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Abstract

Although technological progress has lowered the cost of solar and wind to make renew-
able energy competitive with fossil fuels on a levelized-cost basis, supply of these resources
is highly variable and inelastic, which contrasts with elastic, stable and controllable supply
from traditional power plants. As a result, the cost of flat retail pricing in comparison to
dynamic, marginal-cost retail pricing – long advocated by economists – will grow. At the same
time, computer technology opens up new opportunities for flexible demand and energy storage,
opportunities that cannot be fully exploited without dynamic retail pricing and open access
to the grid. Implementing efficient dynamic-pricing systems could be institutionally costly,
so it is important to evaluate the potential gains. Here we develop a novel model of power
supply and demand to examine how much variable pricing can reduce the cost of a 100 percent
renewable power system in Hawaii. The model is novel in the way it integrates investment
in generation and storage capacity with real-time operation of the system, including an ac-
count of reserves, a demand system with different interhour elasticities for different uses, and
substitution between power and other goods and services. The model, an extension of Switch
(Fripp 2012), is open source and fully adaptable to other settings. Earlier versions of the model
(lacking demand-side integration) have been implemented for California, the Western United
States, and other areas. Consistent with earlier studies, we find that dynamic pricing of power
provides little social benefit in fossil-fuel systems, only 2.6 to 4.6 percent of baseline annual
expenditure depending on cost and interhour substitutability. But dynamic pricing leads to a
much greater social benefit of 8.5 to 23.4 percent in 100 percent renewable system with other-
wise similar assumptions. The other key finding is that high penetration renewable systems,
including 100 percent renewable, are remarkably affordable. Indeed, the welfare maximizing
(unconstrained) generation portfolio under the utility’s projected 2045 costs and pessimistic
interhour demand flexibility uses 79 percent renewable energy and improves welfare by 34.6
percent of baseline expenditure. With dynamic pricing, even a 100 percent renewable system
is welfare improving over a fossil system, excluding gains from reduced pollution externalities.
If overall demand for electricity is more elastic than our baseline (0.1), renewable energy is
even cheaper and variable pricing considerably more valuable.
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1 Introduction

How much will it cost to eliminate use of fossil fuels? There is good reason for optimism.

Technological progress has lowered the cost of wind and solar power to make them increasingly

competitive with coal and natural gas on a levelized cost basis. Battery storage costs are also

falling, which should grow electric vehicle use and could help electric grids absorb intermittent

renewable energy when it happens to be plentiful. Growing integration of markets across

regions and countries could further facilitate adoption of wind and solar, as they allow more

flexible trading of power from times and locations with relatively high supply to those with

relatively little. Nevertheless, recent research indicates that intermittency combined with

the high cost of power storage greatly increases the cost of renewable energy from a system

perspective (Gowrisankaran, Reynolds and Samano 2016).

A key challenge is that modern infrastructure has been built around electricity systems

with centralized and easily controllable generation. Electric grids operate through balancing

authorities that adjust electricity generation on timescales ranging from seconds to years to

perfectly balance presumably inelastic, time-varying demand (Figure 1, panel A). Although

marginal generation costs vary over time in a conventional system, regulated retail prices tend

to be flat, giving rise to well-known inefficiencies. But since incremental costs only spike during

rare peak loads, the inefficiencies from flat rates are thought to be small, with most concern

centered on market power as demand approaches capacity constraints (Borenstein and Holland

2005, Borenstein 2005, Blonz 2016). Utilities and generating companies have little incentive to

change the current system, possibly because too few are aware of the possibilities associated

with variable prices, or possibly because they lack confidence that they would individually

benefit from it under current cost-of-service regulatory structures that predominate at the

distribution level. This smoothing of rates between producer and consumer makes demand

highly inflexible (inelastic) with respect to generation cost on a day-to-day, hour-to-hour basis,

and current system management reflects this inflexibility.

Balancing almost entirely on the supply side and foregoing potential demand response cre-

ates some deadweight loss in existing power systems, but the loss will be much greater in

power systems with a large share of intermittent renewables. Solar and wind power are the

most cost-effective renewables, but they are not dispatchable and supply varies with sunlight

and windspeed. When intermittent renewables make up a small to moderate share of total

generation, the existing infrastructure can accommodate their variability in much the same

way it has always managed variable demand. Variations in renewable energy are counterbal-

anced with directed variation in generation from fossil fuel plants. But as larger shares of

renewable energy are accommodated using this conventional model, system-level costs may

rise significantly above the levelized costs from any particular source. Controllable generation

must be built or retained to compensate for periods of low renewable power production, and

these plants may burn either polluting fossil fuels or high-cost biofuels. Moreover, a grid with

ample spinning reserves – partly loaded thermal power plants that can ramp up and down with

2



demand or to compensate for short-term variations in renewable production – can only accept

so much intermittent renewable energy before supply begins to exceed demand at certain times,

and renewable energy must be curtailed (i.e., discarded). This creates diminishing returns and

raises average costs. In Hawaii and Texas, Ireland and perhaps other places, a considerable

amount of electricity is already curtailed, even while utility customers can simultaneously pay

30 cents per kWh or more for electricity. With retail prices far above the incremental cost of

generation (i.e., zero or negative during curtailment), there appears to be inefficiency in the

current system, even with renewable energy penetration far below the eventual goals in state

renewable portfolio standards. Resolving this inefficiency would help to slow climate change.

Figure 1: Conventional Utility and Utility of the Future

Notes: Intermittent renewables change the nature of the utility. The horizontal axis is power generated or consumed at a
point in time, and the vertical axis is incremental willingness to pay (Demand) or incremental cost of generation (Supply).
A stylized frequency distribution of load is shown at the bottom. Panel A shows a conventional utility with flexible supply
that can ramp generation up and down with varying demand without greatly changing the incremental cost of power,
except for rare peaking loads, so prices are typically low (Pl). Welfare gains have been gleaned from curbing peak loads
with critical-peak pricing and demand charges for commercial users, which tie each firm’s incremental price to its historical
peak. Panel B shows a hypothetical utility of the future, with generation coming mainly from inflexible, time-varying
intermittent renewables and real-time pricing. With highly volatile time-varying prices, storage and shiftable loads cause
demand to become more flexible, especially in the lower price range, but prices can spike very high during unusual periods
when supply is low and demand high.

To economists, the obvious solution to intermittency is real-time retail pricing that reflects

the incremental cost and marginal willingness to pay for electricity. If electricity were priced at
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its incremental value and cost there would be new, powerful incentives to efficiently store energy

or otherwise shift consumption from times and places of relatively scarce renewable supply to

times and places of plenty. Critically, and potentially transformationally, many low-cost ways

to store energy are held by electricity consumers, and widely distributed among households and

businesses. By carefully timing water heating, electric vehicle charging, water pumping, and

using ice storage for cooling systems, making micro-adjustments for some kinds of refrigeration,

or perhaps other means, electricity use can be shifted from seconds to many hours at low cost.

Such mechanisms would need to be automated by computers. These existing technologies can

make electricity demand more substitutable over time, at least over horizons from seconds to

many hours. We conceptualize this substitutability with a more elastic demand in panel B

of Figure 1. While demand-side flexibilities would make intermittent renewable energy more

cost effective from a system perspective, they will only be brought to market and adopted if

pricing mechanisms incentivize them.

In this paper we develop a novel model of power supply and demand to examine the extent

to which variable pricing could plausibly increase the social benefits of renewable energy. The

model is novel in the way it integrates investment in generation and storage capacity with real-

time operation of the system, including an account of reserves, a demand system with different

interhour elasticities for different end uses, as well as substitution between electric power

and other goods and services. Both supply and demand sides of the model can also provide

reserves. The model, an extension of Switch (Fripp 2012), is open source and adaptable to other

settings. Earlier versions of the model (lacking reserves and demand-side integration) have been

implemented for California, the Western United States, and other areas (Fripp 2012, Nelson,

Johnston, Mileva, Fripp, Hoffman, Petros-Good, Blanco and Kammen 2012).

Our study considers the island of Oahu, the most populous island (about 1 million) and

county of Hawaii, which comprises roughly two thirds of the state’s population and consumes

over three quarters of the state’s power. The island supports a large urban city (Honolulu),

plus a substantial tourist industry and several large military bases. Hawaii is a particularly

interesting focus for several reasons. First, its scale is large enough to be emblematic of larger,

more complex systems, but small enough to be holistically modeled. Second, given Oahu’s

isolation and lack of connectivity to other Hawaiian islands, intermittency is an especially

acute problem, since connectivity and trade with other regions is not economically feasible.

Third, Hawaii has the nation’s, and perhaps the world’s, most ambitious renewable portfolio

standard – 100 percent renewable by 2045 – which makes our analysis especially relevant to

actual policy implementation.

We use the model to: (1) estimate the cost, benefits and optimal generation mix of a

100 percent renewable energy system that accords with Hawaii’s renewable portfolio standard

(RPS) as compared to a conventional fossil-fuel power system (Fossil) and least-cost system

with no constraints on the generation mix (Unconstrained); (2) evaluate the welfare improve-

ment of having dynamic marginal-cost pricing as compared to flat price for each kind of system
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(RPS, Fossil, and Unconstrained); (3) evaluate how much those with high interhour substi-

tutability of demand gain from dynamic pricing as compared to those with very little interhour

substitutability.

Cost assumptions for a wide range of power generation and storage alternatives, from which

an optimal portfolio is selected by the model, are based on those in the most recent (December,

2016) Power Supply and Improvement Plan (PSIP) of the local utility, Hawaiian Electric

Company (HECO).1We consider scenarios for which costs equal current-day assumptions, as

well as scenarios that use the PSIP’s projected costs in 2045. The analysis we perform here

is a single-stage analysis in the sense that each scenario assumes the optimized system is

built at one point in time, although pre-existing assets can be retained. We do this to make

clear comparisons of highly-renewable and fossil systems in flat and dynamic pricing contexts,

and to show how much renewables arise from optimized systems with fixed versus dynamic

marginal-cost pricing. In practice, an optimal plan would make investments gradually over

time; Switch does have the capacity to formulate such a plan, even though we do not consider

it in this paper. Such a model would be considerably more expensive to solve.

Consistent with earlier studies, we find that dynamic pricing of power provides little social

benefit in fossil-fuel systems, only 2.6 to 4.6 % of baseline annual expenditure depending on

cost and interhour substitutability. But dynamic pricing leads to a much greater social benefit

of 8.5 to 23.4% in 100% renewable system with otherwise similar assumptions. The other key

finding is that high penetration renewable systems, including 100% renewable, are remarkably

affordable. Indeed, the welfare maximizing (unconstrained) generation portfolio under the

utility’s projected 2045 costs and pessimistic interhour demand flexibility uses 79% renewable

energy and improves welfare by 34.6% of baseline expenditure. With dynamic pricing, even a

100% renewable system is welfare improving over a fossil system, excluding gains from reduced

pollution externalities. These results all derive from an assumed outer demand elasticity of

just 0.1, and cost assumptions for renewable energy and batteries that some may regard as

pessimistic. In other scenarios the benefits of real time pricing paired with renewable energy

can be far greater.

The rest of the paper is organized as follows: Section 2 characterizes the demand system

and how we calibrate it; Section 3 reviews the Switch model that optimizes investment and

operations, as well as a Dantzig-Wolf algorithm used to equilibrate supply and demand and

thereby optimize the joint system; Section 4 summarizes capital and input cost assumptions

and the wide range of scenarios we consider; Section 5 summarizes the results; and Section 6

concludes.

1See https://www.hawaiianelectric.com/about-us/our-vision.

5

https://www.hawaiianelectric.com/about-us/our-vision.


2 Demand

The main novelty of this paper is the integration of a fully-specified interhour demand system

with Switch, a state-of-the-art planning model that jointly optimizes investment and chrono-

logical, real-time operation of a power system. We therefore begin by describing the structure

of the demand system and how we calibrate it.

2.1 A Nested-CES Demand System

The demand system is comprised as the sum of three nested, constant elasticity of substitution

(CES) utility functions that represent different types of demand. The outer layer of each utility

function assumes just two goods, electricity and all other goods, with a constant elasticity of

substitution θ, which represents a demand elasticity. The nested layer considers electricity

demand in each hour within each 24-hour day, with an interhourly elasticity of substitution σ.

Aggregate demand in any given day is comprised as the weighted sum of three representative

pseudo customers with different σ values. Each pseudo customer is assumed to maximize utility

U(x1, x2, . . . , xh, . . . , x24, Y |σ, θ, α, β1, β2, . . . , xh, . . . , β24) subject to their budget constraint,∑24
h=1 phxh+Y = M , where xh is electricity consumed in hour h, Y represents expenditure on

all other goods with a constant price equal to 1 (i.e., money), α and βh are share parameters

that weight all other goods relative to electricity, and electricity in each hour relative to other

other hours, and M is total income. M is calibrated by dividing total baseline electricity

expenditure of a particular pseudo customer in a day by the share of aggregate income spent

on electricity. The α and βh parameters are calibrated from the statewide share of income

spent on electricity expenditure, and by baseline load shares allocated to each pseudo customer.

Following Rutherford (2008), suppose there exists a unit expenditure function or an ideal

price index (the minimum expenditure required to achieve baseline utility) in the “calibrated

share form,” a measure relative to a baseline values. The expenditure function is:

e(ph, p(−h), p̄h, ¯p(−h), Ū) = Ū

α(pY
p̄Y

)1−θ
+ (1− α)

(
n∑
h=1

βh

(
ph
p̄h

)1−σ
) 1−θ

1−σ


1
1−θ

(1)

where Ū , p̄Y , p̄h indicate baseline values for respective parameters, α is the calibrated share

given the baseline value of Ȳ = M −
∑

h x̄hp̄h, α = Ȳ /M , and βh are calibrated shares of each

day’s electricity consumed by the pseudo customer in each hour at the associated baseline

prices p̄h.

Consumer welfare is measured by the indirect money metric utility function. That is, we

can write indirect utility in terms of the income required at baseline prices to achieve the

utility level achievable at prices p and income M , as:

V (ph, p̄−h,M) =
M

e(ph, p(−h), p̄h, p̄−h, Ū)
(2)
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From Roy’s Identity, Marshallian demand is given by:

xh(e(ph, p−h, p̄h, p̄−h),M) = −∂V/∂ph
∂V/∂M

=
M

e

∂e

∂ph

The closed form solution of demand functions then can be written as a function of cali-

brated share parameters derived from a baseline load profile and the share of income spent on

electricity at baseline prices.

xh(p|p̄, σ, β,M)

p̄
=

M

α+ (1− α)

 24∑
j=1

βj

(
pj
p̄j

)1−σ
 1−θ

1−σ

−1

×(1−α)

 24∑
j=1

βj

(
pj
p̄j

)1−σ
σ−θ

1−σ

×βh
(
p̄h
ph

)σ
(3)

In the computational model, we partition a baseline load profile, drawn from actual histori-

cal hourly demand, into three pseudo customers, each with a different interhour substitutability

parameter, σ ∈ {σl = 0.1, σm = 1, σf = 10} and a different baseline demand profile, derived

from historic loads. Pseudo customers thus differ with regard to their budget and with regard

to their calibrated share parameters (βh), because their load profiles differ. The calibrated

share parameters also differ by day and season, to account for weather.

To formalize this demand system, denote the calibrated load shares on day d and pseudo

customer i by βid and income by M id = Eid

s , where Eid is the baseline expenditure of pseudo

customer i on day d, and s is the share of baseline state income spent on electricity. Thus,

define the demand for a pseudo customer i on day d in hour h as xh(p|p̄, σi, βid,M id), using

the definition in equation 3. Aggregate demand on day d and hour h is given by the sum of

the demands from the three pseudo customers:

xdh(p|p̄) = xh(p|p̄, σl, βld,M ld) + xh(p|p̄, σm, βmd,Mmd) + xh(p|p̄, σf , βfd,Mfd) (4)

This demand system provides an intuitive and relatively simple way to embody a range of

heterogenous demand responses and inter-temporal substitutability of loads that vary over sea-

sons and weather-related circumstances. The degree of interhour substitutability may under-

or over-estimate actual technical possibilities. For example, it assumes the same degree of sub-

stitutability between any two hours within the same day. At least for some kinds of demands,

substitutability may be greater for hours nearer in time. At the same time, the demand sys-

tem assumes zero substitutability between days, when in reality substitution between late in

one day and early in the next may be fairly elastic. While this later assumption may under-

estimate the overall degree of flexibility, the structure makes it easy to scale up a sample of

representative days throughout the year to parsimoniously represent a complete time path. A

similar structure is mirrored on the supply side.
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2.2 Shares of Flexible Demand

This section describes how we estimate baseline loads for each kind of pseudo customer. Hourly

aggregate demand data for Oahu is publicly available from the Federal Energy Regulatory

Commission. However, because some kinds of demands are likely to be more time shiftable

than others, we develop alternative interhour flexibility scenarios based on estimated load

shares that are known to be shiftable using current technologies: air conditioning, water

pumping and water heating.

Air conditioning demand is shiftable using ice storage, wherein ice is generated when elec-

tricity prices are low, and used for cooling instead of running the compressor when electricity

prices are high. These systems can be retrofitted onto existing air-conditioning systems. A

number of companies already market this technology to reduce demand charges2, to respond

to real-time variation in prices, or provide contingency or regulating reserves to the balancing

authority.3 Such systems may only require different, smarter controllers and network connec-

tivity. A considerable amount of flexible power is also used to pump water from aquifers to

storage reservoirs and tanks on hillsides; water is then gravity fed to homes and businesses.

Currently, most water pumping is done at night, because the water municipality receives a

slight discount under current time-of-use pricing. There should be a considerable amount of

flexibility in when pumping could occur, a flexibility that is mainly constrained by the capacity

of water storage. A number of companies have also developed smart water heaters, which can

heat proactively in relation to power availability (or prices) and typical use patterns instead

of reactively to hot water use. All of these systems embody an implicit form of storage that

may be much less expensive than batteries, compressed air, pumped-water hydroelectricity or

other means. These systems can also provide a source of reserves to help maintain system

stability in the face of unexpected load fluctuations.

By considering loads from only these three principle sources, we believe our estimates of

demand-response potential might be conservative, because other kinds of electricity demand

for which we could not obtain estimates, or for which current technologies do not exist, may

nevertheless prove shiftable if appropriate incentives were to be made available. For example,

other large loads are drawn from refrigerator/freezers and swimming pool pumps likely have

time-shiftable loads too, even though we cannot explicitly consider them in this study because

we were unable to obtain data on their real-time use.

Another consideration is that over 70 percent of total demand on Oahu derives from com-

2Demand charges, which are common for commercial electricity customers, link monthly bills to the highest
kW draw, typically averaged over a 15-minute period, from each commercial customer during the month
or year. However, because peak demand by an individual customer is unlikely to coincide with the system
peak, demand charges may do little to improve efficiency relative to real-time pricing (Borenstein, Jaske
and Rosenfeld 2002).

3Regulating reserves balance the electricity system in real time as demand fluctuates from moment to mo-
ment while contingency reserves keep the system stable in response to larger disruptions, such as a power
plant unexpectedly falling off line.
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mercial customers, many of which have electricity metered at 15 minute intervals or less to

accommodate demand charges specified in commercial tariffs. The state is also developing

plans to install smart meters for all customers. Even without smart meters, we expect that

integrators could implement a wide range of demand-response services, including reserve pro-

vision, by using other forms of network connectivity to control power consumption of certain

designated devices. Alternatively, devices could be programmed to forecast and respond to

price signals automatically.

Estimates of shiftable load in each hour of each month are drawn from Navigant Consulting

(2015), a private consulting report commissioned by Hawaiian Electric, a copy of which was

submitted to the Public Utility Commission. Although much of the report is redacted, obscur-

ing the methods used to estimate load shares from alternative uses, it is the only available load

share data, specific to Oahu, that we were able to obtain. The starting point for our estimates

is a graph in the report depicting September 2025 projected end-use loads by hour of the day.

We measured the bars in the graphs by hand to estimate load shares in each hour for this

month, and summed those for air conditioning, water heating and water pumping to obtain

an estimate for the mid-September share of potentially shiftable load. Because loads vary over

time, and tend to be higher when it is warmer, presumably due to greater use of air condition-

ing, we adjusted load shares for other months to account for this seasonality. We made this

adjustment using hourly load estimates provided in the Navigant report for February, May,

August and November of 2014, but were not partitioned by end use. These hourly loads were

regressed against a polynomial of hour-of-day and average temperature in each month.

Load = β0 + β1h+ β2h
2 + β3h

3 + β4PV + β5T.

where h is hour per day, PV is distributed generation from photovoltaic solar (which may be

associated with temperature), and T is temperature. We attribute temperature-sensitive load

to air conditioning, and then using load shares given for September 2025 as a baseline, we

infer the air conditioning share for the other months, linearly interpolating between February,

May, August and Noveember. Load shares attributable to water pumping and water heating

is assumed to be same across all months of the year.

We consider three different scenarios (optimistic, moderate, pessimistic), each of which

assigns different shares of the potentially-flexible and other load to pseudo customers with

different interhour substitutability. The assumptions for each scenario are reported in table 1.

In figures 2 and 3 we plot the implied shares of highly-flexible, moderately-flexible, and

inflexible demand in total and by hour and month for each of the three scenarios.

In the end, we cannot know in advance how much demand is truly flexible, the appropriate

elasticities to use, or anticipate how much potentially-flexible load customers will choose to en-

gage with a well-designed variable-pricing program. We anticipate that commercial customers

would comprise the bulk of participating flexible demand. Because commercial customers com-

prise over 70% of Oahu’s load and commercial loads have a large share of potentially-shiftable
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load, the optimistic scenarios assume that a large majority, but not all, of commercial cus-

tomers with shiftable load would actively participate in a demand response program. That

optimistic scenario might be justified by high participation of commercial customers in real-

time marginal-cost pricing programs like the one in Georgia. We anticipate that participation

could be even greater in future Hawaii, since price variation will presumably be far greater

and advanced computing technologies could make participation convenient and relatively low

cost.

Table 1: Share of shiftable load

σ Optimistic Moderate Pessimistic

Share of potentially flexible load

(water pumping, water heading and air conditioning)

Highly Flexible 10 67% 33% 15%

Somewhat Flexible 1 5% 5% 5%

Highly Inflexible 0.1 28% 62% 80%

Other load

Highly Flexible 10 15% 8% 0%

Somewhat Flexible 1 5% 5% 5%

Highly Inflexible 0.1 80% 88% 95%

Notes: Shares of flexible and inflexible shares in each scenario.

Figure 2: Demand flexibility scenarios
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Figure 3: Demand flexibility scenarios by hour and month

The graphs show three scenarios for interhour demand flexibility, optimistic, moderate, pessimistic,
respectively. Note that all demand types are assumed to have the same overall demand elasticity for
electricity (0.1 in the the baseline case). Flexible, midflex and inflexible loads are assumed to have
within-day interhour elasticities of substitution equal to 10, 1 and 0.1 respectively.

11



2.3 Demand-Side Reserves

Up reserves normally refer to residual capacity by dispatchable generators that can ramp up in

the event that a power plant drops offline, wind or solar energy generation unexpectedly falls,

or demand suddenly spikes. Reserves can also be accommodated by the demand side, and is

typically what power engineers call demand response, while economists normally connect the

term to the more general idea of price-sensitive demand. Historically, demand-side up reserves

have involved contracts between the balancing authority (e.g., utility or ISO) and large-scale

users of electricity that give the balancing authority the ability and right, in exchange for a

rate reduction, to remotely reduce or terminate power supply to participating customers during

certain critical events. In Hawaii, residential customers have also participated in a program

that gives residential customers a $3 monthly discount in exchange for allowing the utility

to suspend power supply to water heaters during critical events. Similarly, down reserves

correspond to the option of quickly ramping down a power plant or increasing energy use in

the event of a net supply surge, which might result from a sudden falloff of demand or supply

surge from intermittent renewables.

The model presented here includes a more general notion of a reserve markets for both

up and down reserves, one in which only highly-flexible demand types are assumed to be

able to participate. Reserves can also be supplied by the supply side, either from batteries

or dispatchable generators. On the demand side, we incorporate reserves into flexible-type

demand that is governed by a net price that embodies up reserves, down reserves and the

real-time price of energy itself. We define these as follows:

xuh = x∗h − 0 (5)

xdh = max(xh)− x∗h (6)

Net Price = p∗h − puh + pdh (7)

where x∗h is energy use in hour h, xuh is demand-side up-reserves demand in hour h, xdh is

demand-side down-reserves demand in hour h, max(xh) is the maximum electricity demand

when price equals an imposed minimum ($1 per MWh). The minimum price limits demand

that could otherwise rise to infinite levels given the constant-elasticity structure of the demand

system. The flexible pseudo customer chooses xh (and implicitly xuh and xdh), according to the

Net Price, which includes both the energy price and reserve prices.

2.4 Calibration of Hourly Demand Shares

In fixed price scenarios, we adjust overall power demand by adding additional inflexible demand

to each hour based on the assumed size of the electric vehicle fleet and the charging patterns of

early adopters (das 2015). This shifts up the evening peak more than other times, and makes

high-penetration renewable systems more costly. In real-time pricing scenarios, we assume
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electric vehicle charging is optimally scheduled to the least-cost times of each day, and thus

makes high-penetration renewable systems easier to achieve.

We calibrate demand scenarios by estimating the share of aggregate load in each hour

and each month used for three potentially shiftable loads: water heating, water pumping

and air conditioning. Typically these uses of power can be shifted many hours at relatively

low cost using existing technologies. We then suppose an optimistic (67%), midline (33%)

and pessimistic (15%) scenarios, each of which assumes a different share of these potentially-

shiftable loads will actually have high interhour substitutability within a day (elasticity =

10). Across all scenarios we assume just 5% of baseline demand has moderate substitutability

between hours (elasticity = 1). We assume that 80-95% of remaining load (not for water

heating, water pumping or air conditioning) is highly inelastic between hours (elasticity =

0.1). The optimistic scenario could be achieved with widespread adoption of real-time pricing

and automated demand-response systems by commercial users alone.

We use a baseline model that assumes an overall demand for energy (capturing substitution

between electricity and all other goods) that is highly inelastic (elasticity = 0.1), which is

consistent with a recent estimate with a strong study design and relatively similar climate and

marginal price profile (Ito 2014). While some studies find larger demand elasticities, they tend

to be based on poorer study designs and we believe it is important to have a baseline model that

is reasonably conservative. Within our model, this outer elasticity captures demand response

over longer time horizons to help with seasonal imbalance and episodic weather, and adjusts

overall scale modestly depending on average prices. However, because it seems possible that

new technologies and energy demands might arise in a world with highly variable (and often

free or nearly free) electricity, we also consider scenarios with larger demand overall elasticities

(0.5, 0.9 and 2.0).

2.5 Electric Vehicles

An important consideration for modeling future power systems with high-penetration renew-

ables is the potential growth of electric vehicles. Electric vehicles represent a new source of

power demand and, given their large and growing battery sizes, source of power storage or

interhour flexibility that might also provide reserves. Like demand-side flexibility, it is highly

uncertain how quickly electric vehicles may grow as a share of the vehicle fleet. Given the

unique nature of power demand from electric vehicles, plus the fact that they comprise a small

share of historical loads used to calibrate the demand functions described above, we treat

them separately. We also consider scenarios with a wide range of electric vehicle adoption,

0.5% (the current share), 50% and 100%. In variable pricing environments we assume that

vehicle charging is optimally scheduled to least-cost times in each day, but do not allow for any

intraday substitution of charging (which will likely be feasible). In fixed-price environments

we assume vehicle charging follows typical charging behavior of electric vehicle owners today

(das 2015).
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3 Switch 2.0

Switch (http://www.Switch-model.org), is open-source power planning software that uses

mixed-integer programming to minimize the net present value of the cost of electricity produc-

tion subject to operation and policy constraints. The main decision variables are generation

capacities at each candidate project site and the amount of power to produce or store at each

project site during each hour of the planning period. Constraints require adequate power to

satisfy demand plus reserves during all hours, and that it meet any exogenous policy con-

straints, such as a renewable portfolio standard (RPS).

Switch combines an operational model, similar in detail to production cost models such as

GE MAPS or Plexos, and a long-term capacity expansion model, similar to Ventyx Strategist or

PowerSimm Planner. Commercial capacity planning models typically consider the distribution

of loads exogenously imposed on a system, neglecting price response by customers. Moreover,

conventional planning or expansion models generally use unordered sets of time slices, and

thus do no have enough temporal detail to model the operation of power systems with a large

share of time-varying renewables. Such power sources may need to be curtailed or be balanced

by interhour load shifting or energy storage, the values of which cannot be ascertained without

a chronological model. Conventional commercial operation models can optimize chronological

management, but assume fixed generation portfolios that must be selected by other means.

Efficient integration of renewables can be greatly enhanced by simultaneously considering both

capacity and chronological operation decisions, as does Switch (Fripp 2012, Nweke, Leanez,

Drayton and Kolhe 2012, Sullivan, Eurek and Margolis 2014).

3.1 Mathematical Formulation of Switch

Here we provide a brief overview of the core equations used by Switch. A more complete

documentation of the software can be found in Johnston (2017).

Switch 2.0 has a modular architecture that reflects the modularity of actual power systems.

Most power system operators follow rules that maintain an adequate supply of power, and

most individual devices are not concerned with the operation of other devices. Similarly, core

modules in Switch define spatially and temporally resolved balancing constraints for energy and

reserves, and an overall social cost. Separate modules represent components such as generators,

batteries or transmission links. These modules interact with the overall optimization model by

adding terms to the shared energy and reserve balances and the overall cost expression. They

can also define decision variables and constraints to govern operation of each technology. This

approach makes it possible for users to add, remove or alter modules, representing different

system components and formulations without unexpected interactions with other parts of the

model. Consequently, Switch 2.0 can be readily customized to address the needs of a given

study or region.

3.1.1 Objective Function

The objective function minimizes the net present value of all investment and operation costs:
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min
∑
p∈P

dp

 ∑
cf∈Cfixed

cfp +
∑
t∈τp

wyear
t

∑
cv∈Cvar

cvt

 (8)

Function 8 sums over sets of fixed costs Cfixed and variable costs Cvar of each project p in

the set P. Each fixed cost component cf is a model object, indexed by period and specified

in units of dollars per year. This object may be a decision variable, parameter or expression

(a calculation based on other components). The term cfp is the element with index p from

component cf . Variable cost components cv are indexed by time point t and specified in units

of dollars per hour. For example, in our model we select one 24 hour day from each month of

the year, so that the time points t specify actual hours. The weights multiply the individual

days by about 30 such that the accounting reflects costs over an entire year. The specification

is generic so that models of different granularity may be considered depending on the needs of

a particular problem and computational expense.

3.1.2 Operational Constraints

Power Balance: Specifies that power injections and withdrawals in each load zone and each

time point must balance to obey Kirchhoff’s current law, where injections are mainly output

from power plants, withdrawals from battery storage and withdrawals are mainly customer

loads and battery charging.∑
pi∈P inject

piz,t =
∑

pw∈Pwithdraw

pwz,t, ∀z ∈ Z, ∀t ∈ T (9)

Dispatch: These constraints specify limits of power generation from a source (or power plant)

to its installed capacity Kp multiplied by a capacity factor ηp,t, that may vary with exogenous

factors like solar radiation or wind speed.

0 ≤ Pp,t ≤ ηp,tKp ∀p ∈ P, ∀t ∈ T (10)

Our paper uses a unit commitment module that further constrains dispatch to generation

projects that have been committed a particular capcity Wp,t to be in operation at particular

time point, plus operational constraints pertaining to that choice. These constraints specify:

0 ≤Wp,t ≤ ηp,tKp ∀p ∈ P, ∀t ∈ T (11)

dmin
p Wp,t ≤ Pp,t ≤Wp,t ∀p ∈ P,∀t ∈ T (12)

Wp,t −Wp,t−1 = Up,t − Vp,t ∀p ∈ P, ∀t ∈ T (13)

Equation 11 constrains the capacity choice within the feasible limit; equation 12 limits dispatch
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by a minimum operating constraint that applies to many power plants; and equation 13 con-

strains changes in commitment to lie within the startup, shutdown and ramping capabilities

of the particular project. Similar constraints can constrain transmission between nodes of the

power system. Our model of Oahu, however, has only a single node, so these constraints are

not used. Transmission constraints would be of critical importance for applications to larger

geographical areas that are connected, such as the continental United States.

Minimum up and down times: These constraints require that all capacity that was started

up during a look back window (τp, constrained by the particular project technology) is still

online, and that all capacity that was shutdown during the downtime look back window remains

uncommitted.

Wg,t ≥
t∑

t′=t−τp

Up,t′ ∀p ∈ P,∀t ∈ T (14)

Wg,t ≤ ηp,tKp −
t∑

t′=t−τp

Vp,t′ ∀p ∈ P, ∀t ∈ T (15)

3.2 Oahu Configuration of Switch

Switch is configured based on Hawaii’s 2007 power system data together with finely gridded,

coincident, chronological wind and solar radiation data. Capital cost and fuel cost assump-

tions are based on Hawaiian Electric Company’s recent Power Supply and Improvement Plan

(https://www.hawaiianelectric.com/about-us/our-vision). Renewable resource poten-

tial is derived from screening available land resources as described below.

3.2.1 Utility-Scale Solar

Land available for utility-scale solar was restricted to parcels zoned for agricultural or country

use, excluding Class A agricultural land per Hawaii statute. This is conservative because it

excludes a significant amount military land, and the military plans to install a considerable

amount of solar. We also excluded land with a slope greater than 10%, land within 50 meters of

street centerlines, and parcels with any directional dimension less than 60 meters. We assume

fixed-panel photovoltaic installations use six acres per MW (AC) of capacity and that tracking

photovoltaic installations use 7.5 acres per MW (AC) of capacity. These are roughly in the

lower quartile of the national statistics indicated by the National Renewable Energy Laboratory

(NREL).4. Fixed photovoltaic has a ground cover ratio of 0.68 and tracking systems have a

cover ratio of 0.45. These assumptions affect the capacity factor when the sun is low. We then

use NREL’s PV Watts tool to calculate hourly output for each 4 km cell using irradiance data

from the National Solar Radiation Database (NSRD). The map of lands considered are shown

in figure 4.

4See http://www.nrel.gov/docs/fy13osti/56290.pdf.
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Figure 4: Land Available for Utility-Scale Solar

The map shows land that is assumed to be available for utility scale solar installations on Oahu given
zoning and other technical and legal constraints. Each area circled in blue is entered as a separate
project in Switch, with different projects having different solar potential and hourly production profiles.
Red lines indicate roads.

3.3 Rooftop Solar

Rooftop solar potential was estimated from roof area from Google Map images. Visual review

of many roofs indicates accurate identification. We assume 40 percent coverage of roofs, which

is equivalent to 15 percent of roofs being flat with 70 percent coverage and 85 percent are

sloped with 35 percent coverage. We estimate total capacity assuming 12 percent efficiency

with 1000 W/m2 irradiance (capacity = 120 W/m2). Hourly output was estimated using PV

Watts and the NSRD. Figure 5 shows an image of rooftops on Oahu, including a closeup of

the UH Mānoa campus.

3.4 Wind Potential

On shore wind potential was estimated using similar screening to solar. Only land zoned

for agriculture or country or within 300 meters of other zones was considered. Slopes were

restricted to 20 percent grade or less, and not within 30 meters of steep slopes to eliminate

narrow ridge tops and valleys. A map showing areas potentially developable for wind is show

in figure 7. We considered wind turbine density of 8.8 megawatts (MW) per square kilometer

(km2), which is conservatively less dense that the current Kahuku wind farm on the island (12.9

MW/km2), but on the high end of 5-8 MW/km2 that is estimated by Denholm, Hand, Jackson

and Ong (2009). Potential turbines were clustered by region into separate scalable projects.

Hourly behavior of each potential project—its coincident potential capacity—is calculated
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Figure 5: Estimating Potential Rooftop Solar

[6] 

Rooftop Solar 

m2 m2  

[6] 

Rooftop Solar 

m2 m2  

The bottom image shows rooftop space islandwide (in lighted in yellow). The image on top shows a
closeup of part of the Mānoa campus to demonstrate accuracy of rooftop identification.
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from data in a local wind integration study (Corbus, Schuerger, Roose, Strickler, Surles, Manz,

Burlingame and Woodford 2010). For all practical purposes, there is an unlimited supply of

off-shore wind potential with a very high capacity factor of an estimated 43 percent, which

enters the model as a single scalable resrouce.

Figure 6: Potential wind farm locations

[8] 

Potential Wind Farm Locations 

The map shows land that is assumed to be available for on-shore wind development.

3.5 Time points and build scenarios

The model solves for a 30-year planning horizon and 12 representative days in each invest-

ment period, each representing a typical day from each month (the 15th), while constraining

the model to achieve the state’s 100 percent renewable energy goal by 2045 in the 100% scenar-

ios. We also solve models that constrain generation to be purely traditional fossil fuels, plus

a model that is unconstrained, and simply maximizes welfare (and minimizes costs) ignoring

pollution externalities. The analysis we perform here is a single stage analysis in the sense

that each scenario assumes all new assets are built at one point in time (e.g., 2045). Switch

is designed to consider a series of investment windows so as to optimize a long-run plan or

transition. However, because our focus in this paper is on the value of variable pricing, we

chose to simplify this part of the problem so as to provide more clarity about the long-run

tradeoffs of this critical policy choice.

3.6 Equilibrium: Merging Switch with Demand

Iterations between Switch and the demand system were completed as follows. First, we

solve Switch for a baseline load profile, which is connected to either actual 2007 loads or pro-

jected loads for 2045 (differences are discussed below). Tentative prices are derived as marginal

19



costs (shadow values of the constraints specified in equation 9), and these are offered to the

demand system. The demand system returns optimal quantities given prices, and an estimate

of money-metric utility. Switch then minimizes the cost of serving the new quantities, sending

new prices based on marginal costs. During successive iterations, Switch constructs a linearized

demand system from the convex hull of the demand/utility points, i.e., it approximates the

utility function as a convex combination (weighted sum) of prior bids. During each iteration,

Switch chooses a new system design to maximize welfare (utility minus cost) and offers new

prices. This cycle repeats until there is no further improvement in total surplus from having

new prices offered and receiving new bids.

This method is a Dantzig-Wolfe decomposition of the joint supply-demand problem (Dantzig

and Wolfe 1960). With this method, solutions from the supply problem (where consumers are

given quantities based on the linearized demand function) represent a lower bound on surplus,

and solutions from the demand problem (where consumers can choose any amount they want

without driving prices up) provide an upper bound on surplus. We stop when the difference

in these two measures is less than 0.1 percent of baseline electricity expenditure.

4 Cost assumptions and scenarios

4.1 Cost Assumptions

The inputs for Switch model are based on Hawaiian Electric (HECO)’s Power Supply and

Improvement Proposal and are summarized in table 2. The report lays out projected costs

each year from 2016 through 2045, and we consider models with costs at each endpoint to

show sensitivity of results to cost assumptions.

We summarize average capacity factors for the renewable sources in figure ??. In the

optimization model, capacity factors for each project vary by hour. While projects with higher

average capacity are more likely to be selected from the optimization routine, the timing of

capacity also matters.

4.2 Scenarios

We solve the full model under a large number of scenarios to explore sensitivity of results to

different assumptions. Specifically, the scenarios span all combinations of the following sets of

assumptions. Solving many scenarios also allows us to check internal consistency of results,

which is useful for developing some confidence that the models converged correctly.

Interhour demand flexibility (3) Pessimistic, Middling, Optimistic.5

Cost assumptions (2) HECO PSIP for 2016, 2045.

Overall electricity demand (4) 0.1, 0.5, 0.9, 2.0.

Electric vehicle share (3) 0.5%, 50%, 100%.

5Baseline scenario in boldface.
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Table 2: Summary of Cost Assumptions

Capital cost ($/MW) Unit cost Op. &
Maint.

Category Description 2016 2045 2016 2045 ($/MW/Yr.)

New power generators

Combined Cycle NG 1,653,242 1,415,952 17,452

Central Tracking PV 2,856,257 1,680,388 22,970

Distributed PV 3,650,295 1,511,097 -

IC Barge 1,323,183 1,323,328 34,214

IC MCBH 3,162,083 2,855,884 33,844

IC Schofield 2,481,336 2,241,312 33,844

Offshore Wind 6,205,598 3,882,934 96,710

Onshore Wind 2,459,329 1,986,498 27,400

Pumped Hydro 3,033,333 3,033,333

Storage

Battery 484,283 146,639

Hydrogren Electrolyzer 1,596,797 697,014

Hydrogen Fuel Cell 990,562 528,787

Hydrogen Liquifier 42,997 42,997

Inputs for fossil power plants

Biodiesel ($/gal) 30.37 48.68

Coal ($/mt) 2.74 3.60

Diesel ($/gal) 10.48 32.50

LNG bulk ($/MMBTU) 6.26 22.01

LNG container ($/MMBTU) 10.52 14.38

LSFO ($/MMBTU) 7.95 29.56

Pellet-Biomass ($/tonne) 14.00 14.00

Note: Cost assumptions are derived from Hawaiian Electric Company’s Power Supply and Improvement Plan
from December 2016. See https://www.hawaiianelectric.com/about-us/our-vision.

Figure 7: Average capacity and potential of renewable energy sources on Oahu
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The graph shows the resource capacity of different potential sources of renewable energy, each ordered
from highest average capacity to lowest. For perspective, peak demand on Oahu is about 1000 MW.

21

https://www.hawaiianelectric.com/about-us/our-vision


Policy Objective (3) Fossil, 100% Renewable, Unconstrained.

Baseline load profile (2) Projected 2045, Actual 2007.

Pricing scenario (2) Flat, Variable marginal-cost prices.

Most of the different sets of assumptions have been detailed above. We described the

different interhour demand flexibilities at length above. Cost assumptions for 2016 and 2045 are

summarized in table 2. While overall demand is likely inelastic, and we therefore focus mainly

on results with an overall demand elasticity for electricity of 0.1 (the elasticity of substitution

between electricity and all other goods), we do consider models with larger elasticities because

some scholars may find these more plausible, and because new uses for electricity may arise

that can make use of inexpensive electricity that would likely arise for significant stretches

under high-renewable scenarios. New intermittent demands may be more elastic.

The two load profiles, actual 2007 and projected 2045, differ mainly in their degree of

seasonality. Current demand tends to be considerably higher during Summer and early Fall,

while loads that the Hawaiian Electric Company projects for 2045 is considerably flatter.

Because seasonal variability may be costly to manage than intraday variability, comparison of

these scenarios provides some sense of this cost of seasonality. We do not have a strong sense

of why Hawaiian Electric Company believes the load profile will become flatter across seasons.

Much of our discussion focuses on welfare differences between flat and variable, marginal-cost

pricing, scenarios that are crossed with all other sets of assumptions.

Considering all combinations of the above scenarios yields 3× 2× 4× 3× 3× 2× 2 = 864

scenarios. Computing time required to solve a single scenario can range from less than an

hour for flat-price scenarios, to nearly two days for some of the dynamic scenarios. We used

the University of Hawaii’s high-speed computing facility with hundreds of state-of-the-art

cores to solve many models simultaneously. Although space constrains us from reporting all

individual scenarios, we have characterized many of them here, and have developed a website

with drop down menus that will allow readers to explore details of any particular scenario

(http://www2.hawaii.edu/~mjrobert/power_production/).

5 Results

To ease comparison of scenarios, some results are reported as the difference between a

particular scenario and a baseline scenario. The baseline scenario, indicated by the boldfaced

sets of assumptions in the list above, assumes fossil-based generation, future 2045 costs and

projected load profile, flat prices and an overall demand elasticity for electricity of 0.1 (the

elasticity of substitution between electricity and all other goods). Note that under flat pricing

scenarios, interhour demand flexibility has no bearing on the outcome. We choose this scenario

as the baseline, for it would presumably be the future that utilities would have envisioned in

the absence of renewable energy. To make welfare calculations easy to interpret, we report

these as percent differences from the baseline level of total expenditure on electricity.
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5.1 Main Results

Table 3 reports the main results for scenarios with projected 2045 loads and costs. Compar-

ing different rows from this table, one can infer the value of variable pricing under both fossil

and high-penetration renewable systems. One can also infer the value of having more or less

optimism about the degree of interhour flexibility of demand. Finally, we can see how much

the projected cost trends favor renewables, by comparing current (2016) costs and projected

costs in 2045.

We present a larger set of results graphically in figures 16 and 10. The first figure shows

the value of real time marginal cost pricing in comparison to flat pricing, all else the same.

The second figure shows the social cost of a 100 percent renewable system (negative change in

producer plus consumer surplus) against fossil and unconstrained baseline scenarios, all else

the same.

To illustrate what a few scenarios look like in real time, figure 8 shows both consumption

and production mixes by hour and season for middling demand flexibility, the scenarios that

sit between the paired optimistic and pessimistic demand flexibility in table 3. For higher

resolution depictions of all 864 scenarios, see the interactive website at: http://www2.hawaii.

edu/~mjrobert/power_production/, which allows users to select desired scenarios from a

series of drop down menus.

The main observations that we observe from these results are:

• A little bit of demand-side flexibility is valuable, as the pessimistic scenarios, with less

than one sixth the amount of flexible demand as the optimistic cases, still benefit half as

much from variable marginal-cost pricing.

• Under current costs, the unconstrained system is mostly fossil fuels (4 - 5.6 percent

renewable), however under future projected costs, the unconstrained system is mostly

renewable (73 - 80 percent).

• Dynamic pricing in the unconstrained scenarios lowers costs while increasing the share of

renewables. This value increases over time as the cost of renewables relative to fossil fuels

declines, and renewable energy makes up a larger share of energy in the unconstrained

scenarios.

• A 100 percent renewable system is projected to be less costly than a fossil system by

2045, but only under dynamic pricing.

• The value of dynamic pricing accrues mostly to consumers and may actually reduce

producer surplus, while total surplus (TS) always increases with dynamic pricing.

• Dynamic marginal cost pricing is considerably more valuable the greater the penetration

of renewable energy, rising from about 2.6% under the baseline scenario with pessimistic

demand flexibility, to 23.4% in a 100% renewable system with optimistic demand flexibil-

ity. Note that if the overall demand elasticity were larger, the value of dynamic pricing

is also greater, as high as 47 percent when θ = 2 (results reported in the appendix).
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• The production and consumption profiles indicate that in high-renewable scenarios, the

value of the variable pricing mainly derives from considerably less use of batteries.

• While variable pricing, as should be expected, benefits more flexible demand types more

than inflexible demand types, even inflexible demand types tend to benefit from variable

pricing, and in some cases, nearly as much as flexible demand types.
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Table 3: Main Results: Change in surpluses relative to baseline future fossil system with flat prices as a percent of baseline
expenditure.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

Policy
Objec-

tive

Cost Demand
Flexibil-

ity

Pricing % Re-
new-
able

Price
($/MWh)

Mean Q
(MWh/hr.)

SD of
Price

($/MWh)

∆ CS
(%.)

∆ EV
Cost
(%)

∆ PS
(%)

∆ TS
(%)

∆ CS
High-
flex
(%)

∆ CS
Midflex

(%)

∆ CS
Inflex
(%)

∆ TS
Dyn
(%)

Flat 4.12 87 944 0 33.6 -41.8 8.1 41.7 30.9 30.9 30.9
Optimistic

Dynamic 3.99 62 980 2 58.9 -58.2 -12.6 46.3 51.8 51.8 51.8
4.6

Flat 4.12 87 945 0 36.1 -37.2 5.1 41.2 31.5 31.5 31.5

C
u
rr

en
t

Pessimistic
Dynamic 4.01 61 972 0 54.1 -57.4 -8.8 45.3 53.1 48.2 47.8

4.1

Flat 4.27 124 906 0 —————————— B a s e l i n e ——————————
Optimistic

Dynamic 4.31 131 900 3 -4.9 -2.7 8.4 3.4 -5.8 -5.8 -5.8
3.4

Flat 4.28 126 904 0 —————————— B a s e l i n e ——————————

F
os

si
l

F
u
tu

re

Pessimistic
Dynamic 4.25 107 912 0 8 -20.8 -5.5 2.6 14.8 6.3 5.4

2.6

Flat 100 173 871 0 -38.9 36 -1.6 -40.5 -38.3 -38.3 -38.3
Optimistic

Dynamic 100 128 959 86 -12.6 -15.5 -4.5 -17.1 3.1 -15.9 -25.7
23.4

Flat 100 171 871 0 -37.1 33.8 -2.9 -40 -35 -35 -35

C
u
rr

en
t

Pessimistic
Dynamic 100 137 931 96 -24.8 -14.9 -1.3 -26.1 6.4 -17.8 -28.9

13.9

Flat 100 98 931 0 25 -30 -28.6 -3.6 21.2 21.2 21.2
Optimistic

Dynamic 100 84 1047 75 39.3 -52.9 -29.2 10.1 43.4 30.9 26.2
13.7

Flat 100 98 931 0 25.3 -29.1 -28.9 -3.6 22.4 22.4 22.410
0%

R
en

ew
ab

le

F
u
tu

re

Pessimistic
Dynamic 100 92 1016 80 33.9 -51.5 -29 4.9 45.2 31.7 27

8.5

Flat 5.39 88 943 0 34.8 -23.7 6.9 41.7 29.7 29.7 29.7
Optimistic

Dynamic 3.99 62 980 2 58.9 -58.2 -12.6 46.3 51.8 51.8 51.8
4.6

Flat 5.63 82 949 0 38.3 -37.7 2.9 41.2 35.9 35.9 35.9

C
u
rr

en
t

Pessimistic
Dynamic 4.02 61 972 0 53.4 -57.4 -8 45.3 53.1 47.8 47.3

4.1

Flat 73 87 944 0 35.4 -35.7 -6 29.4 30.6 30.6 30.6
Optimistic

Dynamic 80 71 994 32 45.5 -55.3 -6.7 38.7 45.7 37.5 34.4
9.3

Flat 73 87 944 0 35.4 -34.7 -6.3 29.1 31.6 31.6 31.6U
n
co

n
st

ra
in

ed

F
u
tu

re

Pessimistic
Dynamic 79 79 976 39 39.3 -54.4 -4.8 34.6 47.1 36.3 32.4

5.5

Notes: In all of the scenarios presented in this table, the overall demand elasticity for electricity (θ) equals 0.1, the baseline load profile is that projected for 2045, and electric vehicles are assumed
to comprise 50% of the fleet. Each scenario (row in the table) is defined by assumptions delineated in the first four columns. The first column (Policy Objective) indicates exogenous constraints
determined by policy: The Fossil scenario restricts any new installation of renewable energy, but is otherwise least cost; the 100% Renewable scenario reflects the intended outcome of the State’s
Renewable Portfolio Standard, and the Unconstrained scenario maximizes welfare without any constraints on the mix of power plants. The second column indicates whether current costs (2016)
or the present value of future costs projected for 2045 from HECO’s Power Supply and Improvement Plan are assumed. The third column indicates the degree of demand flexibility, as detailed
in table 1. The fourth column indicates whether retail prices are flat or dynamic (time-varying and equal to marginal cost). The remaining columns summarize the outcomes of the conditionally
optimized system: average price, average quantity, standard deviation of price, and changes in surpluses from the baseline case (fossil system, future costs, and flat pricing). All changes welfare
are reported as the percent difference relative to the baseline level of expenditure on electricity. %∆EV is simply the percent change in charging costs for electric vehicles from the base case. Note
that ∆CS includes EV changes. We also examine changes in welfare for different demand flexibilities, which only matters for dynamic pricing scenarios. The last column reports the social value
of dynamic pricing holding all else the same.
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Figure 8: Hourly production and consumption profiles for several scenarios with middling interhour demand flexiblity.
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The scenarios presented above assume the middling scenario for interhour substitutability of demand, an inelastic overall demand elasticity for electricity equal to 0.1, a baseline
demand profile projected for 2045, a vehicle fleet with 50% electric vehicles, and costs of production as projected for 2045 in HECO’s Power Supply and Improvement Plan. The
first two rows show fossil-fuel systems with flat and dynamic, real-time pricing; the next two rows show 100% renewable systems with flat and dynamic pricing; and the last
two rows show the welfare-maximizing systems (resource unconstrained) with flat and dynamic pricing. Higher resolution graphs for all scenarios can be viewed at the website:
www2.hawaii.edu/~mjrobert/power_production/.
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Figure 9: Surplus gain from dynamic pricing under different policy, cost and demand flexibility scenarios.

The graph shows the difference in total economic surplus with real-time marginal-cost pricing and total surplus when
prices are flat, holding all else the same. Total surplus change is reported as a percentage of baseline (flat price)
expenditure on electricity. The graph depicts all scenarios with an overall demand elasticity of 0.1; results for larger
overall elasticities are shown in the appendix. The top row shows the value of variable pricing under current costs;
the bottom row shows the value of variable pricing under projected future costs (2045). The horizontal axis shows
the policy scenario: fossil, 100% renewable or unconstrained (maximum surplus, regardless of source). The bars
show the baseline case with 50 percent electric vehicle fleet and 2045 load profile, the diamonds show the 2007 load
profile, and the error bars show how results differ with 0.5 percent and 100 percent electric vehicles–more electric
vehicles always increase the value of variable pricing.
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Figure 10: Cost of 100 percent renewable energy system under different policy, cost and demand flexibility scenarios.

The graph shows the difference in total economic surplus with a 100 percent renewable system versus the baseline
scenario given on the horizontal axis, holding all else the same. Total surplus change is reported as a percentage of
baseline expenditure on electricity. The graph depicts all scenarios with an overall demand elasticity of 0.1; results
for larger overall elasticities are shown in the appendix. The top row shows the value of variable pricing under
current costs; the bottom row shows the value of variable pricing under projected future costs (2045). The horizontal
axis shows the policy scenario: fossil, 100% renewable or unconstrained (maximum surplus, regardless of source).
The bars show the baseline case with 50 percent electric vehicle fleet and 2045 load profile, the diamonds show the
2007 load profile, and the error bars show how results differ with 0.5 percent and 100 percent electric vehicles–more
electric vehicles always increase the value of variable pricing.

28



5.2 Supplementary results

In the appendix we report results from scenarios that are exactly like those reported in

Table 3, except we change one assumption that was held constant across all scenarios in the

main results. We also replicate figure 16 and 10 for different overall demand elasticities. These

results mainly show that the value of dynamic pricing increases considerably, and the social

cost of renewable energy falls, with a greater share of electric vehicles use and a higher overall

demand elasticity.

6 Conclusion

To some extent, the viability of low-cost, high-penetration renewable energy reflects Hawaii’s

unique characteristics: the state is rich in wind and solar resources, but must otherwise import

fossil fuels a great distance, making fossil fuels expensive relative to renewable alternatives.

The unconstrained options also rule out additional installations of new coal-fired power plants.

Still, the cost assumptions used in this analysis are fairly conservative, especially in light of

rapid technological advancement in the last few years. By some estimates, renewable energy

and battery technology costs today rival our projections for 2045.

At the same time, renewable energy in Hawaii is in some ways more challenging than other

locations, due to its extreme isolation. In other, continental regions, which already have much

more connectivity, transmission provides another, potentially lower-cost method of managing

intermittency challenges, as well as transferring renewable power from areas rich in renewable

resources to areas with fewer renewable resources. The modeling framework presented here

can be used to assess the substitution possibilities between transmission and demand response.

Solving such a model would be computationally expensive, but potentially feasible with modern

parallel computing.

We believe these results provide credible evidence that high-penetration renewable energy

could be viable at low reasonable economic cost in many places soon, especially if real-time

dynamic pricing can be broadly implemented as an option at the retail level.
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Figure 11: Surplus gain from dynamic pricing under different policy, cost and demand flexibility scenarios when the overall demand
elasticity equals 0.5.

The graph shows the difference in total economic surplus with real-time marginal-cost pricing and total surplus when
prices are flat, holding all else the same. Total surplus change is reported as a percentage of baseline (flat price)
expenditure on electricity. The graph depicts all scenarios with an overall demand elasticity of 0.5 instead of 0.1 as
reported in the main paper. The top row shows the value of variable pricing under current costs; the bottom row
shows the value of variable pricing under projected future costs (2045). The horizontal axis shows the policy scenario:
fossil, 100% renewable or unconstrained (maximum surplus, regardless of source). The bars show the baseline case
with 50 percent electric vehicle fleet and 2045 load profile, the diamonds show the 2007 load profile, and the error
bars show how results differ with 0.5 percent and 100 percent electric vehicles–more electric vehicles always increase
the value of variable pricing.

33



Figure 12: Cost of 100 percent renewable energy system under different policy, cost and demand flexibility scenarios when the
overall demand elasticity equals 0.5.

The graph shows the difference in total economic surplus with a 100 percent renewable system versus the baseline
scenario given on the horizontal axis, holding all else the same. Total surplus change is reported as a percentage of
baseline expenditure on electricity. The graph depicts all scenarios with an overall demand elasticity of 0.5 instead
of 0.1 as reported in the main paper. The top row shows the value of variable pricing under current costs; the
bottom row shows the value of variable pricing under projected future costs (2045). The horizontal axis shows the
policy scenario: fossil, 100% renewable or unconstrained (maximum surplus, regardless of source). The bars show
the baseline case with 50 percent electric vehicle fleet and 2045 load profile, the diamonds show the 2007 load profile,
and the error bars show how results differ with 0.5 percent and 100 percent electric vehicles–more electric vehicles
always increase the value of variable pricing.
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Figure 13: Surplus gain from dynamic pricing under different policy, cost and demand flexibility scenarios when the overall demand
elasticity equals 0.9.

The graph shows the difference in total economic surplus with real-time marginal-cost pricing and total surplus when
prices are flat, holding all else the same. Total surplus change is reported as a percentage of baseline (flat price)
expenditure on electricity. The graph depicts all scenarios with an overall demand elasticity of 0.9 instead of 0.1 as
reported in the main paper. The top row shows the value of variable pricing under current costs; the bottom row
shows the value of variable pricing under projected future costs (2045). The horizontal axis shows the policy scenario:
fossil, 100% renewable or unconstrained (maximum surplus, regardless of source). The bars show the baseline case
with 50 percent electric vehicle fleet and 2045 load profile, the diamonds show the 2007 load profile, and the error
bars show how results differ with 0.5 percent and 100 percent electric vehicles–more electric vehicles always increase
the value of variable pricing.
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Figure 14: Cost of 100 percent renewable energy system under different policy, cost and demand flexibility scenarios when the
overall demand elasticity equals 0.9.

The graph shows the difference in total economic surplus with a 100 percent renewable system versus the baseline
scenario given on the horizontal axis, holding all else the same. Total surplus change is reported as a percentage of
baseline expenditure on electricity. The graph depicts all scenarios with an overall demand elasticity of 0.9 instead
of 0.1 as reported in the main paper. The top row shows the value of variable pricing under current costs; the
bottom row shows the value of variable pricing under projected future costs (2045). The horizontal axis shows the
policy scenario: fossil, 100% renewable or unconstrained (maximum surplus, regardless of source). The bars show
the baseline case with 50 percent electric vehicle fleet and 2045 load profile, the diamonds show the 2007 load profile,
and the error bars show how results differ with 0.5 percent and 100 percent electric vehicles–more electric vehicles
always increase the value of variable pricing.
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Figure 15: Surplus gain from dynamic pricing under different policy, cost and demand flexibility scenarios when the overall demand
elasticity equals 2.

The graph shows the difference in total economic surplus with real-time marginal-cost pricing and total surplus when
prices are flat, holding all else the same. Total surplus change is reported as a percentage of baseline (flat price)
expenditure on electricity. The graph depicts all scenarios with an overall demand elasticity of 2 instead of 0.1 as
reported in the main paper. The top row shows the value of variable pricing under current costs; the bottom row
shows the value of variable pricing under projected future costs (2045). The horizontal axis shows the policy scenario:
fossil, 100% renewable or unconstrained (maximum surplus, regardless of source). The bars show the baseline case
with 50 percent electric vehicle fleet and 2045 load profile, the diamonds show the 2007 load profile, and the error
bars show how results differ with 0.5 percent and 100 percent electric vehicles–more electric vehicles always increase
the value of variable pricing.
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Figure 16: Cost of 100 percent renewable energy system under different policy, cost and demand flexibility scenarios when the
overall demand elasticity equals 2.

The graph shows the difference in total economic surplus with a 100 percent renewable system versus the baseline
scenario given on the horizontal axis, holding all else the same. Total surplus change is reported as a percentage of
baseline expenditure on electricity. The graph depicts all scenarios with an overall demand elasticity of 2 instead
of 0.1 as reported in the main paper. The top row shows the value of variable pricing under current costs; the
bottom row shows the value of variable pricing under projected future costs (2045). The horizontal axis shows the
policy scenario: fossil, 100% renewable or unconstrained (maximum surplus, regardless of source). The bars show
the baseline case with 50 percent electric vehicle fleet and 2045 load profile, the diamonds show the 2007 load profile,
and the error bars show how results differ with 0.5 percent and 100 percent electric vehicles–more electric vehicles
always increase the value of variable pricing.

38



Table 4: Supplementary Results: Surplus changes relative to baseline if actual loads from 2007.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

Policy
Objec-

tive

Cost Demand
Flexibil-

ity

Pricing % Re-
new-
able

Price
($/MWh)

Mean Q
(MWh/hr.)

SD of
Price

($/MWh)

∆ CS
(%.)

∆ EV
Cost
(%)

∆ PS
(%)

∆ TS
(%)

∆ CS
High-
flex
(%)

∆ CS
Midflex

(%)

∆ CS
Inflex
(%)

∆ TS
Dyn
(%)

Flat 3.78 91 1043 0 32.7 -28.6 8.2 40.9 27.8 27.8 27.8
Optimistic

Dynamic 3.64 63 1085 4 57.7 -56.6 -12.2 45.5 50.9 50.9 50.9
4.6

Flat 3.78 91 1043 0 32.6 -27.1 8 40.7 28.3 28.3 28.3

C
u
rr

en
t

Pessimistic
Dynamic 3.65 61 1084 0 56.4 -56.1 -12 44.4 53 50.4 50.2

3.7

Flat 3.90 125 1005 0 —————————— B a s e l i n e ——————————
Optimistic

Dynamic 3.89 121 1007 11 4.4 -10.4 -0.6 3.9 2.3 2.3 2.3
3.9

Flat 3.90 125 1004 0 —————————— B a s e l i n e ——————————

F
os

si
l

F
u
tu

re

Pessimistic
Dynamic 3.91 116 1004 10 0.4 -13.2 2.6 3 7.6 -1.3 -2

3

Flat 100 171 967 0 -41.1 40.7 1.3 -39.8 -36.4 -36.4 -36.4
Optimistic

Dynamic 100 128 1063 87 -12.2 -14.4 -3.9 -16.1 3.1 -16.1 -26
23.7

Flat 100 172 967 0 -39.1 39.6 -0.4 -39.5 -36.5 -36.5 -36.5

C
u
rr

en
t

Pessimistic
Dynamic 133 1034 91 -22.2 -14.8 -3.9 -26.1 7.5 -16.1 -26.9

13.4

Flat 100 98 1033 0 25.3 -29.5 -25.7 -0.4 21.4 21.4 21.4
Optimistic

Dynamic 100 84 1159 75 39 -51.3 -25.9 13.1 43.1 30.8 26.4
13.5

Flat 100 98 1033 0 25.3 -28.2 -25.7 -0.4 22 22 2210
0%

R
en

ew
ab

le

F
u
tu

re

Pessimistic
Dynamic 100 92 1127 82 33.5 -49.9 -25.5 8 44.6 31 26.6

8.4

Flat 3.68 72 1072 0 49.6 -44.9 -8.7 41 43.3 43.3 43.3
Optimistic

Dynamic 6.24 74 1067 7 47.9 -48.8 -1.2 46.7 41.8 41.8 41.8
5.7

Flat 3.68 70 1072 0 49.4 -43.4 -8.7 40.7 45.6 45.6 45.6

C
u
rr

en
t

Pessimistic
Dynamic 3.65 61 1083 0 55.9 -56.1 -11.5 44.4 53 50 49.7

3.7

Flat 74 88 1046 0 34.4 -34.7 -4.4 30 30 30 30
Optimistic

Dynamic 72 1105 38 44.1 -53.7 -5.3 38.8 45.6 38.7 34.5
8.8

Flat 74 88 1046 0 34.4 -33.3 -4.6 29.8 30.6 30.6 30.6U
n
co

n
st

ra
in

ed

F
u
tu

re

Pessimistic
Dynamic 81 80 1085 42 38.2 -52.2 -3.1 35.1 45.9 35.2 31.2

5.3

Notes: Like Table 3, except baseline demand is tied to actual 2007 loads, not projected loads for 2045.
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Table 5: Supplementary Results: Surplus changes relative to baseline if fewer electric vehicles (0.5 percent).

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

Policy
Objec-

tive

Cost Demand
Flexibil-

ity

Pricing % Re-
new-
able

Price
($/MWh)

Mean Q
(MWh/hr.)

SD of
Price

($/MWh)

∆ CS
(%.)

∆ EV
Cost
(%)

∆ PS
(%)

∆ TS
(%)

∆ CS
High-
flex
(%)

∆ CS
Midflex

(%)

∆ CS
Inflex
(%)

∆ TS
Dyn
(%)

Flat 4.39 60 982 0 54 -54.2 -17.3 36.7 54.5 54.5 54.5
Optimistic

Dynamic 4.30 50 1002 1 63.2 -61.8 -23.9 39.3 62.9 62.8 62.8
2.6

Flat 4.51 77 955 0 38.8 -44.8 -2.8 36.1 39.8 39.8 39.8

C
u
rr

en
t

Pessimistic
Dynamic 4.35 49 990 1 56.7 -63.7 -18.2 38.5 63.9 56.7 55.8

2.4

Flat 4.76 126 904 0 —————————— B a s e l i n e ——————————
Optimistic

Dynamic 4.70 120 911 12 7.1 -14.1 -4.7 2.5 5.2 4.7 4.7
2.5

Flat 4.76 126 904 0 —————————— B a s e l i n e ——————————

F
os

si
l

F
u
tu

re

Pessimistic
Dynamic 4.74 111 908 5 3.4 -18.4 -2.4 1.1 12 3.4 2.5

1.1

Flat 100 164 876 0 -29.2 31.1 -7.1 -36.3 -29.6 -29.6 -29.6
Optimistic

Dynamic 100 126 961 86 -12.5 -14.2 -6.1 -18.6 5.7 -13.6 -23
17.7

Flat 100 161 877 0 -29.3 23.6 -6.8 -36.1 -27.3 -27.3 -27.3

C
u
rr

en
t

Pessimistic
Dynamic 100 134 936 95 -23.2 -19.9 -4.7 -27.9 10 -15.3 -26.4

8.2

Flat 100 98 931 0 22.9 -25.1 -29.6 -6.7 22.5 22.5 22.5
Optimistic

Dynamic 100 84 1043 74 34.2 -48.1 -29.8 4.4 44.4 31.4 27.2
11.1

Flat 100 98 931 0 22.9 -25.1 -29.6 -6.7 22.6 22.6 22.610
0%

R
en

ew
ab

le

F
u
tu

re

Pessimistic
Dynamic 100 91 1008 80 29.2 -49.7 -29.9 -0.7 46 31.7 27.5

6

Flat 4.49 76 960 0 41.8 -29.5 -5.3 36.4 40.7 40.7 40.7
Optimistic

Dynamic 4.34 57 987 5 56.7 -59.3 -15.9 40.8 57.6 57.1 57.1
4.4

Flat 4.39 61 982 0 54.3 -54.4 -17.6 36.6 53.2 53.2 53.2

C
u
rr

en
t

Pessimistic
Dynamic 4.34 49 993 1 57.8 -63.7 -19.5 38.3 63.9 58.1 57.4

1.7

Flat 75 93 937 0 26.1 -27.7 -0.4 25.6 26.8 26.8 26.8
Optimistic

Dynamic 71 995 32 40.2 -50.7 -7.8 32.4 46.8 38.6 35.6
6.8

Flat 75 93 936 0 26.4 -27.8 -0.7 25.6 26.4 26.4 26.4U
n
co

n
st

ra
in

ed

F
u
tu

re

Pessimistic
Dynamic 76 79 973 38 33.9 -51.7 -5.2 28.6 47.5 36 32.3

3

Notes: Like Table 3, except the share of electric vehicles is 0.5% (the current share of the fleet) instead of 50%.
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Table 6: Supplementary Results: Surplus changes relative to baseline if more electric vehicles (100 percent).

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

Policy
Objec-

tive

Cost Demand
Flexibil-

ity

Pricing % Re-
new-
able

Price
($/MWh)

Mean Q
(MWh/hr.)

SD of
Price

($/MWh)

∆ CS
(%.)

∆ EV
Cost
(%)

∆ PS
(%)

∆ TS
(%)

∆ CS
High-
flex
(%)

∆ CS
Midflex

(%)

∆ CS
Inflex
(%)

∆ TS
Dyn
(%)

Flat 3.77 91 941 0 34.9 -31.8 10.4 45.3 27.4 27.4 27.4
Optimistic

Dynamic 3.71 77 958 5 48.3 -41.3 3.5 51.7 38.9 38.9 38.9
6.4

Flat 3.77 91 941 0 32.4 -22 13 45.5 27.1 27.1 27.1

C
u
rr

en
t

Pessimistic
Dynamic 75 956 0 47.6 -45.6 4.2 51.8 41.1 38.1 37.8

6.3

Flat 3.88 125 905 0 —————————— B a s e l i n e ——————————
Optimistic

Dynamic 3.88 121 907 10 3.1 -5.3 1.4 4.5 3.2 3.2 3.2
4.5

Flat 3.88 124 905 0 —————————— B a s e l i n e ——————————

F
os

si
l

F
u
tu

re

Pessimistic
Dynamic 3.87 121 910 11 5.8 -10.9 -1.3 4.5 2.6 2.4 2.4

4.5

Flat 100 166 872 0 -42.2 33.8 -2.3 -44.5 -32.7 -32.7 -32.7
Optimistic

Dynamic 100 128 957 88 -13 -9.7 -2.5 -15.5 3.4 -16.3 -25.5
29

Flat 100 171 871 0 -41.9 29.6 -2.8 -44.7 -37 -37 -37

C
u
rr

en
t

Pessimistic
Dynamic 100 137 930 96 -24.9 -13.4 0.1 -24.8 4.7 -19 -30.3

19.9

Flat 100 98 931 0 26.4 -24.5 -26.7 -0.4 21.6 21.6 21.6
Optimistic

Dynamic 100 85 1048 75 42.6 -46.7 -26.8 15.8 43 31.1 26.2
16.2

Flat 100 98 931 0 27 -28 -27.4 -0.4 21.3 21.3 21.310
0%

R
en

ew
ab

le

F
u
tu

re

Pessimistic
Dynamic 100 93 1021 83 37.9 -50.3 -27.1 10.8 44.3 30.7 25.5

11.2

Flat 3.93 75 960 0 49.5 -36 -4.1 45.4 41 41 41
Optimistic

Dynamic 6.09 73 962 4 52.5 -44.6 -0.7 51.8 42.7 42.7 42.7
6.4

Flat 4.67 89 941 0 33.4 -19.9 12.1 45.5 28.7 28.7 28.7

C
u
rr

en
t

Pessimistic
Dynamic 5.88 72 961 4 49.8 -49.6 2 51.8 42.9 41.5 41.4

6.3

Flat 74 89 942 0 35.9 -30.3 -2.8 33.1 29.7 29.7 29.7
Optimistic

Dynamic 81 73 993 36 47.9 -48.4 -3.3 44.6 44.4 36.5 33.2
11.5

Flat 75 88 942 0 36.6 -34.1 -3.3 33.3 29.7 29.7 29.7U
n
co

n
st

ra
in

ed

F
u
tu

re

Pessimistic
Dynamic 81 80 977 41 43.8 -53 -2.7 41.1 45.6 35.1 31

7.8

Notes: Like Table 3, except the share of electric vehicles is 100% instead of 50%.
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Table 7: Supplementary Results: Surplus changes if overall demand elasticity = 0.5

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

Policy
Objec-

tive

Cost Demand
Flexibil-

ity

Pricing % Re-
new-
able

Price
($/MWh)

Mean Q
(MWh/hr.)

SD of
Price

($/MWh)

∆ CS
(%.)

∆ EV
Cost
(%)

∆ PS
(%)

∆ TS
(%)

∆ CS
High-
flex
(%)

∆ CS
Midflex

(%)

∆ CS
Inflex
(%)

∆ TS
Dyn
(%)

Flat 3.11 82 1283 0 48.4 -38.2 2.5 50.9 35.1 35.1 35.1
Optimistic

Dynamic 2.68 61 1508 2 77.7 -59.7 -21.6 56 53.4 53.4 53.4
5.1

Flat 3.11 84 1283 0 45.6 -36 5.3 50.9 33.5 33.5 33.5

C
u
rr

en
t

Pessimistic
Dynamic 2.46 49 1648 0 90 -66.5 -37.2 52.8 63.5 61.9 61.7

1.9

Flat 3.76 125 1043 0 —————————— B a s e l i n e ——————————
Optimistic

Dynamic 3.80 127 1033 4 -0.4 -6.1 4.1 3.7 -2 -2 -2
3.7

Flat 3.76 125 1043 0 —————————— B a s e l i n e ——————————

F
os

si
l

F
u
tu

re

Pessimistic
Dynamic 3.64 107 1083 0 9.1 -20 -6.3 2.8 14.3 6.9 6.4

2.8

Flat 100 171 888 0 -43.6 39.9 0.5 -43.1 -36.2 -36.2 -36.2
Optimistic

Dynamic 100 128 1064 62 -11.5 -15.5 -0.1 -11.7 1.8 -19.5 -28.3
31.4

Flat 100 173 886 0 -45.3 39.9 2.1 -43.1 -37.2 -37.2 -37.2

C
u
rr

en
t

Pessimistic
Dynamic 100 138 989 80 -27.9 -13 4.9 -23 3.2 -21.4 -32.3

20.1

Flat 100 102 1159 0 26.8 -27.9 -26.2 0.6 18.8 18.8 18.8
Optimistic

Dynamic 100 82 1370 37 48.6 -53.2 -25.6 23 42.3 29.1 25.2
22.4

Flat 100 102 1159 0 24.5 -26 -23.9 0.6 18.8 18.8 18.810
0%

R
en

ew
ab

le

F
u
tu

re

Pessimistic
Dynamic 100 91 1277 41 38.4 -50.8 -22.4 16 43 28.8 24.7

15.4

Flat 3.23 83 1283 0 48.3 -37.7 2.7 50.9 34.1 34.1 34.1
Optimistic

Dynamic 2.67 60 1509 2 78.5 -60 -22.5 56.1 53.6 53.6 53.6
5.2

Flat 3.23 84 1283 0 45.4 -35.2 5.5 50.9 33.5 33.5 33.5

C
u
rr

en
t

Pessimistic
Dynamic 2.56 50 1581 1 84 -66.4 -29.5 54.5 63.2 57.7 57.2

3.6

Flat 76 94 1205 0 35.8 -33.7 -0.4 35.4 25 25 25
Optimistic

Dynamic 84 76 1366 21 52.4 -53.4 -2.9 49.6 42.9 33.6 30.6
14.2

Flat 77 95 1204 0 32.5 -31 3 35.4 24.8 24.8 24.8U
n
co

n
st

ra
in

ed

F
u
tu

re

Pessimistic
Dynamic 81 88 1272 33 40.1 -52.3 3.7 43.8 44.1 29.9 26.6

8.4

Notes: Like Table 3, except the the overall demand elasticity (θ) equals 0.5 instead of 0.1
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Table 8: Supplementary Results: Surplus changes if overall demand elasticity = 0.9

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

Policy
Objec-

tive

Cost Demand
Flexibil-

ity

Pricing % Re-
new-
able

Price
($/MWh)

Mean Q
(MWh/hr.)

SD of
Price

($/MWh)

∆ CS
(%.)

∆ EV
Cost
(%)

∆ PS
(%)

∆ TS
(%)

∆ CS
High-
flex
(%)

∆ CS
Midflex

(%)

∆ CS
Inflex
(%)

∆ TS
Dyn
(%)

Flat 2.43 86 1673 0 50.9 -22.1 10.6 61.6 32.8 32.8 32.8
Optimistic

Dynamic 2.22 78 1840 3 66.7 -46.6 5.1 71.8 39.6 39.5 39.5
10.2

Flat 2.43 86 1673 0 51 -22.2 10.7 61.7 32.7 32.7 32.7

C
u
rr

en
t

Pessimistic
Dynamic 2.28 66 1791 4 63.8 -56.2 6.8 70.6 49.9 37.8 36.1

8.9

Flat 3.34 127 1187 0 —————————— B a s e l i n e ——————————
Optimistic

Dynamic 3.37 128 1179 3 -0.4 -7 4.4 4 -0.7 -0.7 -0.7
4

Flat 3.34 127 1188 0 —————————— B a s e l i n e ——————————

F
os

si
l

F
u
tu

re

Pessimistic
Dynamic 3.24 112 1230 0 6.1 -18.8 -2.8 3.2 12.1 3.4 2.8

3.2

Flat 100 170 903 0 -44.4 35.1 -1.7 -46.1 -33.2 -33.2 -33.2
Optimistic

Dynamic 100 128 1155 45 -14.2 -16.2 3.7 -10.4 3.1 -18.3 -27
35.7

Flat 100 169 923 0 -40.1 28.3 -6.1 -46.3 -32.6 -32.6 -32.6

C
u
rr

en
t

Pessimistic
Dynamic 100 138 1032 65 -27.9 -15.9 5.1 -22.8 3.7 -19.8 -30.6

23.5

Flat 100 102 1440 0 30.4 -28 -25.4 5 19.6 19.6 19.6
Optimistic

Dynamic 100 82 1818 28 56.5 -52.7 -22.5 33.9 42.6 29.1 25.5
28.9

Flat 100 102 1440 0 30.5 -28.2 -25.5 5 19.4 19.4 19.410
0%

R
en

ew
ab

le

F
u
tu

re

Pessimistic
Dynamic 100 91 1641 34 46.7 -52.5 -22 24.7 43.2 29 25.3

19.7

Flat 2.44 87 1673 0 50.4 -22.6 11.2 61.6 32.4 32.4 32.4
Optimistic

Dynamic 7.49 75 1912 3 72.5 -49 -0.4 72.1 42.3 42.3 42.3
10.5

Flat 2.44 87 1673 0 50.4 -22.7 11.2 61.7 32.2 32.2 32.2

C
u
rr

en
t

Pessimistic
Dynamic 3.22 64 1803 3 64.3 -57.5 6.4 70.7 51.9 38.1 36.2

9

Flat 81 98 1493 0 35.4 -29.9 5.5 40.9 22.8 22.8 22.8
Optimistic

Dynamic 87 78 1834 20 59.5 -53.1 0.9 60.4 43.1 31.8 29 19.5

Flat 81 99 1491 0 36.3 -30.6 4.7 41 22.5 22.5 22.5U
n
co

n
st

ra
in

ed

F
u
tu

re

Pessimistic
Dynamic 85 90 1642 30 47.8 -53.5 4.2 52 43.9 29.4 26.3

11

Notes: Like Table 3, except the the overall demand elasticity (θ) equals 0.9 instead of 0.1
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Table 9: Supplementary Results: Surplus changes if overall demand elasticity = 2

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

Policy
Objec-

tive

Cost Demand
Flexibil-

ity

Pricing % Re-
new-
able

Price
($/MWh)

Mean Q
(MWh/hr.)

SD of
Price

($/MWh)

∆ CS
(%.)

∆ EV
Cost
(%)

∆ PS
(%)

∆ TS
(%)

∆ CS
High-
flex
(%)

∆ CS
Midflex

(%)

∆ CS
Inflex
(%)

∆ TS
Dyn
(%)

Flat 1.78 110 2324 0 33.5 -2.4 48.6 82.2 14.9 14.9 14.9
Optimistic

Dynamic 1.64 104 2522 4 45.6 -21 47.5 93 19.4 19.1 19.1
10.8

Flat 1.78 110 2324 0 33.6 -10.2 48.4 82 15.1 15.1 15.1

C
u
rr

en
t

Pessimistic
Dynamic 1.65 92 2512 7 47.1 -39.6 44 91.1 30 19.5 18.1

9.1

Flat 2.42 128 1672 0 —————————— B a s e l i n e ——————————
Optimistic

Dynamic 2.33 126 1742 4 4.1 -3.2 1.4 5.5 2 1.8 1.8
5.5

Flat 2.42 129 1673 0 —————————— B a s e l i n e ——————————

F
os

si
l

F
u
tu

re

Pessimistic
Dynamic 2.30 115 1772 5 6.5 -21.6 -1.8 4.7 11.5 2.9 2.1

4.7

Flat 100 168 967 0 -50 38.3 -3.4 -53.3 -30.6 -30.6 -30.6
Optimistic

Dynamic 100 126 1471 30 -17.4 -10.4 7.2 -10.2 4.5 -18.2 -26.6
43.1

Flat 100 171 945 0 -53 36.7 -0.1 -53.1 -32.6 -32.6 -32.6

C
u
rr

en
t

Pessimistic
Dynamic 100 138 1156 50 -34.5 -17.8 9 -25.5 5.5 -19.9 -29.1

27.6

Flat 100 117 2043 0 20.8 -9.6 -2.1 18.7 9 9 9
Optimistic

Dynamic 100 100 2659 25 45.3 -32 20.3 65.6 27.1 13.6 10.5
46.9

Flat 100 117 2043 0 20.9 -17.4 -2.3 18.6 9.3 9.3 9.310
0%

R
en

ew
ab

le

F
u
tu

re

Pessimistic
Dynamic 100 104 2515 30 43.6 -43.5 7.1 50.7 33 18.7 15.6

32.1

Flat 9.28 107 2382 0 37.7 -4.6 45.7 83.5 17.1 17.1 17.1
Optimistic

Dynamic 23.42 105 2503 6 44.4 -18.9 55.8 100.1 18.5 18.3 18.3
16.6

Flat 9.28 107 2382 0 37.9 -12.5 45.4 83.3 17.2 17.2 17.2

C
u
rr

en
t

Pessimistic
Dynamic 13.47 88 2546 4 46.7 -40 49.1 95.8 32.5 19.8 17.8

12.5

Flat 80 103 2563 0 47.4 -19.4 14.6 62 19.9 19.9 19.9
Optimistic

Dynamic 89 97 2820 21 53 -34 42.2 95.2 29.4 16.9 14.1
33.2

Flat 80 104 2563 0 47.9 -27.3 13.9 61.8 19.7 19.7 19.7U
n
co

n
st

ra
in

ed

F
u
tu

re

Pessimistic
Dynamic 90 101 2638 28 49.8 -46.1 29.7 79.5 35.3 20.8 17.9

17.7

Notes: Like Table 3, except the the overall demand elasticity (θ) equals 2 instead of 0.1
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