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Abstract

We develop a framework to explore the interaction between loan origination and securitiza-

tion. In the model, banks privately screen and originate loans and then issue securities that

are backed by loan cash flows. Issued securities are rated and sold to investors. We show

that the availability of credit ratings (or other public information) increases the allocative

efficiency of cash flows by reducing costly retention, but reduces lending standards and can

lead to an oversupply of credit. These findings are in contrast to regulators’ view of credit

ratings as a disciplining device. Moreover, improved screening does not solve the prob-

lem; as banks’ screening technology becomes more precise, their lending standards collapse

and some (though not all) bad loans are deliberately originated. We use the model to ex-

plore several commonly proposed policies and provide conditions under which they increase

efficiency. Finally, we consider extensions to allow for ratings shopping and manipulation.
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1 Introduction

Asset-backed securitization is an important driver of credit supply (Loutskina and Strahan, 2009;

Shivdasani and Wang, 2011). In the US, since the mid-1990s, there has been substantial growth

in the securitization of many asset classes including mortgages, student loans, commercial loans,

auto loans, and credit card debt. This practice has financed between 30% and 75% of loan

amounts in these consumer lending markets (Gorton and Metrick, 2012), significantly increasing

households’ access to credit. The development of markets for securitized products has been

facilitated in part by credit rating agencies (CRAs), which allowed issuers access to a large pool

of investors who would otherwise have perceived these securities as opaque and complex (Coval

et al., 2009; Pagano and Volpin, 2010).

In the aftermath of the recent financial crisis, the practice of securitization has been under

intense scrutiny. The roles of both originators in screening loans and of rating agencies in evalu-

ating securitized products have come into question.1 A variety of regulations have been proposed

in attempt to discipline loan origination and protect investors. For example, the Dodd-Frank

Act imposed a mandatory “skin in the game” rule on securitizers and established disclosure

requirements on both securitizers and rating agencies. Clearly, there are important interactions

between the accuracy of information available to investors, banks’ decisions of which loans to orig-

inate, and the market for securities backed by these loan pools. Yet, surprisingly, the academic

literature has little to say about these interactions.

In this paper, we propose a stylized model of origination and securitization to study the role

of private information (e.g., screening) and of public information (e.g., ratings) and explore

the implications for lending standards and the overall supply of credit. Our main finding is

that the availability of public information improves the allocation of cash flows by reducing

inefficient retention, but reduces lending standards and can lead to an oversupply of credit.

Moreover, improvements in screening do not solve the problem; as banks’ screening technology

becomes more precise, their lending standards collapse and some (though not all) bad loans are

deliberately originated. We then explore the effects of common policy proposals, such as those

described above from the Dodd-Frank Act.

The model features a continuum of banks and a set of competitive and fully rational investors.

Each bank has access to a loan pool, and uses a screening technology to acquire private infor-

mation about the quality of its loans. Each bank then decides whether to fund its pool—the

origination stage. After origination, banks have an incentive to reallocate the cash flow rights

from their loan pools to investors (e.g., due to capital constraints) and do so by selling securi-

ties backed by their loan pool in the secondary market—the securitization stage. In this stage,

1See Dell’Ariccia et al. (2012), Keys et al. (2010), Jaffee et al. (2009), Mian and Sufi (2009), Agarwal et al.
(2012) for how securitization negatively affected lending standards; and Pagano and Volpin (2010) and Benmelech
and Dlugosz (2010) for the role, and failures, of CRAs in the securitization process.
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the bank’s private information hinders the efficient allocation of cash flow rights, which in turn

distorts its incentives during the origination stage.

The model admits two channels through which information can be conveyed to investors to

mitigate these distortions. First, because it is more costly for a bank to retain bad loans than

good ones, retention may serve to signal quality to investors as in Leland and Pyle (1977). Second,

information about the pool of loans underlying each security can be conveyed to investors through

a noisy public signal, which we refer to as a rating—though it can be interpreted more broadly

as any form of public information about the value of the security.

In order to understand the role of each channel and the intuition for our main results, it is useful

to consider an originate-to-distribute (OTD) environment in which neither channel is present.

That is, suppose that banks sell 100% of the loan pools that they originate without obtaining a

rating. In this case, the market price for a loan pool in the secondary market is independent of

loan quality, which, when combined with no retention, provides no incentive for banks to screen

loans during the origination stage. Rather, banks are motivated purely by “volume lending”; a

bank originates a loan if the secondary market price is larger than the amount of capital required

for origination. In equilibrium, the market price must reflect average quality, and hence the

average NPV of loan pools originated in the economy must be zero. Thus, lending standards are

too low and too many loans are originated relative to first-best where the marginal loan (instead

of the average loan) has zero NPV.

In the OTD environment, because the secondary price is relatively low, banks have an incentive

to retain good loans on their balance sheet. Doing so would then reveal fully securitized loans to

be of low quality, which would cause the secondary price to fall and the equilibrium to unravel.

This observation motivates our exploration of a model with endogenous securitization where

banks optimally choose how much of the loan-pool cash flows to retain. Absent ratings or release

of other public information, the securitization stage is a standard signaling game where (least-

cost) separation is the unique stable outcome. Banks retain a positive fraction if they originated

a good pool and sell 100% of originated bad pools. By doing so, investors learn the quality of each

loan sold on the secondary market and prices fully reflect all available information. However,

because retention is costly, the bank does not realize the full social value of good loans, which

leads to inefficiently high lending standards and an undersupply of credit.

We then introduce ratings to the model. After the retention decision, but prior to the sale

of a security, a noisy signal about the quality of the underlying collateral is publicly observed.

We ask how the presence of ratings affects what loans are originated. One natural intuition

is that informative ratings will lead to tighter lending standards and increase the quality of

loans made. We confirm this intuition is correct in the OTD environment where the retention

channel is absent. That is, if banks securitize and sell all of the loans they originate regardless of
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loan quality or rating accuracy, then introducing ratings leads to tighter, more efficient lending

standards.

The effect of ratings on lending standards and credit supply is more nuanced when banks

optimally choose their retention levels. When ratings are informative, banks with good loans no

longer fully separate through retention. Instead there is some degree of pooling at a lower reten-

tion level.2 Since retention is inefficient, ratings improve allocative efficiency in the securitization

stage. But, because less is being retained and ratings are imperfect, their introduction actually

increases incentives to originate lower quality loans and may induce an oversupply of credit.3

In essence, when ratings are introduced, the equilibrium of the securitization stage endoge-

nously shifts from a signaling-through-retention equilibrium toward an originate-to-distribute

equilibrium. Thus, while introducing noisy public information improves the efficiency of the

securitization stage, it does not discipline banks’ lending standards during origination.

We then highlight a novel and somewhat perverse interaction between ratings (i.e., public

information) and the precision of banks’ screening technology (i.e., banks’ private information

at origination). Without ratings, as the banks’ screening technology becomes arbitrarily precise,

only good loans are originated. With ratings, however, as the banks’ screening technology be-

comes more precise their lending standard collapses and a non-negligible mass of bad loans are

(deliberately) originated.

We use the model to evaluate several different regulations. An intuitive and often proposed

regulation is to require banks to retain a fraction of all originated loans. Proponents argue this

will provide incentives for banks to make good loans by ensuring that they have some “skin in

the game.” Critics argue that such regulation may reduce the availability of financing. This

trade-off is nicely captured within our framework. In addition, our model suggests a more subtle

consideration in the evaluation of skin-in-the-game regulation, which goes as follows. If banks

were using retention as a way to signal to investors, then mandated retention will either reduce

the information content of the signal or exacerbate the use of retention as a signal of quality. Our

model predicts that the latter case obtains and hence skin-in-the-game regulation leads to tighter

lending standards and a reduction in credit supply. We identify sufficient conditions under which

such a policy increases overall efficiency.

We also investigate policies related to disclosure requirements, both for securitizers and for

CRAs. These policies aim to increase the degree of public information, which in our model

is equivalent to a more informative rating. Here too we identify sufficient conditions under

which such a policy increases overall efficiency, and then discuss situations in which it does

2A similar feature is present in Hartman-Glaser (2017), where it is shown that when sellers are able to signal
both through retention and reputation (as opposed to with a public signal) the equilibrium is no longer separating.

3This result is consistent with empirical evidence that finds that increased third party certification, such as
ratings or number of analysts, increases a firm’s debt issuances, and sometimes equity issuances (Faulkender and
Petersen (2006), Sufi (2007), Derrien and Kecskés (2013)).
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not. Finally, motivated by central banks’ policy of easing credit constraints in order to promote

lending, we study the effect of a decrease in banks’ liquidity needs. Surprisingly, we find that

significant interventions of this kind may have precisely the opposite effect. That is, reducing

banks’ liquidity needs makes it cheaper for them to signal through retention, which can lead to

increased retention levels and fewer loans being originated.

Our finding, that an oversupply of credit may result from introducing public information, relies

on the rating being imperfect at the date of securitization, which seems (to us) a rather natural

assumption. As the rating becomes perfectly informative the lending standard and level of credit

supply converge to first best. However, our oversupply result does not require that ratings are

biased nor that investors are somehow misled by their information content.

There is, however, an extensive literature that studies the strategic nature of CRAs and the

strength of their incentives to provide unbiased information.4 Inspired by the CRA models in

Skreta and Veldkamp (2009), Sangiorgi and Spatt (2012), Bolton et al. (2012), and Opp et al.

(2013), we consider two extensions of the model: ratings shopping and rating manipulation.5

In both cases, the information content of the rating becomes endogenous. We show that these

frictions effectively reduce the information content of ratings and, thus, have an effect similar to

a reduction in the informativeness of (exogenously generated) ratings.

Several papers have highlighted the trade-off between productive and allocative efficiency stud-

ied in this paper. Parlour and Plantin (2008) study the effect of loan sales on banks’ origination

and on borrowers’ capital structure decisions, while Malherbe (2012) explores the relation be-

tween risk-sharing post-origination and market discipline. Chemla and Hennessy (2014) explore

a setting in which there is a moral hazard problem followed by a securitization decision. Absent

regulation, they show that the incentive to exert effort is too low and an optimal policy to pro-

mote effort is forced retention. There is also a rich literature that focuses on optimal contracting

with loan sales and moral hazard (Gorton and Pennacchi, 1995; Hartman-Glaser et al., 2012;

Vanasco, 2017). None of these papers study the release of public information to investors about

the assets being traded.

The approach adopted in this paper builds on our previous work. Daley and Green (2014)

consider a signaling model in which receivers observe both the sender’s costly signal as well

as a stochastic “grade” that is correlated with the sender’s type. We enrich this framework by

incorporating an ex-ante stage where assets are strategically originated, meaning the distribution

4Important considerations include the role of CRA reputation and moral hazard (Mathis et al., 2009; Bar-
Isaac and Shapiro, 2013; Fulghieri et al., 2014; Goel and Thakor, 2015; Kashyap and Kovrijnykh, 2016), feedback
effects and ratings as coordination devices (Boot et al., 2006; Manso, 2013; Goldstein and Huang, 2017), and the
implications of rating-contingent regulation (Opp et al., 2013; Josephson and Shapiro, 2015).

5These extensions are also in line with empirical studies on ratings shopping and manipulation: Ashcraft
et al. (2011), Griffin and Tang (2011), Griffin et al. (2013), Becker and Milbourn (2011), He et al. (2011), Kraft
(2015), Piskorski et al. (2015).
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of the quality of assets brought to market is endogenous, similar to Vanasco (2017).

The remainder of the paper is organized as follows. In the next section, we introduce the

model and our solution concept. In Section 3, we present several benchmarks. We analyze the

equilibrium of the model and its comparative statics in Section 4. In Section 5, we explore the

policy implications. Finally, in Section 6, we endogenize the information content of ratings by

allowing for ratings shopping and manipulation. Section 7 concludes. All proofs are relegated to

the Appendix.

2 The Model

There is a unit mass of loan originators, which we refer to as banks, and a competitive market

of outside investors. There are two periods. In the first period, each bank makes two decisions:

whether to originate a given pool of loans (the Origination Stage) and, if originated, what fraction

of the loan pool to securitize and sell to outside investors (the Securitization Stage)—what is not

sold remains on the bank’s balance sheet. In the second period, the state of the economy and

the cash flows from the originated loans are realized. All agents are risk neutral.

Origination stage . Each bank has access to one potential pool of loans. A loan pool requires

one unit of capital to originate and generates a random future cash flow Y that depends on

the state of economy, ω ∈ {Strong,Weak}, and the pool’s type, t ∈ {good,bad}, which are

independent. A good loan pool is expected to repay 1 +ρ in both states of nature. In contrast, a

bad loan pool is expected to repay 1+ρ in a strong economy, but only λν+(1−λ)(1+ρ) < 1 if the

economy is weak. One can interpret λ ∈ (0, 1) as the fraction of loans in a bad pool that default

in a weak economy and ν < 1 + ρ as the expected recovery given default. Let ξ ∈ (0, 1) denote

the proportion of good pools in the economy, π ∈ (0, 1) be the probability that the economy is

strong, and vt be the expected repayment of a loan pool of type t.6 We assume vb < 1 < vg,

meaning only good loan pools create value.

Prior to making origination decisions, banks acquire information about loan pools using their

screening technology.7 The screening technology is a pair of probability density functions,

{ψb, ψg}, with common support. If a loan pool is of type t, then a bank observes a random

variable drawn from ψt. Suppose that screening results in a realization s, then the bank’s ap-

praisal about its loan pool, denoted by p, is given by:

p = Pr(t = good|s) =
ξψg(s)

ξψg(s) + (1− ξ)ψb(s)
. (1)

6The expected repayments are vg = 1 + ρ and vb = π(1 + ρ) + (1− π)(λν + (1− λ)(1 + ρ)).
7Evidence of banks having the ability to acquire private information about borrowers can be found in Mikkel-

son and Partch (1986), Lummer and McConnell (1989), Slovin, Sushka, Polonchek (1993), Plantin (2009), Botsch
and Vanasco (2016), among others.
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As can be seen from (1), the information content of s is fully captured by its likelihood ratio

L(s) ≡ ψb(s)/ψg(s). We assume that L is a continuous random variable with support [0,∞).8

Therefore, across the population of banks, appraisals p are distributed according to a cdf H, with

density h that is positive almost everywhere on [0, 1]. Since there is a one-to-one match between

banks and loan pools, each bank is indexed by its appraisal p ∈ [0, 1]. That is, bank p refers to

a bank who observes signal s satisfying (1) when it screens its loan pool.9

After observing the realization from the screening technology, each bank decides whether or

not to originate the loans in its pool. If the bank chooses not to originate, it has no further actions

and earns a payoff of 0. If the bank originates its loans, it has the opportunity to securitize the

cash flows from the pool and sell them to the outside investors, which we turn to now.

Securitization stage . Each originating bank has an incentive to raise cash through securiti-

zation of the cash flows from its loan pool. This need could arise for a variety of reasons (e.g.,

credit constraints, binding capital requirements, credit market imperfections combined with prof-

itable investment opportunities). As in DeMarzo and Duffie (1999), we model this incentive in

reduced form by assuming that banks discount second-period cash flows by a factor δ < 1, while

investors’ discount factor is normalized to 1. Because banks are less patient than investors, fixing

the origination decisions, the efficient allocation is for all loan cash flow rights to be transferred

to investors.

During the securitization process, banks uncover additional information about the quality of

their loan pools, which we capture as the bank learning the loan pool type t. For convenience, we

focus on a simple securitization structure where banks choose the fraction of the cash flow rights

to sell and retain the remaining fraction. Thus, if a bank chooses to sell a fraction 1−x then for

any realization of the cash flow y, (1−x)y and xy are the amounts distributed to investors and to

the bank respectively in the second period. Choosing a higher x should therefore be interpreted

as the bank retaining more, which can serve as a (costly) signal to investors about the quality of

the underlying loans (as in Leland and Pyle, 1977).

Remark 1. In principle, each bank could design and sell a security that is an arbitrary function

of its cash flow. In Daley et al. (2016), we study the relevant security design game with ratings

and each bank’s cash flow being a continuous random variable. Using the results therein, we

demonstrate in Appendix B that the main insights of the present paper remain unchanged when

we allow banks to design and sell arbitrary securities.

Ratings . In addition to observing the level of costly retention x, we consider a second channel

8This assumption holds if, for example, ψt is a Normal density with mean mt, mg 6= mb, and variance σ2.
9Rather than specifying a screening technology, one could begin with the distribution of appraisals, H, as the

primitive. From Kamenica and Gentzkow (2011), there exists a screening technology that endows this distribution
of appraisals provided it satisfies Bayes Plausibility (i.e., ξ =

∫
pdH(p)).
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through which information may be conveyed to investors, which we refer to as a rating. We start

by modeling the rating as an exogenous public signal about the quality of the loan pool backing

the security. That is, a rating is a publicly observable random variable R with type-dependent

density function ft on R.10 In Section 6, we endogenize the distribution of the random variable

R by allowing for ratings shopping and manipulation.

The informativeness of a rating realization, r, is captured by the likelihood ratio: Γ(r) ≡ fb(r)
fg(r)

.11

Without loss, order the ratings such that Γ is weakly decreasing. A higher rating therefore

corresponds to a “better” signal about the quality of the underlying pool of loans. We assume

that ratings are informative, E[Γ(R)|b] > E[Γ(R)|g], but boundedly so: infr Γ(r) > 0 and

supr Γ(r) <∞. To fix ideas and parameterize rating informativeness, we will sometimes refer to

a binary-symmetric rating system in which there are two ratings, G and B, with γ = Pr(G|g) =

Pr(B|b) ∈ (1
2
, 1), where higher γ corresponds to more informative ratings.

2.1 Preliminaries

It is useful to cover some preliminary features that must hold in any Perfect Bayesian Equilibrium

(PBE) of the model. As is typical, we begin our analysis in the second (i.e., the Securitization)

stage and works backward.

At the beginning of the Securitization stage, investors have a (common) prior belief µ0 about

the quality of the loan pool backing each security. Investors then update their belief about a

given security based on observing both the bank’s retention level x and the rating r to some final

belief µf (x, r). This updating can be decomposed into a first update (based on x) and a second

update (based on r). The first update results in an interim belief, µ(x). Along the equilibrium

path, the interim belief must be consistent with the retention strategy of banks.12

The second update is purely statistical; investors update from their interim belief to a final

belief based on the rating according to Bayes rule:

µf (x, r) =
µ(x)fg(r)

µ(x)fg(r) + (1− µ(x))fb(r)
=

µ(x)

µ(x) + (1− µ(x))Γ(r)
. (2)

Let P (x, r) denote the price of a security as a function of the retention level chosen by the

bank and rating. Since investors are risk-neutral and competitive, the price equals the expected

10To encompasses a situation with a countable set of ratings {y1, y2, . . . }, with probabilities qt(yn), let ft(r) =
qt(yn) for r ∈ [n, n+ 1) and ft(r) = 0 for all other r ∈ R.

11If fg(r) = fb(r) = 0, we adopt the convention that Γ(r) = 1.
12A pure strategy for a bank is a type-dependent retention level, and a mixed strategy is a type-dependent

probability distribution over retention levels.
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value of the cash flows generated by the security given µf :

P (x, r) = E[(1− x)Y |x, r] = (1− x)
(
µf (x, r)vg + (1− µf (x, r))vb

)
. (3)

Given a schedule of interim beliefs µ(·), the expected payoff of a bank that has originated a

type-t pool and then chooses retention level x is ut(x, µ(x)) ≡ ER[P (x,R)|t] + δxvt. Equilib-

rium requires that banks select a retention level that maximizes ut taking the belief schedule as

given. Let u∗t denote the equilibrium payoff of type t in the continuation game starting from the

Securitization stage.

Moving back to the Origination stage, there are two critical links between the two stages.

First, given continuation payoffs u∗g, u
∗
b and its appraisal, each bank optimally chooses whether

to originate its loan pool, where origination yields an expected profit of pu∗g + (1 − p)u∗b − 1

compared to zero for not originating. Let O∗ be the set of loan pools originated. Second,

investors’ prior belief in the Securitization stage, µ0, must be consistent with banks’ decisions

in the Origination stage. Since investors are not privy to the appraisals of individual banks, the

belief consistency condition is simply µ0 = E[p|p ∈ O∗].

The Lending Standard . Intuitively, because good pools generate higher returns and better

ratings, u∗g > u∗b in any PBE. This implies that the origination decision takes a cutoff form, where

bank p originates if and only if p ≥ p∗. We refer to p∗ as the equilibrium lending standard. To

avoid the technicalities associated with corner solutions and guarantee that the lending standard

is always interior, we assume the following.

Assumption 1. ξvg + (1− ξ)vb < 1 < δvg.

Substantively, the first inequality says that banks have ample access to low quality loans in

the aggregate. Hence, if all loan pools were originated, their aggregate NPV would be negative.

The second inequality says that banks are patient enough that holding a good loan generates

positive NPV for them.

Lemma 1. In any PBE, the set of originated loan pools is a truncation, O∗ = [p∗, 1], where

p∗ =
1− u∗b
u∗g − u∗b

∈ (0, 1). (4)

An immediate corollary is that investors’ prior beliefs in the Securitization stage is conditional

on the loan pool’s appraisal p being above the lending standard p∗. That is, µ∗0 = A(p∗) ≡
E [p|p ≥ p∗]. In addition, the total supply of credit is Q(p∗) ≡ 1−H(p∗).

Collecting these preliminaries, we have the following explicit connection between equilibrium

behavior and beliefs across the two stages.
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Corollary 1. Any PBE of the model is characterized by the following.

1. In the Securitization stage: Given µ0, for each originated loan pool, bank retention strate-

gies, investor beliefs, and security prices comprise a PBE of the signaling game.

2. In the Origination stage: Given the continuation payoffs implied by the Securitization stage,

(u∗g, u
∗
b), the lending standard is p∗ as given by (4).

3. Belief Consistency: µ∗0 = A(p∗).

Finally, as is typical in signaling games, the Securitization stage has multiple PBE due to

the flexibility of beliefs off the equilibrium path. To handle this multiplicity, we employ the D1

refinement (Banks and Sobel, 1987; Cho and Kreps, 1987). Roughly, D1 requires investors to

attribute an off-path retention choice to the type who is more likely to gain from this deviation.

See Appendix A.1 for a formal definition. Hereafter, we use equilibrium to refer to a PBE that

satisfies D1 in the Securitization stage.

3 Benchmarks

3.1 Full-Information/First-Best (FB)

If the type of each loan pool were publicly observable in the Securitization stage, there would

be no incentive for banks to retain any of their cash flow rights, and full allocative efficiency

would be achieved: xFBb = xFBg = 0. In addition, prices would perfectly reflect underlying value,

so u∗t = vt. Moving back to the Origination stage, productive efficiency is also achieved as loan

pools are originated if and only if they generate positive NPV (i.e., if pvg + (1 − p)vb − 1 ≥ 0).

Hence, the first-best lending standard is

pFB =
1− vb
vg − vb

∈ (0, 1),

and the first-best total supply of credit is therefore Q(pFB) = 1−H(pFB).

Remark 2. Our measure of the first-best lending standard, pFB, implicitly assumes that banks

capture all of the surplus from originated loans. This allows us to focus on the distortions arising

from information frictions. In our investigation of policy proposals (Section 5), we allow for

externalities from origination that are not captured by the bank (e.g., on borrowers or taxpayers).

3.2 Originate-to-Distribute (OTD)

Suppose that banks are forced to sell 100% of the loan pools they originate. In this case, and

perhaps in line with the popular intuition, (i) the lending standard is too lax compared to the
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first-best benchmark, leading to an oversupply of credit relative to first-best, and (ii) more

informative ratings work to ameliorate (i).

To illustrate these findings, notice that without any retention decision, the price in the Securi-

tization stage is based only on the rating-updated investor belief, P (r) = µf (r)vg +(1−µf (r))vb,
where µf (r) = µ0

µ0+(1−µ0)Γ(r)
. Therefore, for any given investor prior belief µ0 ∈ (0, 1), continuation

payoffs are

uOTDt = ER[µf (R)vg + (1− µf (R))vb|t] = ER[µf (R)|t](vg − vb) + vb. (5)

For any informative (but imperfect) rating system, 0 < ER[µf (R)|b] < ER[µf (R)|g] < 1 and

therefore vb < uOTDb < uOTDg < vg. On the one hand, originating a good loan is less profitable

than vg, which pushes the lending standard up relative to pFB. On the other hand, originating

a bad loan is more profitable than vb, which pushes the lending standard down relative to pFB.

The next result shows that in equilibrium, the second force dominates.

Proposition 1. For any (imperfect) rating system, the equilibrium lending standard in the OTD

setting is too lax, i.e., pOTD < pFB.

Intuitively, since the rating only imperfectly distinguishes good loans from bad ones, without

retention, there is not enough discipline on banks during origination. As the informativeness

of ratings increase (e.g., as γ increases for binary-symmetric ratings), uOTDg increases and uOTDb

decreases, leading to an increase in the lending standard and a decrease in credit supply. As

ratings become perfectly informative (e.g., as γ → 1), uOTDg → vg and uOTDb → vb, as they are in

the first-best benchmark. Hence, in the limit, pOTD → pFB, but there is always an oversupply

of credit if ratings are short of perfectly informative.

At the other extreme, if we take the limit to uninformative ratings (e.g., as γ → 1
2
), then

ER[µf (R)|t] → µ0 = A(pOTD) for either type. Hence, any funded loan pool garners the exact

same price, which reflects the average cash flow of all funded loans. In the limit equilibrium,

loan pools will be funded up until the average gross return is equal to the cost of funding:

A(pOTD)vg + (1− A(pOTD))vb − 1 = 0.

Thus, in a OTD setting without ratings, the lending standard is set such that the average

funded loan pool generates zero NPV (whereas efficiency requires the marginal funded loan pool

to generate zero NPV). Notice that in this case, the secondary price for loan pools is equal to

1 and therefore banks with good loan pools have an incentive to retain them on their balance

sheet (since δvg > 1). Of course, if banks strategically retain loans then the OTD equilibrium

unravels. This observation serves as a motivation for analyzing a model in which we allow banks

to make their retention decisions strategically.
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3.3 Strategic Model without Ratings (NR)

Consider now the model as described in Section 2, but without informative ratings.13 In this case,

originators of good pools inefficiently retain a portion of their cash flows to signal their quality.

This misallocation depresses the value of origination, leading to a lending standard that is too

stringent compared to the first-best benchmark, resulting in an undersupply of credit relative to

the first-best.

To illustrate, define x̄ as the unique solution to

ub(0, 0)︸ ︷︷ ︸
vb

= ub(x̄, 1).︸ ︷︷ ︸
(1−x̄)vg+δx̄vb

(6)

That is, the originator of a b-pool is indifferent between efficiently selling all of its cash flow rights

at price vb, and retaining fraction x̄ if doing so leads to a price of (1− x̄)vg for the complementary

fraction it sells. Therefore, x̄ is the minimum amount the g-type must retain to separate from the

b-type in the Securitization stage. As seen in similar signaling games, D1 selects this “least-cost

separating” equilibrium.

Proposition 2. Without informative ratings, in any equilibrium, retention levels in the Securi-

tization stage are xb = 0 and xg = x̄. Hence, uNRb = vb and uNRg = (1− x̄)vg + δx̄vg < vg.

It follows from Lemma 1 that without ratings the equilibrium lending standard, denoted pNR,

is higher than in the first-best benchmark. Hence, there are positive expected NPV loans that

are not being funded in this economy.

Corollary 2. Without informative ratings, the equilibrium lending standard is too strict, i.e.,

pNR > pFB.

4 Equilibrium

We now turn to the equilibrium of the full model in which banks strategically decide on reten-

tion/securitization and their issued securities are rated, modeled as the random variable R.14

Again, we first characterize the equilibrium of the Securitization stage for any investor belief, µ0

(Section 4.1), and then characterize banks’ lending standard in the Origination stage along with

the consistent investor belief (Section 4.2). We conclude by exploring the key determinants of

the equilibrium lending standard including comparative statics on the precision of the screening

technology and the informativeness of ratings (Section 4.3).

13That is, Γ(r) = 1 for all r ∈ R.
14In Section 6, we endogenize the information content of ratings by allowing for ratings shopping and manip-

ulation.
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4.1 Securitization stage

Investors can potentially learn about the quality of a bank’s pool from both the bank’s securiti-

zation decision as well as from its rating. Intuitively, an originator of a g-pool would like to use

both channels optimally. To this end, consider the following maximization problem:

max
x,µ

ug(x, µ) s.t. ub(x, µ) = vb. (7)

That is, given the rating system, among all retention-level/interim-belief pairs that deliver the

b-type its full-information expected payoff, which one delivers the g-type its highest expected

payoff? In the Appendix (Lemma A.2) we show that this problem has a unique solution, which

we denote (x̃, µ̃). The solution can be thought of as a bank with a g-pool making optimal use

of the two channels at its disposal, subject to giving the bank with a b-pool its full information

payoff. This optimality is a critical part of the equilibrium characterization (and where the D1

refinement plays its role), as Proposition 3 formalizes. We first characterize when the solution

to (7) is interior.

Without ratings, the solution to (7) is (x̃, µ̃) = (x̄, 1). That is, if there are no ratings to

convey information to investors, the g-type uses the LCSE retention level to fully establish the

superior quality of its cash flows. Add now informative ratings. If the retention-level/interim-

belief remains (x̄, 1), then this addition has no effect because investors are completely convinced

that t = g even without the rating. Hence, for a g-type to rely on the rating at all, it must have

an interim belief below 1. Banks will choose to rely on ratings only when they are sufficiently

informative, as precisely captured by the following lemma.

Lemma 2. In the solution to (7), (x̃, µ̃) < (x̄, 1) if and only if

E[Γ(R)|b] > vg − δvb
(1− δ)vg

. (8)

The informativeness of a rating realization, r, is captured by its likelihood ratio: Γ(r) = fb(r)
fg(r)

.

E[Γ(R)|b] is a measure of the informativeness of the rating system, {fg, fb}.15 The right-hand

side of (8) measures the relative cost advantage of the g-type in retaining cash flows. Thus, the

solution to (7) has (x̃, µ̃) < (x̄, 1) if and only if ratings are informative enough relative to the

g-type’s cost advantage of retention.

Given Lemma 2, it is perhaps not surprising that if (8) does not hold, then ratings are simply

too noisy to alter the prediction from the no-ratings benchmark studied in Section 3.3. For

15The more informative the rating system, the higher is E[Γ(r)|b]. This measure is consistent with the notion of
informativeness introduced by Blackwell (1951): if one rating system is Blackwell more informative than another,
then E[Γ(R)|b] is higher under the more informative system. Note that E[Γ(r)|b] ≥ E[Γ(r)|g] = 1 for any rating
system.
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the remainder, we analyze the model in which ratings are informative enough to impact the

equilibrium outcome: that is, henceforth we assume (8) holds unless otherwise stated. The

equilibrium of the Securitization stage is then characterized as follows.

Proposition 3. For any µ0 6= µ̃, there is a unique equilibrium of the Securitization stage. In it

• If µ0 < µ̃, there is partial pooling at x̃ < x̄. That is, all banks with g-type pools retain x̃,

a fraction µ0(1−µ̃)
(1−µ0)µ̃

of banks with b-type pools retain x̃, and a fraction µ̃−µ0
(1−µ0)µ̃

retain zero.

Hence, the interim belief for x = x̃ is µ(x̃) = µ̃.

• If µ0 > µ̃, there is full pooling at x = 0. That is, all banks retain zero, regardless of type.

For µ0 = µ̃, there is full pooling in equilibrium, but it can be at any x ∈ [0, x̃].

The proposition shows that, with informative ratings, banks with g-pools need not signal as

vigorously to convey the quality of their security. Instead, they rely (to some extent) on the

rating to convey information to investors. When investors are sufficiently optimistic (µ0 > µ̃),

there is full reliance on the rating. That is, banks endogenously choose a policy to sell 100% of

the loans they originate. Otherwise, when µ0 < µ̃, banks rely partially on retention and partially

on the rating. That is, banks retain enough of g-backed pools to induce an interim belief of µ̃

and rely on the rating beyond that.

4.2 Origination stage

Having characterized the Securitization stage, we now analyze the Origination stage. This anal-

ysis has two components: (i) optimality of the banks’ lending standard to originate loan pools

given investor beliefs and (ii) consistency of investor beliefs with banks’ origination decisions.

Optimal Origination . Recall that given expected payoffs in the Securitization stage of u∗g, u
∗
b ,

a bank (weakly) prefers to originate if and only if pu∗g + (1 − p)u∗b − 1 ≥ 0, or equivalently

p ≥ 1−u∗b
u∗g−u∗b

. From Proposition 3, u∗g and u∗b vary with the investors’ belief µ0 when informative

ratings are present—in contrast to the first-best and no-ratings benchmarks. It is therefore useful

to define the banks’ reaction function as the marginal loan pool a bank is willing to originate

(i.e., the lending standard) given investors’ beliefs µ0:

Definition 1. Ψ(µ0) ≡
{

max
{

1−u∗b
u∗g−u∗b

, 0
} ∣∣ u∗g, u∗b are equilibrium payoffs given µ0

}
.

The max operator in Ψ accounts for the fact that if
1−u∗b
u∗g−u∗b

< 0, then banks will originate all loan

pools, which is equivalent to setting the lending standard to 0. Next, from Proposition 3 we have

that Ψ is single-valued for all µ0 6= µ̃. In more detail:

13



Corollary 3. For given investor belief µ0, the equilibrium lending standard with ratings satisfies

p∗ ∈ Ψ(µ0) =


1−vb

ug(x̃,µ̃)−vb
µ0 < µ̃{

1−ub(x,µ̃)
ug(x,µ̃)−ub(x,µ̃)

| x ∈ [0, x̃]
}

µ0 = µ̃

max
{

1−ub(0,µ0)
ug(0,µ0)−ub(0,µ0)

, 0
}

µ0 > µ̃.

Figure 1(a) illustrates Ψ, and compares it to the lending standard in the first-best and no-

ratings benchmarks, labeled pFB and pNR, respectively. In these two benchmarks, payoffs in

the Securitization stage do not depend on investors’ prior beliefs, so the lending standards are

independent of µ0. Furthermore, pFB < pNR, as documented in Corollary 2.

With ratings, the lending standard adopted by banks depends on the investor belief. When

investors are pessimistic about loan pool quality (i.e., when µ0 < µ̃), a b-type earns its full-

information payoff (u∗b = vb), and a g-type optimally relies on both retention and the rating to

earn a payoff higher than in the LCSE but below its full-information payoff. Hence, the lending

standard with ratings falls in between the two benchmarks (Ψ(µ0) ∈ (pFB, pNR), for µ0 < µ̃).

However, when investors are optimistic about loan pool quality (i.e., when µ0 > µ̃), banks

eschew inefficient retention, which increases the payoff of both types. Hence, origination is

more attractive, and the lending standard drops at µ0 = µ̃. Ψ continues to decrease as µ0

further increases, as a higher investor belief translates directly into higher security prices for

both types. Eventually, u∗b reaches 1, the cost of origination. We denote this belief level as µ̄

(i.e., ub(0, µ̄) = 1). Hence, for all investor beliefs µ0 > µ̄, banks are willing to originate all loan

pools, regardless of their appraisals, since even the pools that turn out to be bad will earn a

positive return. Consequently, Ψ(µ0) = 0 for all µ0 ≥ µ̄, as seen in Figure 1(a).

Investor Belief Consistency . Finally, in equilibrium, investors’ belief that a given loan pool

is of high quality must be consistent with the banks’ loan appraisal at origination surpassing the

lending standard: µ∗0 = A(p∗). Combining this condition with the banks’ optimal origination

condition, p∗ ∈ Ψ(µ0), we having the following.

Proposition 4. There exists a unique equilibrium. The equilibrium lending standard is given by

the unique p∗ satisfying p∗ = A−1(µ0) ∈ Ψ(µ0).

Figure 1(b) illustrates how the bank-origination-optimality and investor-belief-consistency con-

ditions pin down the equilibrium lending standard, p∗, and investor beliefs, µ∗0, as the strictly

increasing function A−1 intersects Ψ exactly once. Figure 1(b) depicts an example with a lending

standard, p∗, that is lower than the first-best benchmark (i.e., an oversupply of credit). However,

14
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Figure 1: Panel (a) illustrates bank’s lending as a function of investors’ beliefs (Ψ), as well as the lending
standard in the First-Best (pFB) and No-Ratings (pNR) benchmarks. Note that for µ0 > µ̃, banks choose to sell
100% of originated loan pools regardless of t; thus the equilibrium payoffs and lending standard for such µ0 are
the same as in the OTD benchmark (Section 3.2). Panel (b) incorporates the belief consistency curve (A−1), and
illustrates the equilibrium lending standard, p∗, and investor belief, µ∗0.

for other parameters the intersection of Ψ and A−1 lead to an equilibrium lending standard above

the first-best level (see Figure 2, for example).

Corollary 4. With ratings, the lending standard can be either above or below the first-best

benchmark.

In what follows, we study how changes in the banks’ screening technology and/or in the rating

informativeness impact banks’ origination decisions and the supply of credit.

4.3 Determinants of Credit Supply

Precision of Banks’ Screening Technology

A more precise screening technology means that, overall, banks become more certain whether

their individual loan opportunities are bad or good before their origination decisions. Analyt-

ically, this is captured by mass in the distribution of appraisals shifting toward the extreme

values of 0 or 1, which then has implications for the A(·) function that is used to pin down the

equilibrium lending standard (as seen in Section 4.2).

Figure 2 illustrates how the precision of banks screening technology affects origination. For this

example the screening technology, {ψg, ψb}, are Normal density functions with means mg > mb

and common standard deviation σ. As σ decreases, the screening technology becomes more
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Figure 2: This figure illustrates how the precision of the screening technology affects the equilibrium lending
standard.

precise and A−1(µ0) decreases for all µ0 ∈ (ξ, 1). This is because, for any p ∈ (0, 1), if the loan

pool is bad (good) it is becoming more likely that it would have generated an appraisal below

(above) p. Consequently, as σ decreases, the equilibrium lending standard falls and the supply

of credit increases.

The figure suggests that as σ goes to zero, A−1(µ0) tends to zero for all µ0 ∈ (ξ, 1), meaning

the equilibrium lending standard p∗ would fall to 0. Proposition 5 shows that this result is indeed

true and holds for any screening technology that becomes arbitrarily precise as defined below.

Definition 2. A sequence of screening technologies {ψnb , ψng }∞n=1 limits to perfect screening

if lim
n→∞

Pr(Ln(s) ∈ (a, b)) = 0 for all 0 < a < b <∞.

That is, the screening technology of banks becomes perfect when there is essentially no chance of

receiving a signal that does not indicate the pool’s underlying quality with arbitrary precision.

However, just because banks can discern loan quality does not mean they will only originate

good loans.

Proposition 5. With ratings, if {ψnb , ψng }∞n=1 limits to perfect screening, then as n→∞,

1. The equilibrium lending standard p∗ limits to zero.

2. The equilibrium supply of credit Q(p∗) limits to
ξ

µ̄
> ξ, therefore

3. The measure of bad loans originated limits to
ξ(1− µ̄)

µ̄
> 0 .
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Hence, when banks are very good at appraising which loan opportunities are good or bad,

they fund (virtually) all good loan pools as well as a strictly positive amount of loan pools that

they are (virtually) certain are bad. This is because there is an incentive to originate until the

average quality is driven down to µ̄—the investor belief level at which origination of a bad pool

is expected to exactly break even.

It is worth noting that (informative) ratings are critical for this result. In the no-ratings

benchmark, the lending standard is pNR regardless of the screening technology. Further, since bad

pools are sold for vb < 1, it is not profitable to originate pools with low appraisals. Hence, without

ratings, if {ψnb , ψng }∞n=1 limits to perfect screening then only good loan pools will be originated in

the limit (i.e., the supply of credit tends to ξ—the mass of good loan opportunities).16

Informativeness of Ratings

We next analyze how changes in rating informativeness affect origination and securitization deci-

sions. To sharpen our predictions, we focus on the binary-symmetric rating system (introduced

in Section 2): P (R = G|g) = P (R = B|b) = γ ∈ (1
2
, 1), where higher γ implies more informative

ratings. To begin, we examine how an increase in rating informativeness affects the Securitization

stage, and consequently, the banks’ reaction function for origination, Ψ.

Lemma 3. As the informativeness of ratings (γ) increases,

1. Both µ̃ and x̃ decrease, implying lower retention levels for all µ0.

2. Letting µ̂ ≡ max{µ̃, pFB}, Ψ decreases for µ0 < µ̂ and Ψ increases for µ0 > µ̂.

From statement (2) of the lemma, it is not surprising that more informative ratings can

increase or decrease the lending standard/credit supply (as illustrated in Figure 3). There is

however structure to these possibilities.

Proposition 6. If the equilibrium lending standard is at least as high as the first-best benchmark

(p∗γ ≥ pFB), then the lending standard is strictly decreasing in rating informativeness (γ).

Hence, starting from no-ratings/completely uninformative ratings (where p∗ = pNR > pFB),

increasing informativeness decreases the lending standard and increases the supply of credit. Will

further increases in rating informativeness eventually lead to p∗ < pFB? In general the answer

may depend on banks’ screening technology. However, an unambiguous result can be obtained

if overall loan opportunities are not too valuable.

16The screening technology affects the equilibrium lending standard/credit supply only by affecting A−1. We
can also note that the only other ingredient that determines A−1 is the proportion of good loans, ξ. Increasing ξ
shifts A−1 to the right, leading to a decrease in the lending standard.

17



0 1

Investor Belief, µ0

0

1
L
en
d
in
g
S
ta
n
d
ar
d

ξ µ̄

With Ratings

More Informative Ratings (↑ γ)

pNR

pFB

p∗

µ∗

0

(a)

0 1

Investor Belief, µ0

0

1

L
en
d
in
g
S
ta
n
d
ar
d

ξ µ̄

With Ratings

More Informative Ratings (↑ γ)

pNR

pFB

p∗

µ∗

0

(b)

Figure 3: This figure illustrates how the informativeness of the rating technology (γ) affects the equilibrium
lending standard and investor belief. In panel (a), an increase in rating informativeness leads to a higher lending
standard, whereas in panel (b) the lending standard decreases.

Proposition 7. If vg · vb ≤ 1, then for any screening technology, there exists γ̂ ∈ (1
2
, 1) such

that the equilibrium lending standard is below the first-best benchmark (p∗γ < pFB) if and only if

γ ∈ (γ̂, 1).

Notice that the condition vg · vb ≤ 1 is not independent of Assumption 1, as both restrict

how valuable loan opportunities are in the aggregate. For example, if ξ ≤ 1
2
, then Assumption

1 implies vg · vb ≤ 1, and sufficiently informative ratings always lead to an oversupply of credit.

Graphically, as the rating becomes more informative, Ψ converges pointwise to pFB, but it does

so from above to the left of µ̃ and from below to the right. The condition vg · vb ≤ 1 implies that

limγ→1 µ̃ < pFB, which ensures that any intersection with A−1 must occur at a lending standard

below pFB.17

Finally, and perhaps unsurprisingly, as the rating becomes perfectly informative, any mismatch

between equilibrium and first-best origination (be it under- or oversupply) disappears.

Proposition 8. As ratings become perfectly informative (γ → 1), the equilibrium lending stan-

dard tends to the first-best benchmark (p∗γ → pFB).

Having analyzed the effects of the precision of banks’ screening technology and the informative-

ness of ratings, Figure 4 depicts the two in conjunction. Panel (a) illustrates when the equilibrium

lending standard is above, equal to, or below the first-best benchmark. Recall from Lemma 2

17Recall that for any screening technology, A−1 lies weakly below the 45-degree line (i.e., the average loan
above a threshold is always greater than the threshold).
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Figure 4: This figure illustrates the interaction between the precision of screening technology and rating in-
formativeness on the equilibrium lending standard and quantity of origination. To illustrate Proposition 7, the
parameters are such that vg · vb < 1.

that there is a minimum level of ratings informativeness, labeled γ in the figure, required to

alter the equilibrium predictions from the no-ratings benchmark in which the lending standard

is pNR > pFB. Hence, if γ < γ there is an undersupply of credit, regardless of the screening

precision. In contrast, for ratings informativeness above γ, there is a strictly decreasing threshold

for screening precision above which the lending standard is below first-best (in accordance with

Proposition 5).18 As ratings become more informative, less screening precision is required for

the equilibrium to exhibit oversupply. In this example vg · vb < 1, and thus oversupply always

obtains for any screening precision when γ is large enough (Proposition 7).

While Figure 4(a) shows the under/oversupply regions, Figure 4(b) shows the quantity un-

der/oversupplied in equilibrium to give a sense of when the mismatch is most pronounced (i.e.,

the “0.1”-contour implies there is an oversupply of credit equal in size to 10% of all loan oppor-

tunities).19 Notice that the “0”-contour is identical to the single under/oversupply threshold in

Figure 4(a). In accordance with Proposition 8, the supply of credit tends to the first-best level

as rating become perfectly informative (γ → 1). The configurations with the largest supply of

credit occur for intermediate levels of both γ and σ (roughly around (γ, 1
σ
) ≈ (0.875, 2)), which

highlights a non-monotonicity of credit supply in both parameters.

18This threshold asymptotes to ∞ as γ → γ.
19The quantity of origination above first best is given by Q(p∗)−Q(pFB) = H(pFB)−H(p∗).
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5 Efficiency and Policy Analysis

After the recent financial crisis, both the US and Europe introduced a number of reforms to

the securitization and rating industries. These regulatory responses conceptually fell into four

categories: requiring risk-retention, increasing information disclosure, reforming rating agencies,

and imposing capital requirements.20 In addition, central banks intervened in a variety of ways

to provide liquidity to banks, both before and after the crisis. Motivated by these regulatory

responses, in this section we analyze the effect of forced risk-retention via “skin-in-the-game”

rules (Section 5.1), disclosure requirements and regulation of CRAs (Section 5.2), and liquidity

provision policies (Section 5.3).

In order to do so, we will consider not only the effect on the value of the banking sector, but

also allow for additional surplus (positive or negative) from originating a t-type loan pool that is

not capture by banks, which we denote by st. Such “externalities” could capture, for example,

surplus to borrowers from access to credit, default costs, or systemic risks associated with the

origination of bad loans. To fix ideas assume that sg ≥ 0, and to avoid trivial cases we maintain

the assumption that it is inefficient to originate a bad loan (i.e., vb + sb − 1 < 0).

The total surplus generated in equilibrium is∫ 1

p∗
E[u∗t + st − 1|p]dH(p) =

[
µ∗0(u∗g + sg) + (1− µ∗0)(u∗b + sb)− 1

]
Q(p∗), (9)

where µ∗0 = A(p∗) is the fraction of originated loan pools that are good and Q(p∗) = 1 −H(p∗)

is the total quantity of loan pools originated. By way of terminology, we say that there are

positive (negative) externalities on the margin if p∗sg +(1−p∗)sb > (<) 0, and that the economy

is absent externalities if sg = sb = 0. Absent both externalities and costly retention, efficiency

is maximized at the first-best lending standard, pFB. The socially optimal lending standard is

higher (lower) than the first-best lending standard if the negative externalities associated with

making bad loans are sufficiently large (small).21

The effect of the policies under consideration will depend on the equilibrium of the economy

in which it is introduced. Recall from Section 4 that in the unique equilibrium, the nature

of securitization/retention depends on the precision of their screening technology and the in-

formativeness of ratings. Roughly, the equilibrium involves some degree of signaling through

retention (which we refer to as a signaling equilibrium) when screening precision and ratings in-

formativeness are low. Improvements in screening precision and/or ratings informativeness push

equilibrium retention levels to zero (which we refer to as an OTD equilibrium).

20See Schwarcz (2015) for an analysis of the regulatory changes in securitization in response to the financial
crisis, both in the US and in Europe.

21That is, if sb < (>)
sg(vb−1)
vg−1 .
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Efficiency in OTD Equilibria. If the economy is in an equilibrium with zero retention, total

surplus is given by∫ 1

p∗
E[vt + st − 1|p]dH(p) = [µ∗0(vg + sg) + (1− µ∗0)(vb + sb)− 1]Q(p∗). (10)

We have already seen that the lending standard in an OTD equilibrium is lower than in the

first-best (i.e., p∗ < pFB, see Section 3.2). Thus, absent externalities, OTD equilibria feature

too much credit from a social perspective. The reason is that banks do not internalize the effect

that their origination decision has on investors’ equilibrium belief, µ∗0, and therefore equilibrium

payoffs. Naturally, the degree of inefficiency is larger (smaller) if there are negative (positive)

externalities on the margin.

Efficiency in Signaling Equilibria. If the economy is in an equilibrium where banks with

good pools are using retention to partially separate from those with bad pools, total surplus is

given by

[µ∗0(ug(x̃, µ̃) + sg) + (1− µ∗0)(vb + sb)− 1]Q(p∗). (11)

In contrast to OTD equilibria, absent externalities and taking the equilibrium retention level

as given, the equilibrium lending standard is at its social optimum, with p∗ > pFB. This is

because bank’s payoff, u∗t , are independent of µ∗0 in signaling equilibria. Given that banks are

already optimizing on the choice of lending standards, overall efficiency can only be increased

by reducing retention levels, and lending standards are inefficiently low if and only if there are

negative externalities.

In what follows, we use these results to analyze the effect of different policies on lending

standards, credit supply, and overall efficiency in detail.

5.1 Skin-in-the-Game Requirements

In October, 2014, as part of the Dodd-Frank Wall Street Reform and Consumer Protection Act,

the US passed a skin-in-the-game rule requiring sponsors of securitization transactions to retain

risk in those transactions. The regulation requires sponsors of asset-backed securities to retain

at least 5 percent of the credit risk of the assets collateralizing the issuance. The rule also sets

forth prohibitions on transferring or hedging the credit risk that the sponsor is required to retain.

This rule aims to align incentives between the originators of assets and the investors who end

up holding these assets. A similar rule has been imposed in Europe in the Capital Requirements

Regulation (CRR).22

22In contrast to the skin-in-the-game rule in the US, the CRR requires regulated banks to only purchase asset-
backed securities for which the originator explicitly discloses that it will retain, on an ongoing basis, a material
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Figure 5: The Effect of a Skin-in-the-Game Rule.

We study the impact of retention rules by considering a policy in which banks are forced to

retain an exposure to their loan pool of at least xs. As in practice, the retention requirement

is not contingent on the choice of security, the rating, nor on other measures of quality of the

underlying cash flows.23 Risk-retention rules hinder banks’ ability to signal the quality of their

underlying loans to investors through retention. But they also tighten the lending standard and

reduce credit supply, which can increase efficiency. The following proposition summarizes.

Proposition 9. Imposing a retention requirement of xs > 0 increases x̃ (and x̃ > xs), but

does not affect µ̃. As a result, the lending standard increases and aggregate credit supply falls.

Furthermore,

1. In an OTD equilibrium, there exists a retention requirement xs > 0 that increases overall

efficiency if

(p∗(vg + sg) + (1− p∗)(vb + sb)− 1)︸ ︷︷ ︸
Social value of marginal loan

(
−h(p∗)

dp∗

dxs

∣∣∣∣
xs=0

)
︸ ︷︷ ︸

Reduction in credit
supply for margin ↑ xs

> (1− δ) (µ∗0vg + (1− µ∗0) vb)Q(p∗)︸ ︷︷ ︸
Social cost of marginal ↑ xs

(12)

2. In a signaling equilibrium, retention requirements increase overall efficiency if and only if

negative externalities on the margin are sufficiently large.

net economic interest in the securitization of at least five percent for the life of the transaction.
23The present regulation does make exceptions for particular asset classes. However, for a given asset class,

retention rules are equal for all asset qualities.
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Forced cash flow retention lowers the full-information payoff of banks originating bad loan

pools because some gains from trade are now necessarily forgone. As a result, it is more costly

for banks with good pools to signal their quality to investors: retention levels have to increase

in order to signal the same information, and thus x̃ increases to levels above xs. In turn, the

reduction in expected payoffs from securitization due to forced retention reduces the profitability

of origination, increasing the lending standard and decreasing aggregate credit supply. This effect

is illustrated in Figure 5.

In OTD equilibria retention policies can increase efficiency if the marginal gain from increasing

the lending standard more than compensates for the marginal increase in the cost of retention, as

stated in (12). Note that even absent externalities, there can be efficiency gains from imposing

such a policy since the social value of the marginal loan is negative in OTD equilibria.

In signaling equilibria the lending standard is optimal given equilibrium retention levels (absent

externalities), since changes in the lending standard do not impact u∗t . As a result, an increase

in retention levels can improve efficiency only if there are sufficient negative externalities on the

margin.

5.2 Disclosure Requirements and CRA Regulation

Rules have been adopted in both the US and Europe to improve the disclosure, reporting,

and offering process of securitized products. Regulations now require that securitizers disclose

standardized, detailed, loan-level information as well as the risk models used to analyze it.

They also mandate a minimum amount of time that must be given to investors to process and

analyze these disclosures. In addition, the Dodd-Frank Act mandated the creation of the Office

of Credit Ratings (OCR) to conduct oversight of the “nationally recognized statistical rating

organizations” (NRSROs). The role of the OCR is to monitor and report on the NRSROs internal

control structures, rating methodologies and models, conflicts of interest, quality of information

disclosure, etc.24 Similarly, the European Securities and Markets Authority (ESMA) was created

to supervise CRAs in the European Union.

The overarching goal of these policies, be it through mandatory disclosures, additional time

for investors, or oversight of CRAs, seems to be aimed at increasing the quality of public infor-

mation available to investors.25 In our model, the “rating” stands in for any release of public

information. Hence, an increase in the quality of public information corresponds to an increase in

24For a more detailed description of the OCR mandate, see the 2016 Summary Report of Commission Staff’s
Examinations of Each Nationally Recognized Statistical Rating Organization prepared by the SEC.

25In Section 6, we allow for behavior such as ratings shopping or rating manipulation and show that it effectively
reduces the informativeness of ratings in equilibrium. As a result, oversight of CRAs which limits the scope for
such behavior would also serve to increase the quality of public information.
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the informativeness of the rating. We analyzed the effect of increasing rating informativeness on

origination and securitization decisions in Section 4.3. Below, we restate some of the key findings

together with their implications for efficiency using the case of binary-symmetric ratings.

Proposition 10. Absent externalities, a marginal increase in the informativeness of public in-

formation (i.e., a marginal increase in γ)

1. Increases both the lending standard and overall efficiency if the economy is in an OTD

equilibrium,

2. Reduces average retention levels and the lending standard, but increases overall efficiency,

if the economy is in a signaling equilibrium.

In an OTD equilibrium, improving the accuracy of public information brings the lending stan-

dard closer to its first-best level without increasing equilibrium retention, which clearly increases

overall efficiency. The efficiency gain is even larger if there are negative externalities on the

margin.

In a signaling equilibrium, improving the accuracy of public information also increases overall

efficiency, but via a different channel. In this case, more accurate information reduces average

retention levels, improving the efficiency of the allocation of cash flows. Recall that in a signaling

equilibrium the lending standard is socially optimal given the equilibrium level of retention.

Therefore any marginal reduction in retention levels leads to an increase in efficiency, as the

lending standard simply adjusts to the optimal level give this new lower (more efficient) level of

equilibrium retention.

Interestingly, if the equilibrium involves full pooling at some positive retention level, an increase

in informativeness can decrease overall efficiency. When banks pool at a positive retention level

both margins of inefficiency are at play: retention is too high and the lending standard is too low

given the level of retention. An increase in the informativeness of public information lowers both

retention and the lending standard, and can therefore increase or decrease efficiency depending

on whether the benefits of decreased retention outweigh the costs of a lower lending standard.26

Consistent with this finding, a large improvement in the quality of public information can reduce

efficiency if it moves the economy to an OTD equilibrium (as in Figure 3(b)) since the benefits

of reducing retention are accompanied by the costs of an inefficiently low lending standard.

26A formal proof of these statements is available upon request.
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Figure 6: The Effect of a Decrease in Liquidity Needs.

5.3 Liquidity Needs

Central banks often undertake policies aimed at easing credit constraints of distressed financial

institutions, in attempt to stimulate the economy by inducing banks to lend more.27 Within our

model, such policies can be interpreted as increasing δ.

Proposition 11. As liquidity needs are reduced (i.e., as δ increases) µ̃ and x̃ increase. A

marginal increase in δ

1. Has no effect if the economy is in an OTD equilibrium.

2. Leads to a decrease in the lending standard and an increase in overall efficiency if the

economy is in a signaling equilibrium (provided negative externalities on the margin are

not too large).

As liquidity needs decrease, retention (weakly) increases for all banks, but the cost of retention

is also lower. The second effect dominates when equilibrium retention levels are already relatively

high (e.g., in signaling equilibria). In this case, the reduction in retention costs more than

compensates for the increase in equilibrium retention levels, increasing efficiency and the value

of origination, which in turn reduces the lending standard toward the first-best level.

In an OTD equilibria, a small change in δ has no effect since banks are not retaining anything

in the first place. This is the case illustrated in Figure 6. However, large enough increases in δ

27For example, in March 2008, the Federal Reserve announced the Term Securities Lending Facility that
enabled banks to use MBS as collateral for short-term loans, which naturally reduced their need to sell such
securities. Later, during quantitative easing, the Federal Reserve purchased outright billions of dollars in MBS.
The European Central Banks adopted similar policy measures during the European Financial Crisis.
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can cause the economy to shift to an equilibrium with positive retention levels, which reduces

the value of origination and causes banks to lend less. Such a policy may increase efficiency if

the gain from increasing the lending standard more than compensates for the increase in costly

retention (similar to (12)).

6 Ratings Manipulation and Shopping

In this section, we consider extensions of the Securitization stage analyzed in Section 4 (hereafter,

the baseline model) in order to investigate several realistic aspects of the CRA industry. First, we

allow for rating manipulation by supposing that banks can inflate their rating by incurring a cost.

The cost can be interpreted either as a side payment made to the CRA or as the cost of effort

required to obscure the value of the underlying loan pool.28 Second, we allow for ratings shopping

by supposing that, after privately learning its rating r, a bank must pay the CRA to publish

r publicly.29 In both cases, the information content of the rating is determined endogenously,

which we characterize below. Our main insight is that, provided investors are rational, the ability

to shop or manipulate has an effect similar to a reduction in rating informativeness.

6.1 Manipulable Ratings

Suppose that after making their retention decision in the securitization stage, but before the

rating r is realized, banks with a b-pool can manipulate ratings upward by incurring a cost m.

To keep this extension simple, assume that when a bank with a b-type loan pool incurs the cost

of manipulation, it obtains a rating from the distribution corresponding to a g-type loan pool.

We wish to consider two cases. In the first case, investors are fully rational and understand

that banks have the ability to manipulate their rating. In the second case, investors are “näıve”

regarding the fact that banks can manipulate ratings.30

In order to do so, let x∗ be the retention level on which banks pool (either partially or fully)

in the model without manipulable ratings and let µ∗ = µ(x∗) denote investor’s corresponding

interim belief (see Propositions 3 and 4). Let αt(µ) = ER
[

µ
µ+(1−µ)Γ(r)

|t
]

denote the expected

28Piskorski et al. (2015) document that financial intermediaries disclosed false information about loans during
the sale of residential mortgage and that misrepresented loans were significantly more likely to default. Findings
by Ashcraft et al. (2010) and Ashcraft et al. (2011) suggest that CRAs ignored some types of information when
assigning ratings to private-label MBS.

29Becker and Milbourn (2011) show that the greater competitive threat posed by Fitch in the corporate bond
market coincides with an increase in rating levels from the incumbent agencies, consistent with the view that a
larger scope for ratings shopping induces rating inflation.

30One can think of näıve investors as utility maximizing agents with an incorrect prior belief that m = +∞.
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posterior of investors given an interim belief µ and conditional on type t and define

∆ ≡ (1− x∗)(αg(µ∗)− αb(µ∗))(vg − vb). (13)

Notice that ∆ captures the benefit of manipulation if investors, correctly or not, believe that

ratings are not manipulated.

Fully Rational Investors. Suppose first that investors are fully rational and thus aware of

banks’ ability to manipulate their ratings (though they do not actually observe whether manip-

ulation occurred). If no manipulation takes place in equilibrium, then the b-type’s net-benefit of

deviating and manipulating its rating is ∆ −m. If m ≥ ∆ then the benefit of manipulation is

not worth the cost and the ability to manipulate does not affect the equilibrium predictions. If

instead m < ∆, then manipulation must take place in equilibrium.

Proposition 12. If ratings are manipulable and m < ∆, then a fraction β ∈ (0, 1) of banks

who originate bad loan pools and choose the pooling retention level in the securitization stage will

manipulate the rating.

To understand the intuition for this result, consider the information content of a rating r given

a fraction β of b-types are manipulating

Γ(r, β) ≡ βfg(r) + (1− β)fb(r)

fg(r)
= Γ(r) + β(1− Γ(r)). (14)

Suppose investors believe that β = 1. Then ratings are completely uninformative (i.e., Γ(r, 1) = 1

for all r). Therefore, investors will disregard the rating and banks with g-type pools will choose

the separating retention level as in the no-ratings benchmark (Section 3.3). In this case, banks

with b-type pools will have no incentive to manipulate, which contradicts β = 1. On the other

hand, if investors believe that β = 0, then the benefit of manipulating is strictly positive and all

b-type banks will manipulate, which contradicts β = 0. Therefore, it must be that β is interior

and such that the net-benefit of manipulating is zero.

In essence, Proposition 12 says that when ratings are manipulable and the cost of manipulation

is not too large, then some manipulation will take place in equilibrium. From equation (14),

manipulation causes each rating to become less informative (i.e., the likelihood ratio of each

rating moves closer to 1). Thus, the ability to manipulate ratings leads to a rating system that is

less informative and the comparative statics on the lending standard, credit supply and overall

efficiency are similar to those already presented in Sections 4.3 and 5.2.

Näıve Investors. If investors are not aware of banks ability to manipulate ratings and ∆ >
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m, then all banks with b-type pools will manipulate and the expected payoff associated with

originating a b-type loan pool will increase by ∆ − m, while that of originating a g-type loan

remains unchanged. Thus, when investors are not aware of manipulation, they transfer value

to banks selling b-backed securities. As a result, banks increase their willingness to originate

loans. In this case, the ability to manipulate ratings leads to a lower lending standard, higher

credit supply, a reduction in overall efficiency, and losses for investors. Therefore, disclosure

requirement policies designed to improve the transparency of the ratings and/or eliminate the

scope for manipulation help protect investors from incurring losses (in addition to increasing the

lending standard and overall efficiency).

6.2 Ratings Shopping

We now consider an alternative extension of the baseline model to allow for ratings shopping.

After choosing the fraction of the loan pool to securitize, a bank approaches the CRA to get a

rating for its issuance. The CRA generates a preliminary rating R with type-dependent density

ft, as in the baseline model. The CRA reports the preliminary rating to the bank, which then

chooses whether to pay the CRA a fee in order to have the rating made public to investors.

We assume that the fee charged by the CRA is proportional to the cash flows being issued,

1− x, and we normalize it by the difference in expected payoffs from a good versus a bad pool,

which is without loss of generality. That is, given a CRA fee φ ≥ 0, a bank that issues fraction

1− x has to pay φ
vg−vb

(1− x) in order to have its rating published. We denote by µf (µ, r;φ) the

posterior belief of investors after the rating r is published, given an interim belief µ ∈ (0, 1) and

a rating fee, and by µn(µ;φ) the posterior belief associated with an unrated issuance.

Consider the decision of a bank with a t-type loan pool that has chosen to sell fraction 1−x(t)

and that has been proposed rating r by the CRA. The payoff from paying the CRA to have

rating r published is

ut (µ, r;φ) = (1− x (t)) [(µf (µ, r;φ)− φ) (vg − vb) + vb] + δx(t)vt (15)

while the payoff from staying unrated is:

ut(µ, n;φ) = (1− x(t)) [µn(µ;φ)(vg − vb) + vb] + δx(t)vt (16)

The bank chooses to hire the CRA if:

ut (µ, r;φ) ≥ ut(µ, n;φ) ⇐⇒ µf (µ, r;φ)− φ ≥ µn (µ;φ) (17)

28



Notice from (17) that the decision to hire the CRA is independent of t. Therefore, the fact that

a rating r is published does not convey information to investors about t beyond the information

contained in the rating. Let R(µ;φ) denote the set of ratings that are published when the interim

belief is µ. Then for any r ∈ R(µ;φ), Bayes rule requires that

µf (µ, r;φ) =
µ

µ+ (1− µ)Γ(r)
. (18)

Of course, for r /∈ R(µ;φ), Bayes rule does not apply, and thus µf is not pinned down if such a

rating is observed. To sharpen predictions, we refine off-path beliefs by specifying (18) also holds

for all r /∈ R(µ;φ). Clearly then, µf is decreasing in Γ. Recall that (without loss) Γ is decreasing

in r (i.e., a higher rating is a better rating). Quite naturally, a cutoff strategy emerges: a bank

pays the CRA to publish its rating if and only if the rating is above some threshold r̄(µ;φ) (i.e.,

R(µ;φ) = {r : r ≥ r̄(µ;φ)}).
Therefore, the belief assigned to an unrated issuance is given by

µn(µ;φ) =
µFg(r̄(µ;φ))

µFg(r̄(µ;φ)) + (1− µ)Fb(r̄(µ;φ))
. (19)

Proposition 13. A bank pays the CRA to publish its rating r if and only if r ≥ r̄(µ;φ), where

the threshold r̄(µ;φ) is characterized by

µf (µ, r̄;φ)− µn (µ;φ) = φ. (20)

Furthermore, the set of ratings for which a bank chooses not to publish, {r : r < r̄ (µ;φ)}, has

positive measure if and only if φ > 0.

When ratings are costly (φ > 0) and banks can decide whether or not to publish their assigned

rating, the ratings observed by investors are truncated from below. As a result, the average rating

observed by investors is “inflated” relative to the baseline model. Moreover, less information is

conveyed to investors through the rating since a positive measure set of ratings is not disclosed.

Therefore, similar to when ratings are manipulable, introducing a strategic decision of whether

to publish a costly rating has an effect similar to reducing the informativeness of the ratings.

7 Conclusion

We have studied the effect of both ratings (i.e., public information) and screening precision (i.e.,

private information) on loan origination and securitization decisions. Informative ratings increase

market liquidity and improve allocative efficiency; but reduce lending standards and may lead
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to an oversupply of credit. We illustrate a novel and somewhat perverse interaction between the

presence public information and the degree of banks’ private information during origination; as

the banks’ screening technology becomes arbitrarily precise, the lending standard collapses to

zero and some bad loans are (deliberately) originated by banks.

We use our model to explore the implications of policies, such as mandatory “skin-in-the-

game” or disclosure requirements for CRAs and identify conditions under which such policies

are welfare improving. We also consider several extensions to allow for ratings manipulation and

shopping. Provided investors are fully rational, the possibility of such behavior has an effect

similar to reducing the informativeness of ratings in equilibrium.
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A Appendix

A.1 Preliminaries and Definitions

Let αt(µ) ≡ ER[µf (µ, r)|t] be the expected posterior belief for a t-type bank given investor’s

interim belief µ. The following claims are rudimentary or, in the case of Fact A.1(3), have been

established previously.

Fact A.1. For any t ∈ {b, g},

1. αt(µ) is strictly increasing in µ for any x ∈ (0, 1].

2. αg(µ)− αb(µ) is concave and achieves a unique maximum at µmax ∈ (0, 1).

3. ∂
∂µ

(
α′g(µ)

α′b(µ)

)
< 0 for all µ ∈ (0, 1) (shown in Lemma A.1. of Daley and Green (2014)).

4. E[(1− x)Y |g] > E[(1− x)Y |b] for any x ∈ (0, 1]

5. ut(x, µ) is strictly increasing in µ for any x ∈ (0, 1].

6. ub(x, µ) is strictly decreasing in x for any µ ∈ [0, 1].

Fact A.2. In any PBE, ut ∈ [vb, vg) for any t ∈ {b, g}.

The D1 Refinement

Definition A.1. We define bt(x, v) as the belief necessary to provide the t-type utility v if reten-

tion is x; that is, ut(bt(x, v), x) = v, and by Bt(x, v) = (bt(x, v), 1] the set of beliefs for which the

t-type obtains strictly higher utility than v when retention is x.

Fix k ∈ [vg, vg) and x ∈ [0, 1], and consider the belief bt(x, k) as defined in Definition A.1.

By Fact A.1(5), there exists at most one bt(x, k) such that ut(bt(x, k), x) = k. Furthermore, the

connection between bt and Bt is immediate: if bt(x, k) exists, then Bt(x, k) = (bt(x, k), 1]. If

bt(x, k) fails to exist, then either Bt(x, k) = [0, 1] or Bt(x, k) = ∅.
In our model, the D1 refinement can be stated as follows. Fix an equilibrium endowing expected

payoffs {ub, ug}. Consider a retention choice x that is not in the support of either type’s strategy.

If BL(x, ub) ⊂ BH(x, ug), then D1 requires that µ(x) = 1 (where ⊂ denotes strict inclusion). If

BH(x, ug) ⊂ BL(x, ub), then D1 requires that µ(x) = 0.
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A.2 Proofs for Section 2

Proof of Lemma 1. An originating bank always has the option to retain its loan pool. So, in

any PBE, u∗t ≥ δvt. Let p̄ satisfy, p̄δvg + (1− p̄)δvb = 1. Hence, any bank with loan opportunity

p ∈ (p̄, 1] originates in any PBE (and p̄ < 1 follows from Assumption 1). So the set of originated

pools, O∗, has positive measure under H, and µ0 = E[p|p ∈ O∗] ∈ (0, 1), by the belief consistency

condition of PBE.

Next, given any µ0 ∈ (0, 1), in any PBE of the Securitization stage, u∗g > u∗b . To see, consider

first any separating equilibrium: then u∗b = vb < δvg ≤ u∗g, as no portion of a bad loan is retained,

whereas the originator of a good loan must earn at least its full-retention payoff. If instead, the

equilibrium has any degree of pooling on some retention level x, then

u∗t = ut(x, µ(x)) = ER[P (x,R)|t] + δxvt,

where both ER[P (x,R)|g] > ER[P (x,R)|b] and δxvg > δxvb. The second inequality is immediate,

and the first inequality follows from µ(x) being non-degenerate since there is (some) pooling on

x, and the rating being informative.

Given that u∗g > u∗b , a bank’s expected payoff from origination, pu∗g + (1 − p)u∗b , is strictly

increasing in p, implying that there is a cutoff lending standard, p∗ ≤ p̄ < 1. Finally, to see that

p∗ > 0, suppose not. Then µ∗0 = A(0) = ξ. We already have that in any PBE, u∗b < u∗g. Hence,

u∗b < ξu∗g+(1−ξ)u∗b ≤ ξvg+(1−ξ)vb < 1 since ξvg+(1−ξ)vb is the highest possible average bank

payoff in the Securitization stage given µ∗0 = ξ, and the last inequality is Assumption 1. But if

u∗b < 1, then a bank with p sufficiently close to 0 earns negative expected profit by originating,

contradicting p∗ = 0.

A.3 Proofs for Section 3

Definition A.2. Let Ψ̃(µ0) ≡ max
{

1−ub(0,µ0)
ug(0,µ0)−ub(0,µ0)

, 0
}

.

Lemma A.1. Under any rating system,

1. If Ψ̃(µ0) ∈ (0, 1), then Ψ̃′(µ0) < 0.

2. Ψ̃(pFB) = pFB.

3. With binary-symmetric ratings, if Ψ̃(µ0) > 0, then sign
(dΨ̃(µ0)

dγ

)
= sign(µ0 − pFB).

Proof. For (1), first 0 < ub(0, µ0) < ug(0, µ0) for any µ0 ∈ (0, 1). Hence, if Ψ̃(µ0) ∈ (0, 1), then

0 < ub(0, µ0) < 1 < ug(0, µ0). Given this, it is straightforward to show that Ψ̃ is decreasing in ut

for t = b, g. The result then follows from ut(0, µ0) being increasing in µ0 for t = b, g.
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For (2), because investor earn zero expected profit, expected bank gross return in the Securi-

tization stage must equal the expected value of their offering. Therefore, for any µ0,

µ0ug(0, µ0) + (1− µ0)ub(0, µ0) = µ0vg + (1− µ0)vb

ug(0, µ0) = vg +
1− µ0

µ0

(vb − ub(0, µ0)) (21)

Substituting (21) into the definition for Ψ̃,

Ψ̃(µ0) = max

{
1− ub(0, µ0)

vg + 1−µ0
µ0

(vb − ub(0, µ0))− ub(0, µ0)
, 0

}

Finally, using that pFB = 1−vb
vg−vb

,

Ψ̃(pFB) = max

{
1− ub(0, pFB)

vg + 1−pFB
pFB

(vb − ub(0, pFB))− ub(0, pFB)
, 0

}

= max

{
1− ub(0, pFB)

vg + vg−1

1−vb
(vb − ub(0, pFB))− ub(0, pFB)

, 0

}
= pFB > 0.

For (3), for Ψ̃ > 0, compute the derivative directly as

∂Ψ̃(µ0)

∂γ
=

µ0vg + (1− µ0)vb − 1

(2γ − 1)3(1− µ0)µ0(vg − vb)
. (22)

The sign of this derivative is given by the sign of its numerator. Since the numerator is strictly

increasing in µ0 and it takes value zero when µ0 = pFB, the result follows.

Proof of Proposition 1. Lemma A.1(1) and (2) yield the following equivalency:

µ0 > Ψ̃(µ0) ⇐⇒ µ0 > pFB ⇐⇒ Ψ̃(µ0) < pFB (23)

Equilibrium in the OTD model requires

µOTD0 = A(pOTD) > pOTD = Ψ̃(µOTD0 ), (24)

where the first equality is investor-belief consistency, the inequality is by the definition of A, and

(using Definition A.2) the second equality is optimal bank origination. Combining (23) and (24)

establishes that pOTD < pFB.

Proof of Proposition 2. To check that this is a PBE, we need to check that neither type wishes
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to deviate at any stage.

Securitization stage: First, an originator of a bad loan pool (b-type) does not profit from

deviating since the retention of those holding good loan pools (g-types), xg, is chosen so that

the incentive compatibility (IC) for b-type binds. Second, a binding IC for the b-type implies

a slack IC for the g-type since vg > vb and thus vb < xgvg + δ(1 − xg)vg. The following off-

equilibrium beliefs: µ(x) = 0 for all x < xg and µ(x) = 1 for all x ≥ xg satisfy D1 and support

this equilibrium. Single-crossing ensures that the LCSE is the unique equilibrium that satisfies

D1 (see DeMarzo (2005)).

Origination stage: From the previous results, the payoffs associated with originating a g- and

a b-type loan pool, respectively, are:

uLCg =(1− xg)vg + δxgvg (25)

uLCb =vb (26)

where uLCb < 1 < uLCg . Most importantly, these payoffs are independent of the actual lending

standard chosen by banks at the Origination stage, p∗. Since there is a continuum of banks and

lending standards are not observable by investors, deviations in individual lending standards

do not impact Securitization stage payoffs. As a result, banks choose lending standard p∗ to

maximize their t = 0 value, and there are no profitable deviations at the Origination stage

either.

A.4 Proofs for Section 4

Lemma A.2. The solution to the following M(k) problem:

max
µ,x

ug(x, µ) s.t. ub(x, µ) = k (27)

denoted by {µ(k), x(k)} is unique and characterized by the problem’s first-order conditions. In

addition, µ(k) is independent of k and x(k) is decreasing in k.

Proof. We write expected Securitization stage payoffs as a function of retention level and investors

beliefs as follows

ut(x, µ) = (1− x)(αt(µ)(vg − vb) + vb) + δxvt (28)

where αt(µ) ≡ ER[µf (µ, r)|t]. Let α(µ) ≡ αg(µ) − αb(µ) be the difference between expected

posteriors for prior beliefs µ. It will be useful to re-state the M(k) problem as follows:

max
µ,x

ug(µ, x)− k s.t. ub(µ, x) = k (29)
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By plugging in the corresponding expressions and the binding constraint, we obtain

max
µ,x

(1− x)(α(µ)− δ)(vg − vb) + δ(vg − vb) (30)

s.t. (1− x)(αb(µ)(vg − vb) + vb) + δxvb = k (31)

Let {µ(k), x(k)} satisfy the problem’s first-order conditions

α(µ)− δ − α′(µ)

α′b(µ)
αb(µ) =

α′(µ)

α′b(µ)

(1− δ)vb
vg − vb

(32)

(1− x)(αb(µ)(vg − vb) + vb) + δxvb =k (33)

First, µ(k) is given by (32) and is thus independent of k. To see that µ(k) is unique, we analyze

the left-hand side (LHS) and right-hand side (RHS) of (32) separately. From Facts A.1(3) and

A.1(2), we have that the RHS is strictly decreasing in µ, positive for µ < µmax, zero for µ = µmax,

and negative otherwise. Also from Fact A.1(3) we have that the LHS is strictly increasing in µ,

and negative (−δ) for µ = 0. Therefore, if a solution to (32) exists, it is unique. Otherwise, the

solution is given by the corner µ = 1 (which by (33) implies a retention of xLC). Finally, note

that x(k) is strictly decreasing in k and given by (33).

It remains to verify the second order conditions. We verify that the determinant of the Bor-

dered Hessian is negative at our interior candidate {µ(k), x(k)}:

BH =

 0 ∂ub(x,µ)
∂x

∂ub(x,µ)
∂µ

∂ub(x,µ)
∂x

Lxx Lxµ
∂ub(x,µ)

∂µ
Lµx Lµµ


where L(x, µ) = ug(x, µ)− λ (ub(x, µ)− k) where λ is the Lagrange multiplier.

Lxx = 0

Lµµ =
(
α′′g (µ)− λα′′b (µ)

)
(1− x)(vg − vb)

Lxµ = Lµx = −(vg − vb)(α′g(µ)− λα′b(µ)) = 0

A sufficient condition for our solution to be a local maximum is that the bordered Hessian

is negative definite when evaluated at {x(k), µ(k), λ(k)}, where λ(k) = − α′(µ(k))
α′b(µ(k))

. That is, we

need |BH1| < 0 and |BH2| > 0. It is easy to see that |BH1| = −(∂ub(x,µ)
∂x

)2 < 0 and that

|BH2| = −
(
∂ub(x,µ)

∂x

)2

Lµµ > 0 since Lµµ|{x(k),µ(k),λ(k)} < 0 from ∂
∂µ

(
α′g(µ)

α′b(µ)

)
< 0. Thus, SOC are

satisfied

Proof of Lemma 2. First see Lemma A.2 and its proof, and let µ̃ = µ(vb) and x̃ = x(vb). The
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solution to (30) is interior with µ̃ < 1 (and thus x̃ < x̄) if and only if condition (32) holds for

an interior µ, which requires that the RHS and the LHS of (32) intersect at µ < 1. In the proof

of Lemma A.2 we show that the LHS is negative and the RHS positive at µ = 0, and that the

LHS is strictly increasing while the RHS is strictly decreasing in µ for all µ ∈ (0, 1). Thus, a

necessary and sufficient condition for µ̃ < 1 is that LHS>RHS at µ = 1:

α(1)− δ − α′(1)

α′b(1)
αb(1) >

α′(1)

α′b(1)

(1− δ)vb
vg − vb

(34)

−δ −
α′g(1)− α′b(µ)

α′b(1)
>
α′g(1)− α′b(µ)

α′b(1)

(1− δ)vb
vg − vb

(35)

⇐⇒ α′b(1)

α′g(1)
>
vg − δvb
(1− δ)vg

(36)

Since α′b(1) = E[Γ(R)|b] and α′g(1) = E[Γ(R)|g] = 1 the result follows. This condition is a

statement about the slope of the indifference curves at the LCSE outcome {µ = 1, x̄}, and it

states that an interior solution exists iff:(
∂ug(µ, x)

∂x
/
∂ug(µ, x)

∂µ

)
|µ=1,x̄ >

(
∂ub(µ, x)

∂x
/
∂ub(µ, x)

∂µ

)
|µ=1,x̄

That is, if the slope of the indifference curve at the LCSE outcome is steeper for the g-type than

it is for the b-type, breaking the single-crossing condition necessary for separation.

Proof of Proposition 3. Let {µ(k), x(k)} be the solution to the constrained maximization

problemM(k) in Lemma A.2. From that same Lemma, this solution is unique, µ(k) is constant

and x(k) is continuous and decreasing in k ∈ [vg, vg]. Let µ̃ = µ(vb) and x̃ = x(vb). By Lemma

2, the equilibrium is not separating if ratings are sufficiently informative in the following sense:

E[Γ(R)|b] > vg−δvb
(1−δ)vg .

The next step is to show that the equilibrium proposed in Proposition 3 is a PBE that satisfies

D1. Before doing so, we introduce the following definitions. Let St be the support of the t-type’s

strategy. In the proposed unique equilibrium, the good type plays a pure strategy, denoted it xg,

so Sg = {xg}, while the bad type could mix, and thus Sb ⊆ {0, xg}. For completeness, we must

specify the off-path beliefs: µ(x) = 0 for all x 6= xg.

Verifying that the proposed profile is a PBE is straightforward. To see that it satisfies D1,

fix a µ0 and consider the Proposition’s unique equilibrium candidate. Denote the good type’s

equilibrium payoff ueg and the bad type’s equilibrium payoff k, so xg = x̃(k). Let x be an arbitrary

retention level in [0, 1] such that x 6= x̃(k). First, if Bb(x, k) = [0, 1], then the low type could

deviate to x and obtain a payoff strictly greater than k, regardless of µ(x), breaking the PBE.

Hence, either bb(x, k) ∈ (0, 1] exits or ub(x, 1) < k. If bb(x, k) exits, then since {x̃(k), µ̃(k)}

39



is the unique solution to (27), ug(x, bb(x, k)) < ug(x̃(k), µ̃(k)) = ueg. By Fact A.1(5) then,

bg(x, u
e
g) > bb(x, k) implying Bg(x, u

e
g) ⊆ Bb(x, k). So, µ(x) = 0 is consistent with D1. If instead

ub(x, 1) < k (so Bb(x, k) = ∅), then there exists a unique ε > 0 such that ub(x− ε, 1) = k. Since

{x̃(k), µ̃(k)} solves (27), ug(x̃(k), µ̃(k)) ≥ ug(x − ε, 1) > ug(x, 1). Hence, Bg(x, u
e
h) = ∅ as well,

and D1 places no restriction on µ(x).

We now establish uniqueness. Fix an equilibrium with ug = ueg and ub = k. Since banks

with bad loan pools have the option to choose the same retention as banks with good loan

pools, ub(x, µ(x)) ≤ k for all x ∈ Sg. Fix now x ∈ Sg and suppose that ub(x, µ(x)) < k.

Then x 6∈ Sb, so µ(x) = 1 = bg(x, u
e
g) and Bb(x, k) = ∅. Further, it must be that x 6= 0 since

ub(0, 1) = vg > k. Then for ε > 0 small enough bg(x − ε, ueg) ∈ (0, 1) and Bb(x − ε, k) = ∅.
Therefore, x − ε 6∈ Sb and µ(x − ε) = 1 (by belief consistency if x − ε ∈ Sg, by D1 if not).

Since ug(x− ε, 1) > ug(x, 1) = ueg, the high type would gain by deviating to x− ε, breaking the

equilibrium. Therefore, ub(x, µ(x)) = k, or equivalently µ(x) = bb(x, k), for all x ∈ Sg.
Suppose now there exists x ∈ Sg such that x 6= x̃(k). Then

ug(x, µ(x)) = ug(x, bb(x, k)) < ug(x̃(k), µ̃(k)) = ug(x̃(k), bb(x̃(k), k)),

and thus bg(x̃(k), ueh) < µ̃(k) = bb(x̃(k), k). D1 then implies that µ(x̃(k)) = 1, meaning that

deviating to x̃(k) is profitable for the high type and breaking the equilibrium. Hence, if the

b-type’s equilibrium payoff is k, then Sg = {x̃(k)} and µ(x̃(k)) = µ̃(k).

Further, if the b-type selects x 6∈ Sg ∪ {0}, then µ(x) = 0, and ub(x, 0) < ub(0, 0) ≤ ub(0, µ(0))

for any value of µ(0). It could therefore profitably deviate to x = 0. Hence, Sb ⊆ Sg ∪ {0}.
The final step is to characterize which values of ub = k are consistent with equilibrium, which

depends on the prior, µ0. Recall that µ̃ does not vary with k. First, let µ0 < µ̃, and let ub = k.

Therefore, Sg = {x̃(k)} and µ(x̃(k)) = µ̃ > µ0. For this belief to be consistent with seller

strategies, Sb 6= {x̃(k)}. Hence, Sb = {x̃(k), 0} and k = vb. The precise mixing probabilities

given in the proposition are required for the Bayesian consistency: µ(x̃(vb)) = µ̃(vb). Second,

let µ0 ≥ µ̃. Then Sg = Sb = {x̃(k)} is consistent with µ̃(x̃(k)) = µ̃(k) = µ0, as stated in the

Proposition.

Proof of Proposition 4. From Proposition 3, Corollary 3, and the equilibrium belief-consistency

requirement (Corollary 1(3)), an equilibrium is pinned down by µ∗0 such that A−1(µ∗0) ∈ Ψ(µ∗0).

First, note that A−1 is continuous and strictly increasing, with A−1(ξ) = 0 and A−1(1) = 1.

Second, Ψ(µ0) is constant for µ0 < µ̃ at p̄ ≡ 1−vb
ug(x̃,µ̃)−vb

> pFB. At µ̃, Ψ(µ̃) = [ 1−ub(0,µ̃)
ug(0,µ̃)−ub(0,µ̃)

, p̄].

And for µ0 > µ̃, Ψ(µ0) = Ψ̃(µ0) = max
{

1−ub(0,µ0)
ug(0,µ0)−ub(0,µ0)

, 0
}

(Definition A.2). Ψ̃ continuous and

strictly decreasing at all µ0 ∈ (0, 1) (Lemma A.1) then guarantees existence and uniqueness of

µ∗0 (and therefore equilibrium).
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Proof of Proposition 5. Let {ψnb , ψng }∞n=1 limit to perfect screening. From (1), p is a monotone,

bijective function of the likelihood ratio L(s). By Definition 2 then, as n→∞,

Hn(d)−Hn(c) = Pr(p ∈ (c, d])→ 0

for all 0 < c < d < 1. Therefore, Hn(p) limits to some constant K for all p ∈ (0, 1). For any

screening technology, E[p] = ξ by the Law of Iterated Expectation, implying K must be 1− ξ.
Next, by definition, for any screening technology A(1) = 1. Fix p ∈ (0, 1), and a ∈ (p, 1).

An(p) = E[p′|p′ ≥ p] ≥ Pr(p′ ∈ [p, a)|p′ ≥ p) · p+ Pr(p′ ≥ a|p′ ≥ p) · a

=
Hn(a)−Hn(p)

1−Hn(p)
· p+

1−Hn(a)

1−Hn(p)
· a. (37)

Since Hn(p) → 1 − ξ for all p ∈ (0, 1), the expression in (37) limits to a as n → ∞. Therefore,

as n→∞, An(p) grows at least as large as any a ∈ (p, 1). Since, An(p) ≤ 1 for all n, An(p)→ 1

for all p > 0. Equivalently, (An)−1(µ0) → 0 for all µ0 ∈ (ξ, 1). Hence, the single intersection of

(An)−1 and Ψ, (µ∗,n0 , p∗,n)→ (µ̄, 0). In the limit,then, Pr(t = g|origination) = ξ
Q(p∗)

which must

equal µ̄. Hence, Q(p∗) limits to ξ
µ̄
, which must also equal ξ + qb, where qb is the measure of bad

loans originated in the limit. Hence, qb = ξ(1−µ̄)
µ̄

.

Proof of Lemma 3. For statement (1) in the lemma, we analyze how {x̃, µ̃} from Proposition 3

change with rating informativeness γ. After some algebra, we have that {x̃, µ̃} solve

(1− δ) vb
vg − vb

= (α (µ̃)− δ) α
′
b (µ̃)

α′ (µ̃)
− αb (µ̃) (38)

x̃ =
αb (µ̃) (vg − vb)

αb (µ̃) (vg − vb) + (1− δ)vb
(39)

We proceed to characterize how this solution changes with γ. We have that:

αg(µ) =
µγ2

µγ + (1− µ)(1− γ)
+

µ(1− γ)2

µ(1− γ) + (1− µ)γ
(40)

αb(µ) =
µγ(1− γ)

µγ + (1− µ)(1− γ)
+

µγ(1− γ)

µ(1− γ) + (1− µ)γ
(41)

α(µ) =
(2γ − 1)2µ(1− µ)

(µγ + (1− µ)(1− γ))(µ(1− γ) + (1− µ)γ)
(42)
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After some algebra, from the RHS of condition (38) we have that:

∂RHS

∂γ
|µ=µ̃ =

δ

(2γ − 1)3(1− 2µ̃)

∂RHS

∂µ
|µ=µ̃ =− α (µ̃)− δ

α (µ̃)2

∂

∂µ

(
α′g (µ̃)

α′b (µ̃)

)
If α(µ̃)− δ < 0, then from FOC the solution requires α′(µ̃) < 0 ⇐⇒ µ̃ > arg maxµ α(µ) = 1

2

(see Fact 2). As a result, ∂RHS
∂γ

< 0 and ∂RHS
∂µ̃

< 0. Otherwise, α(µ̃) − δ > 0, which requires

α′(µ̃) > 0, that is, µ̃ < 1
2
. Thus, ∂RHS

∂γ
> 0 with ∂RHS

∂µ̃
> 0. If follows that as γ increases, µ̃ has

to decrease.

We have established that µ̃ decreases in γ. It remains to characterize how x̃ changes in γ. Let

RHSc denote the left-hand side of the constraint (39). Then, we have that:

dx̃

dγ
=
∂RHSc
∂µ̃

dµ̃

dγ
+
∂RHSc
∂γ

< 0 (43)

Where the results follows from (i) ∂αb(µ)
∂γ

< 0 for all µ ∈ (0, 1); (ii) α′b(·) > 0 for all γ ∈ (1
2
, 1); and

(iii) RHSc being increasing in αb(µ) for all µ ∈ (0, 1) since vb > 0, which are all easy to check.

For statement (2) in the lemma, let µ̃′ denote the µ̃ after the increase in γ, which from (i)

implies µ̃′ < µ̃. First consider the case where pFB < µ̃. For all µ0 > µ̃,Ψ(µ0) = Ψ̃(µ0), which by

Lemma A.1 is increasing in γ since µ0 > pFB. For µ0 ∈ [µ̃′, µ̃], ∆Ψ(µ0) = Ψ̃(µ0)− 1−vb
ug(x̃,µ̃)−vb

< 0.

For µ0 < µ̃′, Ψ(µ0) = 1−vb
ug(x̃,µ̃)−vb

which decreases in γ since ug(x̃, µ̃) increases in γ. Now consider

the case with pFB > µ̃. As before, for all µ0 > pFB, we know that Ψ(µ0) = Ψ̃(µ0) which increases

in µ0. For µ0 < pFB, if µ0 ∈ [µ̃, pFB), Ψ(µ0) = Ψ̃(µ0), which by Lemma A.1 is now decreasing in

γ since µ0 − pFB < 0. For µ0 < µ̃, we have already shown that Ψ decreases in γ.

Proof of Proposition 6. By definition, A−1(µ0) < µ0 for all µ0 ∈ [ξ, 1). Suppose that p∗ ≥ pFB.

By Lemma A.1(1)-(2) then, p∗ 6= Ψ̃(µ∗0). From the structure of Ψ in Corollary 3 it then follows

that µ̃ > pFB and µ∗0 ∈ (pFB, µ̃]. An increase in γ implies a decrease in both µ̃ and Ψ(µ0) for

µ0 < µ̃ (Lemma 3), and therefore a decrease in the point of intersection of Ψ and the strictly

increasing A−1 function, meaning a lower p∗.

Proof of Proposition 7. Let µ1 be the unique solution to A−1(µ1) = pFB. By definition,

A−1(µ0) < µ0 for all µ0 ∈ [ξ, 1), meaning µ1 > pFB. Suppose now that µ̃ < µ1. We claim that

p∗ < pFB is implied. To see this, recall that (µ∗0, p
∗) is the unique intersection of A−1 and Ψ.

From Corollary 3 and A−1 strictly increasing, Ψ(µ0) > pFB > A−1(µ0) for all µ0 < µ̃ < µ1. So

µ∗0 ≥ µ̃. If µ∗0 = µ̃, then p∗ = A−1(µ̃) < A−1(µ1) = pFB. If, instead, µ∗0 > µ̃, then by from

Corollary 3, Ψ(µ∗0) = Ψ̃(µ∗0) < pFB, where the inequality follows from Lemma A.1(1)-(2).
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From Lemma 3, µ̃γ is decreasing in γ. Hence, it is sufficient to show that limγ→1 µ̃γ ≤ pFB

if vgvb ≤ 1. This is a matter of direct calculation. With binary-symmetric ratings, one can use

(38) to obtain the closed-form expression:

µ̃ =

√
(δ−1)(1−2γ)2(δ(γvb+(γ−1)vg)((γ−1)vb+γvg)−(1−2γ)2vbvg)

(δ−1)(1−2γ)2
+ vb

vb − vg
→ vb

vb +
√
vbvg︸ ︷︷ ︸

γ→1

(44)

Immediately, the limit value is no greater than pFB = 1−vb
vg−vb

if vgvb ≤ 1.

Proof of Proposition 8. Restating (39):

x̃ =
αb (µ̃) (vg − vb)

αb (µ̃) (vg − vb) + (1− δ)vb

From (41), as γ → 1, αb(µ)→ 0 for all µ ∈ (0, 1). Hence, x̃→ 0 as γ → 0.

In addition, ut(0, µ0) = ER[P (0, R)|t] = vb + ER[µf (x, r)|t](vg − vb). Finally, as γ → 1,

ER[µf (x, r)|t] → It=g, and ut(0, µ0) → vt. Hence, for all µ0, u∗t (µ0) → vt and Ψ(µ0) → pFB, as

γ → 1. Since (µ∗0, p
∗) is the unique intersection of Ψ and A−1, p∗ → pFB.

A.5 Proofs for Section 5

Proof of Proposition 9. The skin-in-the-game rule requires all securitizers to retain at least a

fraction xs. As a result, {x̃, µ̃} from Proposition 3 are now given by the solution to:

max
µ,x

(1− x)(αg(µ)(vg − vb) + vb) + δxvg (45)

s.t.(1− x)(αg(µ)(vg − vb) + vb) + δxvg = (1− xs + δxs) vb

where the only adjustment has been a change in the outside option (full information payoff) of

the banks with b-type pools in the constraint. From Proposition 3, we know that the solution to

(45) fully characterizes the PBE of the securitization stage with skin-in-the-game.

From the constraint, it follows that x̃ ≥ xs. Therefore, equilibrium retention levels satisfy:

xt ∈ [xs, x̃]. We have shown that {x̃, µ̃} are given by the problem’s FOC. In particular, µ̃

continues to be determined by condition (32), while x̃ is determined by the new constraint (45).

As a result, µ̃ is unaffected by the skin-in-the-game rule. In contrast, from the constraint, we

know x̃ responds to the retention rule as follows. For µ > µ̃, equilibrium retention increases

from 0 to xs. For µ = µ̃, retentions in the range x ∈ [x̃, xs] can be D1-equilibria. Finally, for

µ < µ̃, there is partial pooling at the new (higher) x̃, where banks with g-type pools retain x̃
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and those with b-type pools mix between {x̃, xs} as described in Proposition 3. Since payoffs at

the securitization stage, u∗t , decrease with the skin-in-the-game rule, the lending standard weakly

increases, credit supply weakly decreases, and so does ex-ante efficiency.

A marginal increase in the retention rule around xs = 0 increases overall efficiency (given by

9) if[
−
(
p∗(u∗g + sg) + (1− p∗)(u∗b + sb)− 1

)
h(p∗) +

∫ 1

p∗

(
p
∂u∗g
∂µ∗0

+ (1− p)
∂u∗b
∂µ∗0

)
A′(p∗)dH(p)

]
∂p∗

∂xs
|xs=0 >

−
∫ 1

p∗

(
p
∂u∗g
∂xs

+ (1− p)
∂u∗b
∂xs

)
|xs=0dH(p) (46)

⇐⇒
[
− (p∗sg + (1− p∗)sb)h(p∗) +

(
µ∗0
∂u∗g
∂µ∗0

+ (1− µ∗0)
∂u∗b
∂µ∗0

)
A′(p∗)Q(p∗)

]
∂p∗

∂xs
|xs=0 >

−
(
µ∗0
∂u∗g
∂xs

+ (1− µ∗0)
∂u∗b
∂xs

)
|xs=0Q(p∗) (47)

which is obtained by differentiating (9) with respect to xs around xs = 0, and where we have used

the fact that in any equilibrium, lending standards are chosen so that the marginal originated

loan has zero NPV: p∗u∗g + (1− p∗)u∗b = 1.

In an OTD equilibrium, (47) becomes (12). To see this, we first compute the marginal gain from

increasing the lending standard by differentiating our efficiency measure in an OTD equilibrium

with respect to p∗. Note that (10) can be written as:∫ 1

p∗
(p(vg + sg) + (1− p)(vb + sb)− 1) dH(p) (48)

Which implies that the marginal gain from increasing p∗ in an OTD equilibrium is:

− (p∗(vg + sg) + (1− p∗)(vb + sb))h(p∗) (49)

On the other hand, a marginal increase in retention levels would decrease efficiency by the

expected increase in the cost of retention: (1 − δ)(µ∗0µ
∗
g + (1 − µ∗0)µ∗b)Q(p∗) = (1 − δ)(µ∗0vg +

(1−µ∗0)vb)Q(p∗). Thus, there exists an xs that increases efficiency in the OTD equilibrium if the

marginal gain from increasing retention levels more than compensates for the cost of retention:

− (p∗(vg + sg) + (1− p∗)(vb + sb))h(p∗)
∂p∗

∂xs
|xs=0 > (1− δ)(µ∗0vg + (1− µ∗0)vb)Q(p∗) (50)

In a signaling equilibrium, since u∗t are independent of µ∗0, condition (47) becomes:

− (p∗sg + (1− p∗)sb)h(p∗)
∂p∗

∂xs
|xs=0 > −

(
µ∗0
∂u∗g
∂xs

+ (1− µ∗0)
∂u∗b
∂xs

)
Q(p∗) (51)
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Since retention is costly, and we have shown that xs increases retention levels type-by-type in a

signaling equilibrium, the RHS of condition (51) is positive.

(⇐) It is straightforward that if externalities at the margin, p∗sg + (1− p∗)sb, are sufficiently

negative, condition (51) holds, and thus there exists a skin-in-the-game rule that can increase

overall efficiency. (⇒) If there is no retention rule xs that increases efficiency, it must be that the

cost of increased retention is always higher than the gains from increasing the lending standard.

This means there is a bound (B) on the gains from increasing the lending standard from p∗ to

the retention level p∗xs implied by retention rule xs:

−
∫ p∗xs

p∗
(psg + (1− p)sb) dH(p) < Bxs , ∀xs ∈ (0, 1]

Which implies a bound for how negative externalities can be at the margin, p∗, since h(p) > 0

for all p and (psg + (1− p)sb)h(p) is continuous in p.

Proof of Proposition 10. First, consider the economy in an OTD equilibrium: there is full

pooling at zero retention and µ∗0 ≥ µ̃. Total surplus is given by

TS =

∫ 1

p∗
(pvg + (1− p) vb − 1) dH(p).

A marginal increase in informativeness, γ, has no effect on retention, so

dTS

dγ
=
dTS

dp∗
dp∗

dγ
= − (p∗vg + (1− p∗) vb − 1)h (p∗)

dp∗

dγ
.

To establish that dTS
dγ

> 0, we have (i) p∗ < pFB in an OTD equilibrium (Proposition 1), which

implies p∗vg + (1− p∗) vb − 1 < 0 and (ii) h(p∗) > 0. Finally, dp∗

dγ
> 0 in an OTD equilibrium

since Lemma 3 establishes that the relevant range of Ψ increases with γ and A−1 is an increasing

function.

Second, consider the economy in a signaling equilibrium: there is partial pooling at retention

level x̃ and µ∗0 ≤ µ̃. Total surplus is given by

TS =

∫ 1

p∗
(pug (x̃, µ̃) + (1− p) vb − 1) dH(p)

A marginal increase in informativeness, γ, affects both retention (and therefore ug) and the

lending standard, so

dTS

dγ
=
dTS

dp∗
dp∗

dγ
+
dTS

dug

dug (x̃, µ̃)

dγ
.
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The first term,

dTS

dp∗
dp∗

dγ
= − (p∗ug (x̃, µ̃) + (1− p∗) vb − 1)︸ ︷︷ ︸

=0

h (p∗)
dp∗

dγ
= 0,

since p∗ is optimal for banks, given retention. The second term,

dTS

dug

dug (x̃, µ̃)

dγ
=

∫ 1

p∗
p
dug (x̃, µ̃)

dγ
dH(p).

Since (x̃, µ̃) is the maximizer of (7), dug(x̃,µ̃)

dγ
= ∂ug(x̃,µ̃)

∂γ
> 0, as the g-type gains from a more

informative rating for fixed (x, µ). Hence, dTS
dγ

> 0.

Proof of Proposition 11. We analyze how {x̃, µ̃} from Proposition 3 change with δ. We know

that µ̃ satisfies condition (38). Let RHS (µ̃, δ) denote the right-hand side of this condition. We

have shown in the proof of Lemma 3 that ∂RHS
∂µ̃

takes the sign of δ−α (µ̃). In addition, we have

∂RHS

∂δ
=

1

[...]2
1

α′ (µ̃)

[
(1− αg (µ̃))α′b (µ̃) + α′g (µ̃)αb (µ̃)

]
which takes the sign of α′ (µ̃). Since the left-hand-side of the constraint is positive, so has to be

the the RHS, which requires α′ (µ̃) × (α (µ̃)− δ) ≥ 0. Thus, we have that ∂µ̃
∂δ
≥ 0. To see the

effect on retention, we do a total differentiation of the constraint:

[−αb (µ̃) (vg − vb)− (1− δ) vb] dx̃+

[
(1− x)α′b (µ̃) (vg − vb)

dµ̃

dδ
+ x̃vb

]
dδ =0

dx̃

dδ
=

[
(1− x)α′b (µ̃) (vg − vb) dµ̃

dδ
+ x̃vb

]
[αb (µ̃) (vg − vb) + (1− δ) vb]

>0

Finally, to study the effect of a change in δ on the lending standard and credit supply, we

characterize the changes in Ψ. We know that µ̃ has increased, and since δ does not affect payoffs

when retention is zero, Ψ̃ remains unaffected. For µ0 < µ̃, we need to analyze the effect of δ on

ug (x̃, µ̃):

u∗g ≡ ug (x̃, µ̃) = max
µ,x

(1− x) [αg (µ) (vg − vb) + vb] + δxvg

s.t. (1− x) [αb (µ) (vg − vb) + vb] + δxvb = vb

We have that
∂u∗g
∂δ

= vg −
α′g(µ̃)

α′b(µ̃)
vb (52)
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since
α′g(µ̃)

α′b(µ̃)
is the Lagrange multiplier of the constraint in this problem at {µ̃, x̃}.

Therefore, to complete the proof it suffices to show that
α′g(µ̃)

α′b(µ̃)
< vg

vb
. To see this, first rewrite

the FOC of M(vb) as

α′g(µ̃)

α′b(µ̃)
=
αg(µ̃)vg + (1− αg(µ̃))vb − δvg
αb(µ̃)vg + (1− αb(µ̃))vb − δvb

(53)

and observe that the numerator on the RHS is increasing in αg, while the denominator is in-

creasing in αb, therefore

αg(µ̃)vg + (1− αg(µ̃))vb − δvg
αb(µ̃)vg + (1− αb(µ̃))vb − δvb

<
αg(1)vg + (1− αg(1))vb − δvg
αb(0)vg + (1− αb(0))vb − δvb

=
vg
vb
.

Thus, the lending standard increases in the signaling equilibrium. In what follows, we analyze

the effect of a marginal increase in δ on overall efficiency.

In an OTD equilibrium with µ∗0 > µ̃, after a marginal increase in δ we continue to have

µ∗new > µ̃, by the continuity of the RHS of condition (38) in µ0. Thus, the economy continues to

be in an OTD equilibrium. From (10), it follows that changes in δ do not affect efficiency, since

retention is zero in such an equilibrium.

In a signaling equilibrium, with the same argument, after a marginal increase in δ, the economy

moves to a new signaling equilibrium, i.e., µ∗new < µ̃. To see that efficiency has increased, note

that (i) the lending standard has increased, (ii) u∗g has increased, as shown above, and (iii) u∗b = vb

remains unchanged. From (11) it follows that, absent externalities, efficiency has increased.

A.6 Proofs for Section 6

Proof of Proposition 12. Consider a candidate equilibrium in which β = 0. If m < ∆, then it

is strictly profitable for b-type banks to manipulate, a contradiction. Now suppose that β = 1.

In this case, recognizing that ratings will be uninformative, g-type banks will choose xg = x̄

in the securitization stage (see Proposition 2). Therefore, the equilibrium payoff to b-banks

who manipulate is no greater than vb −m. In this case, a b-type can profitably deviate by not

manipulating and setting xb = 0 in the securitization stage.

Proof of Proposition 13. Fix any belief assigned to an unrated issuance, µn. Define r̄ be such

that
µ

µ+ (1− µ)Γ(r̄)
− µn = φ,

where if r̄ exists it is unique since the left-hand side is strictly increasing in r for µ ∈ (0, 1).

If φ is large enough so that an intersection does not occur, then we say r̄ = inf r. Suppose
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r < r̄ and r ∈ R. Since µf (µ, r;φ) is increasing in r, ut(µ, x, r) < unt (µ, n, r), which violates

bank’s optimality with respect to publishing the rating. Now suppose there exists r > r̄ such

that r /∈ R. Then, if a bank receives rating r and chooses to pay and report it, investors assign

beliefs µf (µ, r;φ) and the bank profits from this deviation, a contradiction. Thus, it must be

that R = {r : r ≥ r̄}.
Then, in any equilibrium, not being rated indicates that r < r̄(µ;φ). As a result:

µn(µ;φ) =
µ

µ+ (1− µ) Fb(r̄(µ;φ))
Fg(r̄(µ;φ)))

.

It remains to show that the set R differs from the full set of ratings iff φ > 0. (⇐) Let the set

{r : r < r̄} have zero measure. Then, r̄ = inf r and µf (µ;φ)− µn (µ;φ) = 0 since by L’Hopital,

lim
r→inf r

Fb (r)

Fg (r)
=
fb (r)

fg (r)
.

This is only consistent with φ = 0. (⇒) Now assume that φ = 0. Then, r̄ is given by: µf (µ, r̄;φ)−
µn (µ;φ) = 0, which implies r̄ = inf r since µf (µ, r;φ) − µn (µ;φ) > 0 for µ ∈ (0, 1) and all

r > inf r. Thus, {r : r < r̄ (µ;φ)} has zero measure.

B Security Design

Let the underlying cash flow be a continuous random variable Y , with type-dependent density

functions πH , πL satisfying the monotone likelihood ratio property (i.e., πH(y)/πL(y) is increasing

in y.). Thus far, we have studied how much banks will retain taking the “class” of securities,

F = (1−x)Y , as given. In this section, we demonstrate that the main results of the paper remain

unchanged when banks can choose the design of the security. Our demonstration relies heavily

on Daley et al. (2016) (henceforth, DGV16) in which we study the optimal security design in the

presence of public information (e.g., ratings).

B.1 Summary

In DGV16, we characterize the equilibrium of the securitization stage where the securitizer can

choose any security, F = ψ(Y ), to offer for sale. Specifically, for any realization of the cash

flow y, ψ(y) is the amount paid to the purchaser of the security and y − ψ(y) is the amount

retained by the securitizer, where 0 ≤ ψ(y) ≤ y for all y. As in much of the security design

literature, we focus on securities for which both the amount paid and the amount retained must

be nondecreasing in y. We retain the assumption that each pool of loans is either good or bad
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(i.e., t ∈ {b, g}). Further, a type-t pool delivers a cash flow distributed according to the cdf

and pdf denoted by Πt and πt respectively on a common support [0, ȳ], where πg(y)

πb(y)
is weakly

increasing (i.e., MLRP holds). We refer to this setting as the Security Design game.

We show that the form of the security that emerges in the equilibrium of the Security Design

game depends on a new measure of rating informativeness (denoted RI) and the cost of retention,

δ.31 In particular, if RI < δ, then the securitizer issues debt and retains a levered-equity claim,

while if RI > δ, then the securitizer issues a levered-equity claim and retains debt (see DGV16,

Theorem 1).32 We also show that a result analogous to Proposition 3 holds in the Security Design

game. That is, when ratings are informative enough the unique equilibrium involves some degree

of pooling (either partial or full) whereas when ratings are not sufficiently informative the unique

equilibrium is separating (see DGV16, Theorem 2).

Below, we characterize the equilibrium payoffs of the Security Design game as a function of

the prior belief, µ0, about the type of the pool. Denote these payoffs by uSDGt (µ0). Importantly,

these payoff functions share similar characteristics to the ones derived earlier, where the bank is

restricted to issuing (and retaining) equity.

Fact B.1. There exists a unique equilibrium of the Security Design game. Moreover,

(i) uSDGt (µ0) is continuous and weakly increasing in µ0.

(ii) There exists µ1 ∈ (0, 1] such that for all µ0 ≤ µ1, uSDGb (µ0) = vb and uSDGg (µ0) ∈ (ug(x̃, µ̃), vg).

Proof. See DGV16.

B.2 Security Design: Lending Standards and Credit Supply

Let us now turn to the implications for lending standards and the supply of credit when the

Securitization stage is replaced by the Security Design game. Analogous to Corollary 3, the

lending standard is given by

pSDG ∈ ΨSDG(µ0) ≡ max

{
1− uSDGb (µ0)

uSDGg (µ0)− uSDGb (µ0)
, 0

}
(54)

From Fact B.1, we know that ΨSDG(µ0) is decreasing and continuous in the relevant range.

Hence, there is a unique solution to (54) and a unique level of credit supply that is consistent

31The measure is defined as RI ≡ maxµ αg(µ)− αb(µ).
32In the knife-edge case of RI = δ, the form of security designed is not unique in equilibrium, though (for each

µ0) the equilibrium payoffs uSDGg , uSDGb are unique. Debt, equity, or levered equity, among other possibilities, can
be used so long as the proper quantity is issued. Note that since the unique equilibrium payoffs can be obtained
by issuing equity when RI = δ, origination and credit supply are unaltered by expanding the set of available
securities and the analysis from the body of the paper holds in this case. Therefore, we omit this non-generic
case for the remainder of this Appendix.
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Figure 7: Security Design and Lending Standards.

with an equilibrium. We also know that ΨSDG(µ0) ∈
(

1−vb
vg−vb

,Ψ(µ0)
)

for µ0 ≤ µ̃. In this region, a

bank with a bad pool of loans gets the full-information value, while the bank with a good pool of

loans does strictly better by being able to choose the security design, which eases banks lending

standards.

For convenience, we say that ratings are Γ-informative if inequality (8) in Lemma 2 of the

present paper is satisfied. Provided the rating is Γ-informative, one can also show that ΨSDG lies

weakly above Ψ for all priors above a threshold (and strictly above for at least some priors).33

In the region where the inequality is strict, banks use retention to signal quality when they

can design the security, but rely purely on ratings when they are restricted to equity. These

properties are summarized in Figure 7 and formally stated in Lemma B.1.

Lemma B.1. If the rating is Γ-informative, then the following statements are true.

(i) ΨSDG(µ0) ∈
(

1−vb
vg−vb

,Ψ(µ0)
)

for all µ0 < µ̃.

(ii) ΨSDG(µ0) ≥ Ψ(µ0) for all µ0 > µ̃, where the inequality holds strictly for at least some µ0.

If the rating is not Γ-informative then ΨSDG < pNR for all µ0.

The next proposition summarizes the implications of security design on the equilibrium lending

standard.

33Under some conditions (e.g., if the rating is not β-informative at ȳ, as defined in DGV16), ΨSDG lies strictly
above Ψ for all priors above a threshold.
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Proposition B.1. If each bank can optimally design the security that they issue (i.e., if the

Securitization stage is replaced with the Security Design game) then:

• If A−1(µ̃) > ΨSDG(µ̃): the lending standard decreases toward pFB, though an undersupply

of credit persists.

• If A−1(µ̃) < ΨSDG(µ̃): the lending standard increases, which may be toward or away from

pFB.

• If A−1(µs) < ΨSDG(µs), where µs is defined implicitly by ΨSDG(µs) = pFB: the lending

standard increases toward pFB, though oversupply of credit persists.

In essence, Proposition B.1 says that the ability to design the security improves productive

efficiency when the precision of banks’ screening technology is sufficiently high or low. For

intermediate levels of precision, optimal security design results in tighter lending standards,

which may or may not improve productive efficiency.

Proofs for Section B.2

Proof of Lemma B.1. The proof of the case in which the rating is not Γ-informative is trivial.

Regardless of the prior, in any equilibrium of the Security Design game, the b-payoff is weakly

greater than vb and the g-payoff is strictly greater than uLCg . Noting the 1−ub
ug−ug is decreasing in

both ub and ug (whenever it is non-negative) yields the result.

When the rating is Γ-informative. The statement in (i) follows immediately from Fact B.1.

To prove (ii), it will be useful to break the proof into three cases.

Case 1: Rating is not β-informative at ȳ.34 In this case, the equilibrium of the Security Design

game does not converge to full-pooling with zero retention as µ0 → 1. In particular, g retains

a non-trivial levered equity claim and the low-type either pools or fully separates with zero

retention. In either case, uSDGt (µ0) < u∗t (µ0) = ut(0, µ0) for all µ0 > µ̃, which implies the result.

Case 2: Rating is β-informative at ȳ, but not α-informative. In this case, there is full-pooling

with zero retention for µ0 large enough. Let µ2 denote the smallest prior belief at which the

zero-retention, full-pooling outcome obtains in the SDG. It suffices to show that µ2 > µ̃. The

FOC characterizing µ2 is

g(µ2) =
πg(ȳ)

πb(ȳ)
− 1, (55)

where g(µ) ≡ 1−δ
(α(µ)−δ)

α′
b
(µ)

α′(µ)−αb(µ)
. The FOC characterizing µ̃ (see (38)) can be written as g(µ̃) =

vg
vb
− 1. Note that g(µ) ≤ 0 for all µ < µmax ≡ arg maxµ α(µ), whereas the RHS of the FOC is

34As defined in DGV16, the rating is β-informative at ȳ if E[Γ(R)|L] > 1 + δ
1+δ

(
1− πb(ȳ)

πg(ȳ)

)
.
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strictly positive in both cases. Hence, it must be that both µ2 and µ̃ are above µmax. Further,

g is positive, strictly increasing, continuous, and tends to +∞ on the interval (µmax, m̄) and g

is negative above m̄, where m̄ is such that the denominator of g is zero. Finally, by MLRP
πg(ȳ)

πb(ȳ)
> vg

vb
. Therefore g(µ2) > g(µ̃) and thus µ2 > µ̃.

Case 3: Rating is α-informative. The proof for this case is similar to Case 2. Again, there is

full-pooling with zero retention for µ0 large enough in the SDG. Let µ2 denote the smallest prior

belief at which the zero-retention, full-pooling outcome obtains in the SDG. We will show that

µ2 > µ̃. The FOC characterizing µ2 in this case is

g(µ2) =
1− Πg(y)

1− Πb(y)
− 1 = 0 (56)

where g(µ) is defined in Case 2. When the rating is α-informative, g is strictly decreasing

over the relevant domain and equal to zero only at µmax.35 Therefore, µ2 = µmax, whereas

g(µ̃) = vg
vb
− 1 > 0 =⇒ µ̃ < µmax, which implies the desired result.

Proof of Proposition B.1. Follows immediately from Lemma B.1.

35The relevant domain includes all µ ∈ (µ, µ̄), where any solution to either FOC must lie.
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