimal portfolio rebalancing decisions. In contrast, our

model allows for liquidity diversification as investors can stagger illiquid investments

over time, and solve for optimal allocations to the risk free asset, the spending rate, and

rebalancing decisions at all times.

Our model is related to the literature on portfolio choice with illiquid financial as-

sets. Prior studies have used two main approaches to modeling illiquidity. First, papers

such as Constantinides (1986), Davis and Norman (1990), Grossman and Laroque (1990),

Vayanos (1998), Lo, Mamaysky, and Wang (2004), and Buss, Uppal, and Vilkov (2015)

model illiquidity due to transaction costs. In these models, the illiquid asset is always

tradable but at a cost. Second, papers such as Kahl, Liu, and Longstaff (2003), Longstaff

(2009), Dai, Li, Liu, and Wang (2010), De Roon, Guo, and ter Horst (2010), and Ang, Pa-

panikoaou, and Westerfield (2016) model illiquidity from trading restrictions in which the

asset is freely tradable at certain points in time but no trade is permitted at other times.

Our model combines the features of both types of models; the alternative asset becomes

fully liquid at maturity (e.g., when a private equity fund partnership is dissolved) but

can be liquidated prior to maturity by paying a proportional cost (e.g., selling a private

equity fund at a discount on the secondary market). Our model also incorporates non-

expected utility/recursive preferences developed by Epstein and Zin (1989) and Duffie

and Epstein (1992) which allow us to separate how risk aversion and the EIS interact
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with portfolio illiquidity.

Our paper also contributes to the literature on university endowment funds. Merton

(1992), Gilbert and Hrdlicka (2015), and Cejnek, Franz, and Stoughton (2017) model

the spending and portfolio choice decisions of university endowment funds. These pa-

pers consider only fully liquid securities, while our paper analyzes the impact of illiquid

alternative assets. Lerner, Schoar, and Wang (2008), Brown, Garlappi, and Tiu (2010),

Barber and Wang (2013), and Ang, Ayala, and Goetzmann (2014) show there is a posi-

tive relation between allocations to alternative assets and return performance. Dimmock

(2012) shows that universities with higher non-tradable income hold safer and more liq-

uid endowment fund portfolios. Brown, Dimmock, Kang, and Weisbenner (2014) show

that endowment fund losses have significant effects on university operations including

personnel cuts.

2. Model

We develop a model to analyze a long-term investor’s dynamic consumption and asset

allocation decisions by incorporating an illiquid investment opportunity into the other-

wise standard modern portfolio theory framework developed by Merton (1969, 1971). We

interpret the illiquid investment opportunity in our model as the representative portfolio

of alternative assets including private equity, hedge funds, private real estate, infrastruc-

ture, and other illiquid assets. For ease of comparison with Merton’s modern portfolio

theory, we also develop our model in continuous time. Next, we summarize the standard

investment opportunities in liquid assets and then introduce the alternative asset.

Liquid Investment Opportunities: Public Equity and Bonds. The risk-free

bond pays interest at a constant (annualized) risk-free rate r. Public equity can be
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interpreted as the market portfolio of publicly traded securities, and its cum-dividend

market value, St, follows a geometric Brownian motion (GBM):

dSt
St

= µSdt+ σSdBSt , (1)

where BSt is a standard Brownian motion, and µS and σS are the constant drift and

volatility parameters. The Sharpe ratio for public equity is thus:

ηS =
µS − r
σS

. (2)

The liquid investment opportunity set in our model is, by construction, the same as in

Merton (1971). Next, we introduce the alternative asset, which is the investor’s third

investment opportunity and the key building block in our model.

2.1. The Alternative Asset

Adding the alternative asset expands the investment opportunity set and thus makes the

investor better off. Additionally, provided the alternative asset is not perfectly correlated

with public equity, it provides diversification benefits. Unlike public equity, however,

alternative assets are generally illiquid and involve some form of lock-up. For example,

investments in private equity typically have a life span of 10 years with extension options,

and hedge funds often have lock-up periods and gate provisions.

A key feature of alternative assets is that their illiquidity is not constant over time.

For example, private equity funds are highly illiquid for much of their lives but eventually

mature and return liquid capital to their investors. We model these liquidity events as

follows. Let {At; t ≥ 0} denote the alternative asset’s fundamental value process with a

given initial stock A0. The fundamental value refers to the fully realizable value of the

asset if it is held to maturity. However, with illiquidity or other financial imperfections,

at any time t prior to maturity the asset’s fundamental value is different from its market
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value. To capture the target finite duration of the lock-up and holding period, we assume

every mT years, where m is an integer, a δT fraction of the stock of illiquid alternative

asset AmT automatically becomes liquid at no cost. That is, in the absence of any active

acquisition or divestment of the illiquid asset at mT , we have AmT = (1 − δT )AmT−.

Naturally, the investor’s liquid asset value at time mT increases by δTAmT−.

The Fundamental Value Process A. We assume that the fundamental value A,

in the absence of a scheduled automatic liquidity event (at time mT ) or any interim

acquisition or divestment, evolves via the following GBM:

dAt
At−

= µAdt+ σAdBAt − δAdt , (3)

where BAt is a standard Brownian motion, µA is the cum-payout expected return (net of

fees), σA is the constant volatility of returns, and δA is the alternative asset’s payout rate.

That is, the alternative asset pays dividends at the rate of δAAt with an implied dividend

yield of δA. Intuitively, δA can be interpreted as measuring regular cash disbursements, or

alternatively, as a continuous time approximation of the annualized automatic liquidity

as T becomes small. W use ρ to denote its correlation coefficient with BSt , the shocks to

public equity.

Note that we have purposefully written the drift of the value process A as µA − δA,

because the payout δA will appear in the wealth accumulation process. In complete

markets, the investor can frictionlessly and dynamically trade the alternative asset with-

out restrictions or costs. Therefore, the alternative asset’s market value is equal to its

fundamental value and the Modigliani-Miller theorem holds, meaning that whether we

explicitly model the payout rate δA is irrelevant. In this ideal case, the alternative asset

is conceptually no different than liquid public equity. In contrast, when the alternative
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asset is illiquid and not fully spanned by public equity, we must separately keep track of

the dividend yield δA and expected capital gains µA−δA. That is, the cum-dividend pay-

out rate µA is no longer a sufficient measure of expected returns for the alternative asset

as its dividend and expected capital gains influence the investor’s portfolio optimization

problem differently. Next, we introduce how the investor can actively change her illiquid

alternative asset holdings.

Interim Acquisition and Liquidation of the Alternative Asset Holding. At any

time, the investor can choose to change her alternative asset holdings through acquisitions

or liquidations. Let dLt denote the amount of the alternative asset that the investor

liquidates at any time t > 0, and let dXt denote the amount of the alternative asset that

the investor purchases at time t. Then, we can incorporate the investor’s acquisition and

liquidation options into the alternative asset’s fundamental value process as follows:

dAt = (µA − δA)At−dt+ σAAt−dBAt − dLt + dXt − δTAt−I{t=mT−} , (4)

where I{·} is the indicator function. The first two terms correspond to the standard

drift and volatility terms, the third and fourth terms give the acquisition and liquidation

amounts, and the last term captures the lumpy payout to the investor at the scheduled

liquidity event dates t = mT where m = 0, 1 · · · .

Although the acquisition and liquidation costs for the alternative asset do not appear

in (4), they will appear in the liquid wealth accumulation process. We assume that the

cost of voluntary liquidation is proportional. That is, by liquidating an amount dLt > 0,

the investor realizes only (1 − θL)dLt in net, where the remaining amount θLdLt is the

liquidation cost. Similarly, if the investor acquires an amount dXt > 0, the transaction

cost θXdXt is paid out of the liquid asset holding to the third party. Naturally, 0 ≤ θL ≤ 1

and θX ≥ 0. Higher values of θL or θX indicate the alternative asset is more illiquid.
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Intuitively, θL can be interpreted as the illiquidity discount on secondary market sales

of alternative assets (e.g., see Kleymenova, Tamor, and Vasvari (2012), Bollen and Sensoy

(2016), and Nadauld, Sensoy, Vorkink, and Weisbach (2017)). Such discounts can arise

to compensate buyers for search costs, asymmetric information risks, or due to market

power when there are few buyers. The parameter θX can be interpreted as the transaction

costs of purchasing alternative assets, such as search costs, legal fees, placement agent

fees, consultant fees, etc. The costs of interim liquidation (θL) and of purchases (θX)

can be asymmetric as voluntary liquidation is generally more costly, particularly when

financing conditions are tough with few buyers and many sellers such as during the recent

financial crisis. Before we analyze the effect of illiquidity, we next construct measures to

quantify the risk and return of the alternative asset.

Alpha, Beta, and Epsilon (Unspanned Volatility). Suppose that the “instanta-

neous return” for the alternative asset, dAt/At−, is perfectly measurable. We can then

regress dAt/At− on dSt/St, and obtain the alternative asset’s beta with respect to public

equity, following the standard capital asset pricing model (CAPM) formula:

βA =
ρσA
σS

. (5)

However, in reality, because investors cannot dynamically rebalance their holdings in the

illiquid asset without incurring transaction costs, investors will demand an additional

risk premium in addition to the standard risk premium implied by the CAPM.

We decompose the total volatility of the alternative asset, σA, into two orthogonal

components: the part spanned by the public equity, ρσA, and the remaining unspanned
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volatility, ε,7 which is given by:

ε =
√
σ2
A − ρ2σ2

A =
√
σ2
A − β2

Aσ
2
S . (6)

This volatility, ε, introduces an additional risk into the investor’s overall portfolio,

as markets are incomplete and adjusting the alternative asset holding is costly. We will

show that the spanned and unspanned volatilities play distinct roles in the investor’s

dynamic asset allocation.

Anticipating our subsequent risk-return tradeoff analysis in the context of dynamic

portfolio construction, we next introduce α implied by the CAPM, where public equity

is used as the aggregate market portfolio. That is, we define α as follows:

α = µA − (r + βA(µS − r)) , (7)

where βA is the alternative asset’s beta given by (5). In frictionless capital markets where

investors can continuously rebalance their portfolio without incurring any illiquidity dis-

counts or transaction costs, α measures the risk-adjusted excess return offered by this

risky asset after benchmarking against the public equity index. However, importantly, in

our framework with illiquid assets, α also includes the part of the excess return that com-

pensates investors for bearing an illiquidity premium (or for bearing any other systematic

risk that is unspanned by public equity).

2.2. The Optimization Problem

Liquid Wealth and Net Worth. We use W to denote the investor’s liquid wealth

and Π to denote the amount allocated to public equity. The remaining liquid wealth,

7Although ε is unspanned by public equity, this does not necessarily imply that ε is purely idiosyncratic
risk. We take no stand on whether public equity is the market portfolio in the sense of Roll (1977).
Thus, ε may include systematic risks that are potentially compensated, but which are not correlated
with the market portfolio.
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W − Π, is allocated to the risk-free bond. Thus, liquid wealth evolves according to:

dWt = (rWt− + δAAt− − Ct−) dt+ Πt−
(
(µS − r)dt+ σSdBSt

)
+(1− θL)dLt − (1 + θX)dXt + δTAt−I{t=mT−} , (8)

where the first two terms in (8) are the standard ones in Merton’s consumption/portfolio-

choice problem. The third and fourth terms describe the effect on liquid wealth W due

to the investor’s interim liquidation and purchase of the alternative asset. Recall that

θL and θX capture the proportional cost of interim liquidations and purchases of the

alternative asset, respectively. Finally, the last term captures the lumpy payout to the

investor at the automatic liquidity event dates t = mT .

In general, W and A are not perfect substitutes and the investor values them dif-

ferently. Hence, simply adding them up generally does not make much economic sense.

Having expressed our concerns, we still define the investor’s net worth as the sum of the

two sources of wealth, as conventionally done purely as an accounting measure:

Nt ≡ Wt + At . (9)

It is convenient to use net worth N when demonstrating our model’s solutions and linking

to the empirical literature. We will show when net worth makes economic sense and when

it does not. Finally, we close our model by introducing the investor’s preferences and

defining the value functions.

Preferences and Value Functions. The investor’s preferences allow for separation

of risk aversion and the elasticity of intertemporal substitution (EIS), and feature both

constant relative risk aversion and constant EIS (Epstein and Zin, 1989; Weil, 1990). We

use the continuous-time formulation of this non-expected utility, introduced by Duffie
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and Epstein (1992). That is, the investor has a recursive preference defined as follows

Vt = Et
[∫ ∞

t

f(Cs, Vs)ds

]
, (10)

where f(C, V ) is known as the normalized aggregator for consumption C and the in-

vestor’s utility V . Duffie and Epstein (1992) show that f(C, V ) for Epstein-Zin non-

expected homothetic recursive utility is given by

f(C, V ) =
ζ

1− ψ−1

C1−ψ−1 − ((1− γ)V )χ

((1− γ)V )χ−1
, (11)

where

χ =
1− ψ−1

1− γ . (12)

The parameter ψ > 0 measures the EIS, and the parameter γ > 0 is the coefficient of

relative risk aversion. The parameter ζ > 0 is the investor’s subjective discount rate.

The widely used time-additive separable constant-relative-risk-averse (CRRA) utility

is a special case of the Duffie-Epstein-Zin-Weil recursive utility specification, where the

coefficient of relative risk aversion is equal to the inverse of the EIS ψ, i.e., γ = ψ−1

implying χ = 1. For this special case, we have f(C, V ) = U(C)− ζV , where U(C) is the

expected CRRA utility with γ = ψ−1 and U(C) = ζC1−γ/(1− γ). Note that for CRRA

utility, f(C, V ) is additively separable.8 In general, with γ 6= 1/ψ, we can separately

study the effects of risk aversion and the EIS.

This separation is important as it allows us to capture important preference hetero-

geneity among different types of investors. For example, Hayes, Primbs, and Chiquoine

(2015) argue that defined benefit pension plans have little spending flexibility, because

payments to retirees are firm commitments that must be honored. In contrast, family

8By integrating Eq. (10) forward for CRRA utilty, we obtain V = Et
[∫∞
t
e−ζ(s−t)U(Cs)ds

]
.
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offices have high spending flexibility and university endowments have intermediate flexi-

bility. A simple way to model this variation across investors is through the choice of EIS

(i.e., assigning a low EIS to pension funds and a high EIS to family offices).

The investor has three state variables: liquid wealth Wt, the alternative asset’s value

At, and calendar time t. Let V (Wt, At, t) denote the corresponding value function. The

investor chooses consumption C, public equity investment Π, and the alternative asset’s

cumulative liquidation L and cumulative acquisition X to maximize the value function

V (Wt, At, t) by solving:

V (Wt, At, t) = max
{C,Π, L,X}

Et
[∫ ∞

t

f(Cs, V (Ws, As, s))ds

]
. (13)

Naturally, at each automatic liquidity event date mT , if WmT = W(m−1)T = W , and

AmT = A(m−1)T = A, we must have

V (W,A,mT ) = V (W,A, (m− 1)T ) . (14)

Hence, it is sufficient for us to characterize our model over (0, T ], as the solution is

stationary every T years.

3. Solution

Dynamic Programming and First-order Conditions (FOCs). Fix time t within

the time interval ((m − 1)T,mT ), where m is a positive integer. Using the standard

dynamic programming, we have the following standard HJB equation for the investor’s

value function V (W,A, t) in this region:

0 = max
C,Π

f(C, V ) + (rW + δAA+ (µS − r)Π− C)VW +
(ΠσS)2

2
VWW

+Vt + (µA − δA)AVA +
σ2
AA

2

2
VAA + ρΠAσSσAVWA . (15)
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The left side of (15) is the flow value of the investor’s value function. The first three

terms on the right side of (15) capture the standard effects of consumption and asset

allocation (both drift and volatility effects) on the investor’s value function as in Merton

(1971). The investor’s opportunity to invest in the illiquid alternative asset generates

three additional effects on asset allocation: 1) the effect of target holding horizon T

captured by Vt; 2) the risk-return and diversification effects of changes in the value of the

alternative asset A; and 3) the additional hedging benefits due to the correlation between

public equity and the alternative asset. The investor optimally equates the two sides of

(15) in the interior region where there is no interim liquidation and acquisition.

The optimal consumption C is characterized by the following standard FOC:

fC(C, V ) = VW (W,A, t), (16)

which equates the marginal utility of consumption with the marginal value of wealth VW .

The optimal investment in public equity is given by:

Π = −ηS
σS

VW
VWW

− ρσA
σS

AVWA

VWW

. (17)

The first term gives the classical Merton’s mean-variance demand and the second term

captures the investor’s hedging demand with respect to the illiquid alternative asset.

Certainty equivalent wealth P (W,A, t). We express the investor’s value function

V (W,A, t) during the time period t ∈ ((m− 1)T,mT ) as:

V (W,A, t) =
(b1P (W,A, t))1−γ

1− γ , (18)

where b1 is a constant given by:

b1 = ζ
ψ
ψ−1φ

1
1−ψ
1 , (19)
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and φ1 is the constant given by

φ1 = ζ + (1− ψ)

(
r − ζ +

η2
S

2γ

)
. (20)

We are then able to interpret P (W,A, t) as the investors’ certainty equivalent wealth,

which is the minimal amount of total wealth required for the investor to permanently

give up the opportunity to invest in the alternative asset. That is, in the interim period

where (m− 1)T < t < mT ,

V (W,A, t) = J(P (W,A, t)) , (21)

where J( · ), the value function with only liquid public equity and bonds as investable

assets, is given by

J(W ) =
(b1W )1−γ

1− γ . (22)

and b1 is given in (19).

Homogeneity Property. In our model, the certainty equivalent wealth P (W,A, t)

has the homogeneity property in W and A, and hence it is convenient to work with the

liquidity ratio wt = Wt/At and the scaled certainty equivalent wealth function p(wt, t)

defined as follows:

P (Wt, At, t) = p(wt, t) · At . (23)

This homogeneity property is due to the CRRA utility and the value processes for pub-

lic equity and the alternative asset. Importantly, this homogeneity property allows us

to conveniently interpret the optimal portfolio rule and target asset allocation in the

tradition of Merton (1971).

Endogenous Effective Risk Aversion γi. To better interpret our solution it is help-

ful to introduce the following measure of endogenous relative risk aversion for the investor,
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denoted by γi(w, t) and defined as follows:

γi(w, t) ≡ −
VWW

VW
× P (W,A, t) = γpw(w, t)− p(w, t)pww(w, t)

pw(w, t)
. (24)

In (24) the first identity sign gives the definition of γi and the second equality follows

from the homogeneity property.

What economic insights does γi(w, t) capture and what is the motivation of introduc-

ing it? First, recall the standard definition of the investor’s coefficient of absolute risk

aversion is −VWW/VW . To convert this to a measure of relative risk aversion, we need to

multiply absolute risk aversion −VWW/VW with an appropriate economic measure for the

investor’s total wealth. Under incomplete markets, although there is no market-based

measure of the investor’s economic well being, the investor’s certainty equivalent wealth

P (W,A, t) is a natural measure of the investor’s welfare. This motivates our definition

of γi in (24).9 We will show that the illiquidity of alternative assets causes the investor

to be effectively more risk averse, meaning pw(w, t) > 1 and pww(w, t) < 0, so that

γi(w, t) > γ. In contrast, if the alternative asset is publicly traded (and markets are

complete), γi(w, t) = γ as pw(w, t) = 1 and pww(w, t) = 0.

Optimal Policy Rules. Again, by using the homogeneity property, we may express

the scaled consumption rule c(wt, t) = C(Wt, At, t)/At as follows:

c(w, t) = φ1 p(w, t) pw(w, t)−ψ . (25)

Because illiquidity makes markets incomplete, the investor’s optimal consumption policy

is no longer linear and depends on both the certainty equivalent wealth p(w, t) and also

the marginal certainty equivalent value of liquid wealth pw(w, t).

9See Wang, Wang, and Yang (2012) and Bolton, Wang and Yang (2018) for similar definitions in-
volving endogenous risk aversion but for very different economic applications.
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The allocation to public equity is Πt = π(wt, t)At where π(w, t) is given by

π(w, t) =
ηS
σS

p(w, t)

γi(w, t)
− ρσA

σS

(
γp(w, t)

γi(w, t)
− w

)
, (26)

where γi( · ) is the investor’s effective risk aversion given by (24). Intuitively, the first term

in (26) reflects the mean-variance demand for the market portfolio, which differs from

the standard Merton model in two ways: 1) risk aversion γ is replaced by the effective

risk aversion γi(w, t) and 2) net worth is replaced by certainty equivalent wealth p(w, t).

The second term in (26) captures the dynamic hedging demand, which also depends on

γi(w, t) and p(w, t).

Finally, we turn to the PDE for p(w, t).

PDE for p(w, t). Substituting the value function (18) and the policy rules for c and π

into the HJB equation (15) and using the homogeneity property and the definition of the

investor’s effective risk aversion, γi, given by (24), we obtain the following PDE for p(w, t)

at time t, for the liquidity ratio wt in the interior region, and when (m− 1)T < t < mT :

0 =

(
φ1 (pw(w, t))1−ψ − ψζ

ψ − 1
+ µA − δA −

γσ2
A

2

)
p(w, t) + pt(w, t) +

ε2w2

2
pww(w, t) (27)

+
(
δA − α+ γε2

)
wpw(w, t)− γε2w2

2

(pw(w, t))2

p(w, t)
+

(ηS − γρσA)2pw(w, t)p(w, t)

2γi
.

Because of incomplete spanning (e.g., ε 6= 0), unlike Black-Scholes, (27) is a nonlinear

PDE, and moreover, pw(w, t) > 1, as we will show. The numerical solution for p(w, t)

involves the standard procedure. Next, we analyze how the investor actively rebalances

the allocation to the illiquid alternative asset.

Rebalancing the Illiquid Alternative Asset during the Interim Period. Al-

though under normal circumstances the investor plans to hold the alternative asset until
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the target date mT when an automatic liquidity event occurs, under certain circum-

stances the investor may find it optimal to actively rebalance when t 6= mT .

Consider an investor whose pre-liquidation holdings in public equity and the alterna-

tive asset at time t are (Wt, At). Let ∆ > 0 denote the unit of the alternative asset that

the investor is considering to voluntarily liquidate. As the cost of liquidating the alter-

native asset prematurely is θL for each unit of the asset, the investor’s post-liquidation

position, is then (W ′
t , A

′
t), where W ′

t = Wt + (1 − θL)∆ and A′t = At − ∆. We use the

prime superscript to denote the post-liquidation position.

One necessary condition when the investor liquidates a portion of the alternative

asset is that the value function is continuous, which implies P (W ′
t , A

′
t, t) = P (Wt, At, t) ,

implicitly defining the lower liquidation boundary Wt as a function of At at time t.

Intuitively, when the illiquid alternative asset position is too high compared with the

liquid wealth Wt at time t, the investor may choose to voluntarily reduce the illiquid

asset holding. In the differential form and after using the homogeneity property to

simplify, we show in Appendix A that the following holds:

p(wt, t) =
(
1− θL + wt

)
pw(wt, t) , (28)

which defines wt, the lower liquidation boundary for the liquidity ratio wt at time t. As

p ≥ 0 and pw ≥ 0, it is immediate to see that wt ≥ −(1−θL). That is, the investor cannot

borrow more than (1 − θL) fraction of the alternative asset’s fundamental value. This

ensures that the investor’s liability can be fully repaid with probability one by liquidating

the alternative asset. Note that the investor’s debt capacity is endogenously determined

by the liquidation value of the alternative asset holdings. Although the investor can

borrow, in our numerical exercise, as in reality, the investor rarely does borrow.

Following essentially the same procedure, we obtain the following condition for the
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interim acquisition of alternative assets:

p(wt, t) = (1 + θX + wt) pw(wt, t) , (29)

which defines wt, the endogenous acquisition boundary for wt at time t.

Next, we provide the conditions that describe the investor’s optimal liquidation and

acquisition decisions. By differentiating (28) with respect to wt and (29) with respect to

wt, we obtain the following boundary conditions:

pww
(
wt, t

)
= 0 , (30)

pww (wt, t) = 0 , (31)

which are often referred to as the “super contact” conditions as in Dumas (1991). The

intuition for the super-contact condition is as follows. For an optimally chosen liquidation

boundary wt or acquisition boundary wt, the investor’s marginal (certainty equivalent)

value of allocating a unit of wealth at the margin to either public equity or the alternative

asset must be equal.

Value and Decisions at t = mT . The homogeneity property allows us to express the

value-matching condition (14) in terms of p(w, t) at t = mT :

p(w,mT ) = p(w, (m− 1)T ) . (32)

As acquisition and voluntary liquidation are costly, we have an inaction region at all time

including t = mT .

Additionally, at t = mT , a fraction δT of the alternative asset automatically becomes

fully liquid meaning that the alternative asset holding A changes discretely from At to

At − δTAt and the liquid wealth W correspondingly changes from Wt to Wt + δTAt as

t→ mT in the absence of any acquisition or voluntary liquidation.
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For expositional simplicity, we denote the corresponding levels of liquid wealth and

the alternative asset: ŴmT = limt→mT (Wt+ δTAt) and ÂmT = limt→mT (At− δTAt). Let

ŵmT denote the corresponding liquidity ratio at mT :

ŵmT ≡
ŴmT

ÂmT
= lim

t→mT

wt + δT
1− δT

. (33)

There are two cases to consider at t = mT : (i.) ŵmT ≤ wmT and (ii.) ŵmT >

wmT . Case (i.) means that, even after the automatic liquidity event, the liquid asset

holding remains below the threshold wmT at which the investor rebalances by voluntarily

acquiring more of the illiquid asset. In contrast, Case (ii.) means that the automatic

liquidity event causes the investor’s portfolio to be overly exposed to the liquid asset.

In this latter case, the investor needs to acquire additional illiquid alternative asset to

rebalance the overall portfolio. Finally, as the automatic liquidity event always increases

the liquid asset holding relative to the illiquid asset holding, it thus will never cause ŵmT

to fall below wmT and hence we need only consider the two cases that may be triggered

by the automatic liquidity event with a scheduled lump-sum payment δTAmT−.

• Case (i): ŵmT ≤ wmT . The continuity of the value function and the homogeneity

property imply limt→mT p(w, t)At = p(ŵmT ,mT )ÂmT . Simplifying this, we obtain:

lim
t→mT

p(w, t) = p(ŵmT , t)(1− δT ) = lim
t→mT

p

(
wt + δT
1− δT

,mT

)
(1− δT ) . (34)

• Case (ii): ŵmT > wmT . The investor optimally purchases ∆ units of the alternative

asset such that ŴmT − (1 + θX)∆ = WmT . By purchasing ∆ units, the investor

pulls the liquidity ratio w back to the upper bound of the target asset allocation

range (wmT , wmT ), so that the following identity,

wmT =
ŴmT − (1 + θX)∆

ÂmT + ∆
= lim

t→mT

Wt + δTAt − (1 + θX)∆

At − δTAt + ∆
, (35)
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holds. Solving the above gives the following expression for the number of units for

the alternative asset, ∆, to be purchased at time mT :

∆ = lim
t→mT

wt + δT − wmT (1− δT )

1 + θX + wmT
At (36)

Again, the continuity of the value function and homogeneity property imply

lim
t→mT

p(w, t) = p (wmT ,mT )

(
1− δT +

wmT− + δT − wmT (1− δT )

1 + θX + wmT

)
. (37)

Next, we summarize the main results of our model.

Proposition 1 The scaled certainty equivalent wealth p(w, t) in the interim period when

(m− 1)T < t ≤ mT solves the PDE (27) subject to the boundary conditions (28), (29),

(30), (31), and (32). Additionally, p(wmT−,mT−) satisfies (34), if ŵmT < wmT where

ŵmT is given by (33), and satisfies (37) if ŵmT ≥ wmT .

4. Data and Calibration

4.1. Data and Summary Statistics

The data on university endowment fund sizes, asset allocations, and returns come from

annual surveys conducted by the National Association of College and University Business

Officers (NACUBO) and Commonfund, and referred to as the NACUBO-Commonfund

Endowment Survey (NCES). We focus on the cross-section of 774 university endowment

funds10 as of the end of the 2014-2015 academic year.

Asset allocation. The NCES provides annual snapshots of endowment funds’ portfo-

lio allocations. To link the NCES data to the model, we aggregate endowment allocations

10If there are multiple distinct endowment funds associated with a single university, we aggregate them
to obtain a single fund per university.
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in the NCES data into the three asset classes featured in our model: (1) the risk-free

asset, which aggregates cash and fixed income, (2) public equity, which aggregates public

equity and REITs,11 and (3) the alternative asset, which aggregates hedge funds (includ-

ing managed futures), private equity, venture capital, private real estate, and illiquid

natural resources. In the summary statistics, and for generating some of the calibration

parameters, we use the disaggregated sub-asset classes (e.g., hedge funds, etc.).

11We group together public equity and REITs because they have similar levels of risk and of liquidity.
Further, the NCES data set includes REITs in the public equity category.
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Table 1 shows summary statistics as of the end of the 2014-2015 academic year for the

sample of endowment funds. The summary statistics are equal weighted, except for the

last column which reports value weighted averages. Panel A shows the average Endow-

ment Size is $677 million, but this is highly skewed and the median is $114 million. On an

equal weighted basis, the largest asset class is Public Equity, with an average allocation

of 50.7% and a value weighted average of 35.6%, implying that percentage allocations to

public equity decrease with fund size. On a value weighted basis, Alternative Allocations

is the largest asset class at 51.7%, compared with 35.6% for public equity and 12.7% for

cash and fixed income. Comparing the equal and value weighted averages shows that

allocations to alternative assets are considerably higher for larger endowments. Panel

A also shows that the average endowment spends 4.2% of its assets in 2015. The final

row shows that the average endowment invests with nearly 17 distinct alternative asset

managers, but the median invests with only four. There is considerable dispersion, and

larger endowments invest with significantly more distinct managers.

Panel B of Table 1 shows summary statistics for the more detailed sub-asset categories.

Within Alternative Allocations, the largest sub-asset class is hedge funds with an average

allocation of 16.7%. For all of the sub-asset classes, the value weighted averages are

considerably larger than the equal weighted, particularly for the least liquid categories:

private equity, venture capital, private real estate, and illiquid natural resources.

As seen in Figure 1, Alternative Allocations have increased over time.12 The portfolio

allocations for 2015 reported in Table 1 are substantially higher than the allocations

reported in studies using earlier waves of the NCES data, such as Brown, Garlappi, and

Tiu (2010) or Dimmock (2012).

12Note that to avoid conflating time-series changes and changes in the composition of endowments
included in the NCES, Figure 1 uses only data for endowment funds that were in the sample in 1990.

28



Table 2: The Cross-Section of Endowment Fund Asset Allocation

This table summarizes the dispersion in asset allocation across the cross-section of en-
dowment fund sizes as of the end of the 2014-2015 academic year. The columns show
allocations for size-segmented groups of endowment funds. For example, the column “0-
10%” shows the average portfolio allocation for the smallest decile of endowment funds.
The column “45-55%” shows the average portfolio allocation for the decile of endowment
funds centered around the median fund size. The final two columns show the average
portfolio allocations for the largest 20 and 10 endowment funds, respectively. In all
columns, the averages are value weighted by endowment fund size within the correspond-
ing group. The target horizon variables summarized in Panel A are reported in years.
Alternative Target Horizon reports the target horizon of the portion of the portfolio al-
located to alternative assets. Port. Target Horizon reports the value weighted target
horizon of the entire portfolio. Average No. of Alt. Funds (Median No. of Alt. Funds) is
the average (median) number of different alternative asset management firms with which
the endowment invests (we do not report these variable for the 10 largest endowment
funds, as only three of the 10 largest funds report the number of managers).

0-10% 20-30% 45-55% 70-80% 90-100% Top 20 Top 10

Panel A

Endowment Size ($M) 17 50.1 116 408 1,3409 18,585 22,506
Cash & Fixed Income 33.1% 21.7 22.4 15.2 10.8 9.7 9.4
Public Equity 60.1% 57.9 54.7 45.9 32.0 29.3 29.3
Alternative Allocations 6.3% 20.4 22.9 38.9 57.1 61.0 61.3
Alt. Target Horizon 3.6 4.1 4.0 4.6 5.9 6.3 6.6
Port. Target Horizon 0.19 0.80 0.89 1.8 3.4 3.8 4.1
Spending Rate 4.5% 3.7 3.9 3.9 4.5 4.5 4.6
Average No. of Alt. Funds 1.1 5.6 7.2 22.5 86.5 152.2 –
Median No. of Alt. Funds 1 3 5 23 83 166 –

Panel B

Cash & Equivalents 7.2% 3.5 5.6 3.8 3.5 2.6 2.2
Fixed Income 25.8% 18.2 16.8 11.4 7.4 7.1 7.2
Public Equity 60.1% 57.9 54.7 45.9 32.0 29.3 29.3
Hedge Funds 4.6% 13.0 14.3 22.3 23.8 23.7 21.9
Private Equity 0.2% 3.1 3.1 7.1 12.3 14.0 15.0
Venture Capital 0.3 % 0.5 0.4 2.2 6.9 7.3 7.3
Private Real Estate 0.4% 1.8 2.7 3.1 7.0 8.4 9.3
Natural Resources 0.8% 1.9 2.0 4.2 6.7 7.5 7.9
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Table 2 shows the cross-section of endowment fund asset allocation in 2015, with

funds segmented by endowment size. For example, the first column shows the average

allocations of endowment funds in the bottom size decile. Smaller endowments have

higher allocations to cash, fixed income, and public equity; larger endowments have higher

allocations to alternative assets. The differences in allocations are largest for private

equity, venture capital, and natural resources, which are the least liquid categories.

Portfolio Illiquidity and Target Horizons. We estimate endowment fund target

holding periods based on allocations to alternative assets combined with the horizons

of the asset classes. For hedge funds, we assume a horizon of six months, which is

approximately equal to the sum of the average redemption, advance notice, and lockup

periods reported in Getmansky, Liang, Schwarz, and Wermers (2015). For private equity

and venture capital, we assume a horizon of 10 years, based on the average commitment

period reported in Metrick and Yasuda (2010). For private real estate and illiquid natural

resources, we also assume horizons of 10 years, based on the holding periods reported in

Collet, Lizieri, and Ward (2003) and Newell and Eves (2009).

Panel B of Table 2 summarizes the calculated target horizons for the cross-section of

endowment funds. Alternative Target Horizon reports the value weighted average target

horizon for the alternative assets held in the portfolio. Portfolio Target Horizon reports

the target horizon of the entire portfolio. The portfolios of the larger endowment funds

are substantially less liquid, both because they have higher allocations to alternative

assets and because they allocate proportionally more of their alternative asset holdings

to the least liquid categories.

Table 2 also reports the average number of alternative asset management firms with

which the endowment invests, which is an important component of liquidity manage-
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ment. Consider two examples. Suppose Endowment A invests its entire alternative asset

allocation into a single private equity fund, with a 10 year partnership agreement. Sup-

pose Endowment B invests its alternative asset allocation across 120 different private

equity funds, each of which has a 10 year partnership agreement. Further suppose that

Endowment B staggers its investments across time, so that one partnership agreement

expires every month for the next 10 years. Although both endowments might have the

same portfolio allocation to private equity, they have very different liquidity exposures.

For the next 10 years, Endowment A can only reduce its private equity exposure through

the secondary market. In contrast, Endowment B can costlessly reduce its exposure to

private equity as partnership agreements expire each month. Thus, by holding multiple

funds and staggering their maturity over time, the endowment can enhance the liquidity

of the whole portfolio, which we refer to as liquidity diversification.

As Panel A of Table 2 shows, there is a strong positive relation between endowment

size and the number of alternative asset funds. On average, endowments in the largest

decile hold 86.5 alternative asset funds; endowments in the smallest decile own only a

single fund. In the full sample, 8.1% of endowments do not own any alternative assets

at all, and as expected, zero-holdings are far more common for smaller endowments.

4.2. Parameter Choices and Calibration

Calculating Unspanned Volatility. Calibrating the model requires the standard

deviation, beta, and unspanned volatility of the representative alternative asset. To

obtain these parameters, we build up from the standard deviations and correlations of

the sub-asset classes comprising the representative alternative asset. For each sub-asset

class a, we combine its βa and R2
a with the standard deviation of the market σS = 20%

to obtain the implied standard deviation for the asset class: σa =
√
β2
aσ

2
S/R

2
a.
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Panel A of Appendix Table A1 shows the βA, R2
A, and σA for each of the alterna-

tive sub-asset classes. For hedge funds, the β and R2 are taken from Getmansky, Lo,

and Makarov (2004) and account for return smoothing; other studies that account for

return smoothing find similar values (e.g., Asness, Krail, and Liew (2004) and Jurek and

Stafford (2015)). For private equity and venture capital, the βs and R2s are taken from

Ewens, Jones, and Rhodes-Kropf (2013).13 For private real estate and illiquid natural

resources, the variables are based on Pedersen, Page, and He (2014) and account for re-

turn smoothing. Panel B of Appendix Table A1 shows the pairwise correlations between

the asset classes, which are calculated using index returns over the period 1994-2015.14

We combine the asset allocations from Table 2 with the βs, σs, and correlations from

Appendix Table A1 to impute portfolio βs, σs, and unspanned volatilities (ε). Table 3

shows the imputed variables for the cross-section of endowment funds. Although large

endowments substitute alternative assets for public equity and fixed income, the implied

portfolio β are remarkably similar across the size groups. The implied portfolio σs are

higher for larger endowments, because they have greater exposure to the idiosyncratic

risk of alternative assets, but the implied ε are similar across size groups.

Parameter choices. We base several of our parameters on the endowment fund data

discussed above. Specifically, we set the alternative asset βA = 0.6 and the unspanned

volatility of the alternative asset to ε = 15% with the objective of closely targeting the

value weighted endowment fund portfolio values reported earlier (βA = 0.61 and ε =

13Empirical estimates for the β of venture capital vary widely, ranging from 1.2 (Kraussl, Jegadeesh,
and Pollet (2015)) to 2.73 (Driessen, Lin, and Phalippou (2012)).

14The index returns used to calculate the correlations in Panel B are: Bloomberg/Barclays US Ag-
gregate Bond Index, CRSP value weighted index, Credit Suisse/Tremont Aggregate Hedge Fund Index,
Cambridge Associates U.S. Private Equity Index, Cambridge Associates U.S. Venture Capital Index,
NCREIF Property Index (unsmoothed), and the S&P Global Timber and Forestry Index. The correla-
tions with private equity, venture capital, private real estate, and illiquid natural resources use quarterly
returns; the other correlations use monthly returns.
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Table 3: Implied Endowment Fund Risk and Unspanned Volatility

This table shows the implied βs, σs, and unspanned volatilities of the endowment fund
portfolios whose allocations are shown in Table 2. Note that βA is the beta of the
alternative asset holdings, σA is the standard deviation of alternative assets, and ε is
the volatility of the endowment fund’s alternative asset holdings that is unspanned by
public equities. Portfolio β and Portfolio σ are the overall endowment portfolio β and
standard deviation, respectively. The columns show allocations for size-segmented groups
of endowments. e.g., the column “0-10%” shows the value-weighted statistics for the
smallest decile of endowment funds. The last column shows summary statistics for the
value weighted endowment fund portfolio.

0-10% 20-30% 45-55% 70-80% 90-100% Top 20 Top 10 VW

βA 0.53 0.55 0.54 0.57 0.62 0.62 0.62 0.61
σA 17.7% 17.7 17.3 18.2 18.9 18.8 18.8 18.7
ε 14.1% 13.9 13.5 14.2 14.3 14.2 14.1 14.2

Portfolio β 0.63 0.69 0.67 0.68 0.67 0.67 0.67 0.67
Portfolio σ 12.9% 14.5 14.1 15.3 16.1 16.4 16.4 15.8

14.2%). We set the horizon of the representative alternative asset H = 6 years based on

the Alternative Target Horizons summarized earlier.

Following the literature, we choose the following standard parameter values: the

annual risk-free rate r = 4% and the investor’s coefficient of relative risk aversion γ = 2.

We set the EIS to be ψ = 0.5, so that it corresponds to expected utility with γ = 1/ψ = 2.

We also set the investor’s discount rate equal to the risk-free rate, ζ = r. For public

equity, we use an annual volatility of σS = 20%, with the widely-used aggregate equity

risk premium of µS − r = 6%, which implies a Sharpe ratio of ηS = 0.3.

In our model, the alpha of the illiquid alternative investment includes compensation

for skill, liquidity risk, and other risks unspanned by public equities. We set α = 2%,

which we view as conservative given the empirical findings in the literature. For example,

Franzoni, Nowak, and Phalippou (2012) find that private equity earns a net-of-fees liquid-
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ity risk premium of 3% annually. Aragon (2007) and Sadka (2010) find similar net-of-fees

liquidity risk premia for hedge funds. Empirical studies of endowment funds also find

a positive relation between performance and allocations to illiquid assets (e.g., Lerner,

Schoar, and Wang (2008), Brown, Garlappi, and Tiu (2010), Barber and Wang (2013),

and Ang, Ayala, and Goetzmann (2014)). Given this assumed alpha, the expected overall

return on the alternative asset is µA = 0.02 + 0.04 + 0.6× (0.10− 0.04) = 0.096 = 9.6%.

For voluntary liquidations, we assume the proportional transaction cost is θL = 10%,

based on empirical findings and the following back-of-the-envelope calculation: For sec-

ondary market liquidations of private equity, Kleymenova, Talmor, and Vasvari (2012)

and Nadauld, Sensoy, Vorkink, and Weisbach (2017) find average discounts of 25.2%

and 13.8%, respectively. For secondary market liquidations of hedge funds, Ramadorai

(2012) finds an average discount of 0.9%, which rises to 7.8% during the financial crisis.

Therefore, we combine the aggregate endowment fund portfolio weights with liquidation

costs of 20% for PE and VC, 1% for hedge funds, and 10% for private real estate and

timberland, to obtain a proportional liquidation cost of 9.3% for the representative alter-

native asset. For acquisitions, we assume the proportional acquisition cost is θX = 2%,

which is equal to the average placement agent fee reported by Rikato and Berk (2015)

and Cain, McKeon, and Solomon (2016).

Calibrating the model also requires a payout parameter, which determines the amount

of automatic liquidity generated for the portfolio through automatic liquidity events (e.g.,

liquidity from funds maturing and paying out capital to the limited partners). The payout

rate depends on the number of alternative asset funds held by the investor. For example,

given the target horizon of H = 6 years, an investor with a single alternative asset

fund would receive a large payout once every six years. In contrast, an investor with a

large number of funds would receive smaller but more frequent payouts. For any given
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number of funds, Appendix E shows how it is possible to impute the payout rate using

the previously described parameter values. For our baseline calibration, we use the case

of n→∞. As shown in Appendix E, this implies a payout rate of δA = 4.0%. Appendix

E also considers other cases such as n = 1, n = 12, etc.

Table 4 summarizes the symbols for the key variables in the model and the parameter

values in the baseline model.
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5. Results

In this section, we use the parameter values from the preceding section to analyze our

model’s implications. We begin with the limiting case as n → ∞, and then explore the

case of n = 1. Following this, we study the comparative statics of the model.

As a benchmark, we also provide results for the case in which the alternative asset is

fully liquid. In this case, the alternative asset simply expands the investment opportunity

set and the optimization problem is again Merton’s model with two publicly traded

liquid risky assets. Thus, the value function for this case is clearly higher than when the

alternative asset is illiquid. Indeed, the case of full spanning serves as an upper bound

for the investor’s value function. See Appendix B.1 for a detailed discussion.

5.1. The case of n→∞

Net certainty equivalent wealth. Figure 2 plots the results for the case of n→∞,

in which δA = 4%. In both panels, the x-axis displays the liquidity ratio w. Panel A

shows that the investor optimally sets the range of w to lie between (w,w) = (0.54, 2.64).

That is, if the liquidity ratio w falls to the endogenous liquidation boundary, w = 0.54,

the investor immediately sells just enough units of the illiquid alternative asset and

invests the proceeds in liquid assets to keep w ≥ 0.54. If the liquidity ratio rises to the

endogenous acquisition boundary, w = 2.64, the investor acquires just enough units of

the illiquid asset so that w falls back to 2.64. In sharp contrast, when the alternative

asset is perfectly liquid, (i.e., the case of full spanning), the optimal liquidity ratio is

a singleton rather than a line: w∗ = 1.25, which one can show by rearranging (C.3):

Wt

At
= Nt−At

At
≡ γε2

α
− 1 = 1.25.

Panel A of Figure 2 plots the liquidity ratio, w, on the x-axis and net certainty
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Full Spanning (w = 1.25)
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A.  net certainty equivalent wealth: q(w)

liquidity: w
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B. net marginal value of liquid wealth: q′(w)
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Figure 2: Panels A and B plot investors’ net certainty equivalent wealth q(w) = p(w)−
w and net marginal value of liquid wealth q′(w) as functions of the liquidity ratio w,
respectively. The input parameter values are given in Table 4. For this figure, we set
n = ∞ and δA = 4%. The blue solid lines show results for the general case within the
optimal rebalancing boundaries w = 0.54 and w = 2.64. The red dot shows the solution
under Full Spanning, which involves a static optimal w∗ = 1.25 and q∗ = 1.20.
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equivalent wealth

q(w) = p(w)− w (38)

on the y-axis. Naturally, q(w) conveys the same information as p(w) but is easier to

read graphically. As Panel A shows, q(w) is increasing and concave in w. Intuitively,

the curve is upward sloping because the investor incurs less and less disutility from the

asset’s illiquidity and unspanned volatility as the illiquid asset becomes a smaller fraction

of the portfolio. Under full spanning, the net certainty equivalent wealth is higher than

for the same w under the general case. The vertical difference between full spanning and

the general case can be interpreted as the utility cost of illiquidity (measured in dollars

per unit of contemporaneous A). For illustration, consider a simple example in which the

investor has total net worth Nt = $225M with At = $100M invested in the alternative

asset and the remaining Wt = $125M invested in liquid assets, implying wt = 1.25. At

this point, q(wt) = 1.17 implying that, to avoid loss of utility, the investor would require

0.17 × $100M = $17M in compensation to permanently give up the opportunity of

investing in the alternative asset and invest only in the risk-free asset and public equity.

Additionally, when the alternative asset is fully liquid, q(w) = 1.20 meaning that the

additional value from full spanning is (1.20− 1.17)× $100M = $3M. For this numerical

example, the vast majority (85%=$17M/$20M) of the alternative asset’s value-added is

due to the excess return. The additional value-add due to complete spanning accounts

for only 15% of $20M.

Panel B plots the net marginal value of liquid wealth q′(w), which is always positive,

reflecting the disutility from the alternative asset’s illiquidity and unspanned volatility.

The net marginal value of W , PW − 1 = q′(wt) declines from 13 cents (per dollar of A)

to seven cents as w increases from w = 0.54 to w = 2.64, indicating that the marginal
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benefits of additional liquid wealth decrease as the fraction of the portfolio held in liquid

wealth increases.

Determining the optimal portfolio target ŵ. Figure 3 shows the ratio of the

portfolio’s certainty equivalent wealth to its book value, plotted for all values of w within

the endogenous rebalancing boundaries, (w,w) = (0.54, 2.64). Although all values of

w within these rebalancing boundaries are possible given the transaction costs, not all

values of w give the investor the same utility. Hypothetically, if the investor could

costlessly choose the split between W and A for a given N = W + A, he would choose

ŵ = 1.9. At this point, the investor’s certainty equivalent wealth from the portfolio

is 7.8% higher than the investor’s net worth. The curve is noticeably asymmetric and

declines more rapidly to the left of the maximum, as the investor approaches the voluntary

liquidation boundary. This is caused by the asymmetry of the rebalancing costs, with the

proportional liquidation cost (θL = 10%) larger than the proportional acquisition cost

(θX = 2%).

5.2. The case of n = 1

We have just analyzed the case of n → ∞, in which the alternative asset continuously

provides liquidity at the constant dividend yield δA. Now, we consider the other extreme

possibility of an investor with n = 1. In this case, the alternative asset has an automatic

liquidity event once every six years, at which point the investor reinvests 78.66% of the

proceeds back into the alternative asset and keeps 21.34% of the proceeds in liquid assets.

See Appendix E for more details.

Rebalancing boundaries. Figure 4 shows the rebalancing boundaries over the period

0 < t < T . The blue solid line shows the voluntary liquidation boundary, wt, and the red
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Figure 3: This figure plots p(w)
(w+1)

, the ratio of the certainty equivalent wealth P (W,A) =

p(w)A and net worth N = W + A on the y-axis and the liquidity ratio w on the x-axis
over the support range (w,w) = (0.54, 2.64) for the case with with n =∞ and δA = 4%.
Other parameter values are given in Table 4. Note that ŵ = 1.9 and the maximand is
p(ŵ)

(ŵ+1)
= 1.078, highlighted in the figure.
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Figure 4: This figure plots the optimal (lower) liquidation boundary wt and (upper)
acquisition boundary wt over time. The input parameter values are given in Table 4.
The dotted lines correspond to the case with n = ∞ with continuous payouts at the
rate of δA = 4%. The two decreasing lines correspond to the case with n = 1 where the
implied payout δT = 21.34% every six years, i.e., H = 6.

dashed line shows the acquisition boundary wt. As a basis of comparison, the horizontal

dotted lines show results for the case with n→∞.

Both boundaries decrease as t → T . This means that the investor is less willing to

liquidate alternative assets and more willing to voluntarily acquire alternative assets as

the anticipated liquidity event date t = mT approaches. This is intuitive as the investor

can simply wait until the automatic liquidity event rather than incurring the liquidation

cost to reach the “target” steady state. Also, anticipating the cash inflows from the auto-

matic liquidity event, the investor rationally becomes more willing to acquire alternative

assets as t gets closer to mT . The decrease for the voluntary liquidation boundary wt is
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particularly pronounced, because of the liquidation cost θL = 10%. Indeed, the liquida-

tion boundary wt eventually becomes negative, indicating that when t is sufficiently near

mT the investor prefers to borrow against the value of the alternative asset rather than

incur the liquidation cost.

Net certainty equivalent wealth. Panels A and B of Figure 5 plot net certainty

equivalent wealth q(w) and net marginal value of liquid wealth q′(w), respectively, for

the case of n = 1 at time t = 0. Compared with the case of n → ∞ shown in Figure

2, the rebalancing boundaries are shifted to the right. Recall that 0.54 ≤ w ≤ 2.64 for

n =∞ as compared to 0.78 ≤ w ≤ 2.98 for n = 1. This is because the cost of illiquidity

is greater and hence the demand for the liquid asset increases. Aside from the changes

in the rebalancing boundaries, the results in Figure 5 are generally similar to those for

the n→∞ case.

Intermediate cases with n = 3, 6, and 12. Figure A1 extends the results in Figure

5 to cases with n = 3, 6, and 12. As n increases, the rebalancing boundaries shift to the

left, indicating that the investor becomes more comfortable holding the illiquid asset as

the time span between automatic liquidity events decreases. Aside from the rebalancing

boundaries, the lines both panels are essentially identical, by the continuity argument in

n and the fact that the solutions for n = 1 and n = ∞ are close. Given this similarity,

for the remainder of the paper we report results using δA instead of δT .

5.3. Comparative statics

Table 5 reports the calibrated results. As shown earlier, because of the transaction costs

the model generates distinct feasible output values along the entire range of (w, w). For

ease of interpretation, we do not report a range of possible outputs. Instead, we report
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Figure 5: Panels A and B plot investors’ net certainty equivalent wealth q(w) = p(w)−
w and net marginal value of liquid wealth q′(w) as functions of the liquidity ratio w,
respectively. The input parameter values are given in Table 4. For this figure, we set
n = 1 , T = 6, and δT = 21.34%. The blue solid lines show results for the general case
within the optimal rebalancing boundaries w = 0.78 and w = 2.98. The red dot shows
the solution under full spanning, which involves a static optimal w∗ = 1.25 and q∗ = 1.20.
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comparative static results for only the case of ŵ (as shown in Figure 3), as it is easier to

report a single number and moreover this number gives the highest possible utility for

the investor. Panel A shows results for the general case, in which the alternative asset is

illiquid. For comparison, Panel B shows results for the case of full spanning. The rows

in bold font show results using the baseline parameter values summarized in Table 4.

For the general case, the baseline parameters imply the investor allocates 53.93% of

net worth (N) to public equity, 34.48% to alternative assets, and the remaining 11.59% to

bonds. These values are similar to the equal weighted average endowment fund portfolio

allocations found in the data (see Table 1), which has allocations of 50.7% to public

equity, 28.3% to alternative assets, and 21.0% to bonds. In the case of full spanning,

the model implies approximately a 10 percentage point higher allocation to alternative

assets. Additionally, the case of full spanning implies a much more volatile portfolio

rebalancing strategy due to perfect liquidity and no transaction costs. The spending rate

is slightly higher in the case of full spanning due to the greater liquidity.

5.3.1. The effect of α

Table 5 reports the comparative static effect of varying the α of the alternative asset. As

α increases the implied allocations to alternative assets and the spending rate both rise

as well. Intuitively, as α increases the economic value of the portfolio is greater and thus

the spending rate rises due to the wealth effect.

Table 5 shows that asset allocations are quite sensitive to changes in α. For example,

increasing α from 2% to 3% increases the alternative asset allocation from 34.48% to

60.24%. As the investor allocates more to the alternative asset, they reduce allocations

to public equity from 53.93% to 37.91% to manage the overall portfolio β and because

of the additional liquidity risk. With an even higher α of 4%, the investor will optimally
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Table 5: The Effect of α on Asset Allocation and Spending Rates

This table reports the asset allocation out of total net worth N = W + A. The three
columns, Public Equity, Alternative Assets (Alternative), and Bonds report Π/N , A/N ,
and (W − Π)/N , respectively, evaluated at ŵ, highlighted in Figure 3. Summing up
across these three columns for each row equals 100%. The Spending column reports
C/N . Panel A reports results for the case with illiquidity. Panel B reports results for
the case of full spanning. The baseline parameter values are: r = ζ = 4%, µS = 10%,
σS = 20%, γ = 1/ψ = 2, α = 2%, ε = 15%, βA = 0.6, θL = 0.1, θX = 0.02, δA = 0.04,
n→∞, which implies ρ = 0.625, µA = 9.6%, and σA = 19.2%. All results are presented
in per cent (%), which are omitted for simplicity.

A. The case when the alternative asset is illiquid

Public Equity Alternative Bonds Spending

α = 0% 75.00 0.00 25.00 5.13

α = 1% 67.29 12.69 20.02 5.16

α = 2% 53.93 34.48 11.59 5.32

α = 3% 37.91 60.24 1.87 5.60

α = 4% 20.41 87.72 −8.12 6.00

B. The case of full spanning

Public Equity Alternative Bonds Spending

α = 0% 75.00 0.00 25.00 5.13

α = 1% 61.67 22.22 16.11 5.18

α = 2% 48.33 44.44 7.22 5.35

α = 3% 35.00 66.67 -1.67 5.63

α = 4% 21.67 88.89 −10.56 6.01
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borrow 8.12% of net worth to invest in the alternative asset. It is worth noting that some

endowment funds, such as Harvard, have occasionally taken on debt to invest in public

and private equities. For example, during the financial crisis period, Harvard chose not

to liquidate its endowment but rather to issue bonds (see Ang (2012)).

The sensitivity of the implied portfolio allocations to changes in α is consistent with

the large cross-sectional dispersion in endowment funds’ allocations to alternative assets,

shown in Table 2. An α of 0% can explain non-participation in alternative assets, while

an α of 3% implies allocations that are broadly consistent with those of large endow-

ments such as Yale and Stanford. Thus, with reasonable parameter values, our model

is consistent with both the average allocations and also the cross-sectional dispersion of

allocations to alternative assets.

The sensitivity of allocations to α is also consistent with the empirically observed

strong relation between endowment fund size and allocations to alternative assets. Lerner,

Schoar, and Wang (2008), Brown, Garlappi, and Tiu (2010), Barber and Wang (2013),

and Ang, Ayala, and Goetzmann (2014) find that large endowment funds persistently

earn significant alphas, which they attribute to superior alternative asset investments,

while small endowments do not earn significant alphas. Lerner, Schoar, and Wang (2008)

discuss how large endowments typically have better investment committees, better access

to elite managers, and that there may be economies of scale in selecting alternative assets.

5.3.2. The effects of unspanned volatility ε, risk aversion γ and the EIS ψ

The effect of unspanned volatility ε. Panel A of Table 6 shows that the unspanned

volatility of the alternative asset has a large effect on allocations. If ε = 5% the investor

takes unrealistic, large short positions in both public equity and bonds (64.96% and

62.31%, respectively), and allocates 227.27% of the portfolio to the alternative asset,
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because a 2% alpha is high compensation for the 5% unspanned volatility. However, when

ε increases to 15% the investor allocates only 34.48% of the portfolio to the alternative

asset and 53.93% to public equity.

The effect of risk aversion γ. Panel B of Table 6 shows that the coefficient of relative

risk aversion has an overwhelmingly large effect on asset allocation. For a fixed EIS of

ψ = 0.5, if risk aversion decreases from γ = 2 to γ = 1 the investor increases the portfolio

allocation to alternative assets from 34.5% to 53.8%. Even more strikingly, the investor

changes the portfolio allocation to the risk-free asset from a long position of 11.6% to

a short position (borrowing 66.5% of net worth). As a result, the investor increase the

portfolio allocation to public equity from 54% to a levered position (11.28% of net worth).

As risk aversion increases from γ = 2 to γ = 4, allocations to bonds significantly increase

from 11.2% to 55.4% of the portfolio; allocations to alternative assets decrease by about

half from 34.5% to 17.4% and allocations to public equity decrease from 53.9% to 27.1%.

The effect of the EIS ψ. Panel C of Table 6 shows that varying the EIS has very large

quantitative effects on the spending rate. In this panel, we fix risk aversion at γ = 2, a

widely used value. An investor who is unwilling to substitute spending over time (e.g.,

ψ = 0.1) has a spending rate of 6.36%, which is on the relatively high end (in light of

the permanent-income argument). In contrast, an investor who is willing to substitute

consumption over time, (e.g., ψ = 2 which is widely used in Bansal and Yaron (2004)

and the long-run risk literature), has a spending rate of only 1.33%. The intuition is that

an investor with a high EIS defers spending to exploit the investment opportunity.

As the EIS increases, the investor increases allocations to illiquid alternative assets by

cutting allocations to the liquid asset classes (public equity and bonds). For example, an
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Table 6: The Effect of ε and γ on Asset Allocation and Spending Rates

This table reports the asset allocation out of total net worth N = W + A. The three
columns, Public Equity, Alternative Assets (Alternative), and Bonds report Π/N , A/N ,
and (W−Π)/N , respectively, evaluated at ŵ, highlighted in Figure 3. Summing up across
these three columns for each row equals 100%. The Spending column reports C/N . The
baseline parameter values are: r = ζ = 4%, µS = 10%, σS = 20%, γ = 2, ψ = 0.5,
α = 2%, ε = 15%, βA = 0.6, θL = 0.1, θX = 0.02, δA = 0.04, n → ∞, which implies
ρ = 0.625, µA = 9.6%, and σA = 19.2%. All results are presented in per cent (%).

A. Unspanned volatility (with βA = 0.6)

Public Equity Alternative Bonds Spending

ε = 5% −64.96 227.27 −62.31 6.66

ε = 15% 53.93 34.48 11.59 5.32

ε = 25% 68.10 11.31 20.58 5.18

B. Risk aversion (with ψ = 0.5)

Public Equity Alternative Bonds Spending

γ = 1 112.75 53.76 −66.51 6.57

γ = 2 53.93 34.48 11.59 5.32

γ = 4 27.21 17.36 55.43 4.66

C. EIS (with γ = 2)

Public Equity Alternative Bonds Spending

ψ = 0.1 56.20 30.77 13.03 6.36

ψ = 0.5 53.93 34.48 11.59 5.32

ψ = 1 50.47 40.16 9.37 3.95

ψ = 2 44.39 50.25 5.36 1.33

49



investor with ψ = 0.1 allocates 56% of net worth to public equity and 31% to alternatives,

compared to an investor with ψ = 2 who allocates 44% to public equity and 50% to

illiquid alternatives. A high EIS increases the investors willingness to shift consumption

across periods, which allows a high EIS investor to respond to return shocks by deferring

consumption rather than engaging in costly liquidation of the alternative asset. This is

in contrast to the case of full spanning, where changes in the EIS do not affect asset

allocation (see equations (C.2 and (C.3)).

Our model-implied results for the relation between spending flexibility and portfolio

liquidity are consistent with empirical facts. Hayes, Primbs, and Chiquoine (2015) argue

that pension funds have little spending flexibility and family offices have a great deal

of flexibility. Rose and Seligman (2016) find that the average allocation to alternative

assets for public pension plans is only 3.3%. In contrast, a UBS/Campden survey found

that family offices hold more than 50% of their wealth in illiquid asset classes.15 Over a

medium or long horizon, the combined effect of a high EIS - reducing spending and tilting

investments towards illiquid alternatives which deliver alpha - will have a significant

impact on the accumulation of net worth.

6. Conclusion

We analyze dynamic spending and asset allocation decisions for a long-term institutional

investor, such as university endowments, by incorporating an illiquid investment opportu-

nity, not spanned by public equity, into an otherwise standard Modern Portfolio Theory

(MPT) framework. The investor can voluntarily liquidate a part of the alternative asset

holding prior to maturity by incurring a proportional transaction cost and can also in-

crease alternative asset holdings at any time by paying a proportional acquisition cost.

15See http://www.globalfamilyofficereport.com/investments/.
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The investor also benefits from liquidity diversification by holding alternative assets ma-

turing at different dates. We calibrate our model and show that our model’s quantitative

implications are broadly consistent with both the level and cross-sectional variation in

alternative asset allocations by university endowment funds.

Our model provides guidelines for an institutional investor making spending and asset

allocation decisions. Our theory justifies the substantial allocations to alternative assets,

as advocated by Swensen’s Endowment Model, if the alternative asset can generate an

expected risk-adjusted excess return of 2-3% (with public equity as the benchmark), with

moderate levels of unspanned volatility, and standard values of risk aversion for investors

(e.g., around two or three). However, investors with limited access to sufficiently high

(net-of-fees) alphas should hold conventional portfolios as suggested by MPT.

Due to space considerations we have not included several quantitatively interesting

generalizations. For example, stochastic calls and distributions are potentially important

as they create uncertainty about the precise timing of cash flows making illiquid alterna-

tive assets less attractive, ceteris paribus. Extending the model to allow for time-variation

in the liquidation cost is also an interesting direction for future research, particularly given

the rise in illiquidity observed during the financial crisis.
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Appendices

A Public Equity and Bonds with No Alternatives

First, we summarize the Markowitz-Merton MPT with no illiquid alternative assets. In this

classic framework, investors have the standard investment opportunities defined by the public

equity’s risky return process given by (1) and a risk-free bond that pays a constant rate of in-

terest r. Investors dynamically adjust their consumption/spending and frictionlessly rebalance

their portfolios. The following proposition summarizes the main results in Merton (1971).

Proposition 2 The optimal spending Ct is proportional to wealth Wt: Ct = φ1Wt where

φ1 = ζ + (1− ψ)

(
r − ζ +

η2
S

2γ

)
(A.1)

is the constant marginal propensity to consume (MPC). Investors allocate a constant fraction,

denoted by π, of their wealth Wt to public equity, i.e., the total investment amount in public

equity is Π = πW where π = ηS/(γσS) = (µS − r)/(γσ2
S) . The investor’s value function J(W )

is given by

J(W ) =
(b1W )1−γ

1− γ , (A.2)

where b1 is a constant given by:

b1 = ζ
ψ
ψ−1φ

1
1−ψ
1 . (A.3)

Note that the asset allocation rule is the standard Merton mean-variance result in that

the fraction of investment in public equity increases in the equity risk premium (µS − r) and

decreases in variance σ2
S and risk aversion γ. Next, we analyze the general case where investors

can also invest in illiquid alternative assets in addition to public equity and bonds.

B Proof for Proposition 1

Optimal Policy Functions and PDE for p(w, t). We conjecture that the value function

V (W,A, t) takes the following form:

V (W,A, t) =
(b1P (W,A, t))1−γ

1− γ =
(b1p(w, t)A)1−γ

1− γ , (B.1)

where b1 is given in (A.3). And then substituting it into the FOCs for the optimal consumption

given in (16) and optimal investment in public equity given in (17), respectively, and immedi-

ately we have the scaled consumption rule is (25) and the allocation to public equity is (26).

Finally, substituting the conjectured value function given in (B.1) and the policy rules for c

in (25) and π (26) into the HJB equation (15), and after some algebras we have the certainty

equivalent wealth p(w, t) satisfies the PDE (27).
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Lower boundary. As mentioned earlier in the main text, (Wt, At) are denoted as the

investor’s pre-liquidation holdings in public equity and the alternative asset at time t, and

(W ′t , A
′
t) is defined as the investor’s post-liquidation position, where W ′t = Wt + (1− θL)∆ and

A′t = At −∆, and ∆ > 0 is the unit of the alternative asset that the investor is considering to

voluntarily liquidate. And then following the continuity of value function upon the liquidation

at the lower liquidation boundary Wt, we have

P (W ′t , A
′
t, t) = P (Wt, At, t) , (B.2)

Further, by taking the limit for the equation (B.2), it follows

lim
∆→0

1− θL
(1− θL)∆

(P (Wt + (1− θL)∆, At, t)− P (Wt, At, t))

= lim
∆→0

1

∆
(P (Wt + (1− θL)∆, At, t)− P (Wt + (1− θL)∆, At −∆, t)) .

Using differentiability, we have

(1− θL)PW (Wt, At, t) = PA(Wt, At, t) .

By substituting P (Wt, At, t) = p(wt, t)At into the equation above, we have

(1− θL)pw(wt, t) = p(wt, t)− pw(wt, t)wt .

Further simplifying, we can show that (28) holds at wt.

Upper boundary. We use essentially the same argument as that for the lower boundary.

Let (Wt, At) denote the pre-acquisition position in public equity and the alternative asset at

time t. As the acquisition cost for the alternative asset is θX per unit of the asset, the investor’s

post-acquisition position is then (W ′t , A
′
t), where W ′t = Wt−(1+θX)∆, A′t = At+∆, and ∆ > 0

denotes the unit of the alternative asset that the investor considers to acquire voluntarily. The

continuity of the value function implies P (W ′t , A
′
t, t) = P (Wt, At, t) , which implicitly defines

the upper boundary Wt as a function of At at time t. Similarly, in the differential form, we

obtain

(1 + θX)PW (Wt, At, t) = PA(Wt, At, t) .

By substituting P (Wt, At, t) = p(wt, t)At into the equation above, we have

(1 + θX)pw(wt, t) = p(wt, t)− pw(wt, t)wt,

which means (29) holds at wt.
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C Full Spanning with Liquid Alternative Asset

In this appendix, we summarize the full-spanning case where the alternative asset is fully liquid.

In this case, the alternative asset simply expands the investors’ investment opportunity set by

adding a second liquid risky asset. Therefore, the optimization problem boils down to Merton’s

model with two publicly traded risky assets. As this new risky asset provides diversification and

incurs no costs, the value function for this case is clearly higher than in the general case with

illiquid alternatives. Indeed, it serves as an upper bound for the investor’s value function with

illiquid alternatives. Below, we summarize the main results for this frictionless benchmark.

The optimal consumption C is proportional to the net worth, N : C = φ2N where the

MPC, denoted by φ2, is given by

φ2 = ζ + (1− ψ)

[
r − ζ +

η2
S − 2ρηSηA + η2

A

2γ(1− ρ2)

]
. (C.1)

By comparing φ2 given in (C.1) and φ1 given in (A.1), we see that diversification (|ρ| < 1)

and an additional risk premium ηA > 0 both influence the MPC. At each time t, the investor

continuously rebalances the portfolio so the investment in public equity, Π, and in the alternative

asset, A, are proportional to net worth N , i.e.

Π =
ηS − ρηA
σSγ(1− ρ2)

N , (C.2)

A =
α

γε2
N , (C.3)

The remaining wealth, N − (Π +A), is allocated to the risk-free bond.

The investor’s value function V (N) is given by

V (N) =
(b2N)1−γ

1− γ = J((b2/b1)N) , (C.4)

where b2 is a constant given by

b2 = ζ
ψ
ψ−1φ

1
1−ψ
2 , (C.5)

and J( · ) is the value function given in (A.2) for an investor who only has access to public

equity and bonds.

By introducing a new risky (alternative) asset into the investment opportunity set, the

investor is better off because b2 > b1. The second equality in (C.4) implies that b2/b1− 1 is the

fraction of wealth that the investor would need as compensation to permanently give up the

opportunity to invest in the liquid alternative asset and instead live under the Merton model

with public equity and risk-free asset only.

Proof for the Case of Full Spanning with the Liquid Alternative Asset. Using

the standard dynamic programming method, we have

0 = max
C,Π,A

f(C, V ) + [rN + (µS − r)Π + (µA − r)A− C]V N

+
(ΠσS)2 + 2ρΠσSAσA + (AσA)2

2
V NN , (C.6)
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and using the FOCs for Π, A and C, we have

fC(C, V ) = VN , (C.7)

Π = −ηS
σS

VN
VNN

− ρσA
σS

A , (C.8)

A = −ηA
σA

VN
VNN

− ρσS
σA

Π . (C.9)

We conjecture and verify that the value function takes the following form

V (N) =
(b2N)1−γ

1− γ . (C.10)

Substituting it into the FOCs, we have C = ζψb1−ψ2 N , (C.2) and (C.3). Then substituting

them into the HJB equation (C.6) and simplifying, we obtain (C.1).

D Inputs for Calculating Unspanned Volatility

Table A1: Summary of Asset Class Risk and Correlations

This table shows summary statistics for the sub-asset classes within the illiquid asset class,
which are used to calculate the unspanned volatility of the endowment fund portfolios.
Panel A shows βa, R

2
a, and σa for each alternative asset class a. Panel B shows the

pairwise correlations between these sub-asset classes.

Panel A
βa R2

a σa
Hedge Funds (HF) 0.54 0.32 19.1%
Private Equity (PrivEqu) 0.72 0.32 25.4%
Venture Capital (VC) 1.23 0.30 45.1%
Private Real Estate (PrivRE) 0.50 0.49 16.0%
Natural Resources (NatRes) 0.20 0.07 17.0%

Panel B
FixedInc PubEqu HF PrivEqu VC PrivRE NatRes

FixedInc 1
PubEqu 0.02 1
HF 0.16 0.64 1
PrivEqu -0.23 0.78 0.73 1
VC -0.18 0.46 0.52 0.66 1
PrivRE -0.13 0.35 0.31 0.51 0.17 1
NatRes 0.04 0.87 0.67 0.70 0.46 0.44 1
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E Calibration of δA and δT

We focus on the steady state in which the investor always has n funds at any time t. This is

feasible provided the investor immediately replaces each fund that exits.

To simplify exposition, assume that each fund’s payoff structure involves only one contri-

bution at its inception and one distribution upon its exit, and the horizon (or equivalently the

lockup period) of each fund is H. At the steady state, n/H funds mature each year, which

means that there is one liquidity event every T = H/n years. For example, if the lockup period

for each fund is H = 6 and there are three funds at the steady state (n = 3), then every two

years (T = 6/3 = 2) an automatic liquidity event occurs. To ensure that the investor has three

funds at the steady state, the investor immediately replaces the exited fund by investing in a

new fund with 6-year lock-up.

To ensure growth stationarity, we assume that both the growth rate of each fund, gA, and

the growth rate of the inception size for each fund (vintage), gI , are constant. Consider a

vintage-t fund, which refers to the fund that enters the portfolio at time t. Let ISt denote the

fund’s initial size (IS) at inception. Its size at (t+ iT ) is then egAiT ISt where i = 1, 2, · · ·n and

hence the fund’s size when exiting at time t+H is egAHISt.

At time (t+H) the investor holds a total of n illiquid alternative funds ranging from vintage-

t to vintage-(t + (n − 1)T ). Note that the value of the vintage-(t + i) fund is egA(n−i+1)T ×
(ISte

gI(i−1)T ) as its inception size is ISte
gI(i−1)T and has grown at the rate of gA per year for

(n− i+ 1)T years. Summing across all vintages, we obtain

n∑
i=1

egA(n−i+1)T × (ISte
gI(i−1)T ) = egIHISt ×

n∑
i=1

e(gA−gI)iT .

The net payout at time (t+H) is given by the difference between egAHISt, the size of the

exiting vintage-t fund, and egIHISt, the size of the new vintage-(t + H) fund. As the payout

occurs once every T years, the annualized net payout rate is then

1

T

egAHISt − egIHISt
egIHISt ×

∑n
i=1 e

(gA−gI)iT
=

1

T

e(gA−gI)H − 1∑n
i=1 e

(gA−gI)iT
=

1

T

(
1− e−(gA−gI)T

)
. (E.1)

Next, we use this annualized net payout rate to calibrate δA and δT . Although, for the sake

of generality, the model includes both δA and δT , in any single calibration we use only one of

either δA or δT . For the illustration, we provide three examples below.

First, consider the limiting case when n → ∞, and with fixed finite holding period H for

each fund, T ≡ H/n → 0. Therefore, the investor continuously receives payout at a constant

rate. This maps to the parameter δA in our model. As one may expect, the net payout rate is

simply the difference between the value of the incumbent fund growth rate gA and the growth

of the new fund’s initial size gI :

δA = gA − gI . (E.2)
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For the calibration, we set µA = gA = 9.6% and gI = 5.6% (approximately equal to the average

endowment fund growth rate over the past 20 years) resulting in δA = 4%.

Second, consider the case when the investor has only one fund outstanding at each point in

time. Then, T = H, the payout occurs once every H years, and we can use δT to capture the

payout. That is, when T is relatively large, δT is given by

δT = 1− e−(gA−gI)T . (E.3)

Note that δT as defined in the model is not annualized. Thus, with the values of gA and gI
given above, for a single fund (n = 1) in the portfolio and H = 6, δT = 21.34%.

Third, consider an intermediate case when the investor has six funds at each point in time.

Then, we have T = H/n = 6/6 = 1, and we could use δT = δ1 = 1− e−0.04 = 3.92% to capture

the payout. Alternatively, we could approximate with a continuous constant dividend yield by

annualizing δT and using this annualized value as δA in the calibration. In this case, we would

have δA ≈ (1 + δT )1/T − 1 = δT = δ1 = 3.92% when T = 1.

F Cases with n = 3, 6, and 12

Figure A1 extends the results in Figure 4 to cases with n = 3, 6, and12. As n increases,

the rebalancing boundaries shift to the left, indicating that the investor becomes increasingly

comfortable holding the illiquid asset as the time between automatic liquidity events decreases.

Aside from the changes in the rebalancing boundaries, the lines in Panels A and B are essentially

identical.
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Figure A1: Panels A and B plot investors’ net certainty equivalent wealth q(w) = p(w)−
w and net marginal value of liquid wealth q′(w) as functions of the liquidity ratio w,
respectively. The input parameter values are given in Table 4. The blue line shows
results for n = 3, T = 2, and δT = 7.69%. The red dashed line shows results for n = 6,
T = 1, and δT = 3.92%. The black dotted line shows results for n = 12, T = 0.5, and
δT = 1.98%.
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